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The optimal energy management for a plug-in hybrid electric bus (PHEB) running along the fixed city bus route is an im-
portant technique to improve the vehicles’ fuel economy and reduce the bus emission. Considering the inherently high regular-
ities of the fixed bus routes, the continuous state Markov decision process (MDP) is adopted to describe a cost function as total 
gas and electric consumption fee. Then a learning algorithm is proposed to construct such a MDP model without knowing the 
all parameters of the MDP. Next, fitted value iteration algorithm is given to approximate the cost function, and linear regres-
sion is used in this fitted value iteration. Simulation results show that this approach is feasible in searching for the control 
strategy of PHEB. Simultaneously this method has its own advantage comparing with the CDCS mode. Furthermore, a test 
based on a real PHEB was carried out to verify the applicable of the proposed method. 
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1  Introduction 

Nowadays, the plug-in hybrid electric bus (PHEB) has been 
widely applied as a transportation in many cities of China 
[1,2]. Compared with conventional bus, more preferable 
fuel economy might have been achieved, due to the usage of 
the electric energy from the grid which are relatively more 
inexpensive than fossil fuels [3]. During the efficiency im-
provement processes of PHEB, a challenging problem has 
been proposed to construct an optimal energy management 
strategy, which might coordinate the distribution of the 
power demand between the engine and the electric motor 
(EM) [4,5]. 

In recent years, a large amount of approaches had been 

adopted in solving the energy management problem, which 
described via optimal control theory including dynamic 
programing [6–8], fuzzy logic control [9,10], Pontryagin 
Minimum Principle [11,12], and Model Predictive Control 
[13,14] in the majority of research works. Inherently, if 
those techniques are attempted to be applied online, it is 
critical to find a control strategy with some kind of driving 
cycle prediction [15,16]. For this purpose, some modeling 
methods proposed to estimate the fuel consumption cost 
function with a Markov chain which would give the transi-
tion probability of a set of torque demand [17,18], mean-
while utilizing the stochastic dynamic programming (SDP) 
in solving the cost function. 

Considering the characteristics of the driving cycles of 
city buses, the high-confidence regularities, which would 
well reflect the variations of traffic flow and driving cycles 
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about the typical routine, might be easily ‘extracted’ from 
the collected historical data [19,20]. Obviously, the SDP, 
which based on statistical regularity, might be the most ap-
propriate algorithm to implement the optimization of the 
energy management for PHEB [21]. However, utilizing 
SDP algorithm to design the optimal energy management 
strategy also faces two challenges. First, the cost function of 
SDP algorithm is constructed through using the basic dis-
crete method, which takes a constant value over each of the 
discretization intervals. Nevertheless, this piecewise con-
stant representation might not be represented exactly by 
many smooth function, which would result in little smooth-
ing over the inputs, and no generalization over the different 
discretization intervals. Second, the discretization approach 
owns the problem of “curse of dimensionality”. The proper 
discretization is also necessary to obtain a good approxima-
tion. This paper describes an alternative approach for find-
ing control strategy with stochastic Markov model of PHEB 
energy management, in which the cost function is approxi-
mated directly without resorting to discretization. Because 
the statistical learning method is introduced in this approach, 
it is not necessary to know all of the parameters in the MDP 
model. And using the approximate method, it will reduce 
the burden of the computation in our problem. 

The remainder of this paper is organized as follows. In 
Section 2, a simplified model for the PHEB is proposed. 
The fitted value iteration method is promoted in Section 3. 
In Section4, the simulation is proposed to illustrate the ad-
vantage of this method. Finally, Section 5 exhibits the con-
clusion and discussion. 

2  Control-oriented model of PHEB 

The PHEB structure discussed in this paper is a typical sin-
gle-shaft parallel configuration shown in Figure 1.  

The single-shaft parallel configuration is widely used as 
the hybrid powertrain. The main difference between this 
configuration and the traditional ICE vehicle with automatic 
mechanical transmission (AMT) is that a EM is joined co-
axially between the automatic clutch and AMT. In this pa-
per, A Hengtong CKZ6116PHEV quick-charge plug-in gas/ 
electric hybrid bus is studied, and the key parameters of this 
PHEB model are given in Table 1.  

In [1], a backward simulation model of PHEB had been 
established. The torque of wheel can be expressed through  

 

Figure 1  Configuration of the PHEB structure. 

Table 1  Key parameters of the HEB 

Component Key parameter 

Engine YC6G230N, 6.454 L, nominal power: 170 kW 

EM 
Permanent magnet (PM), max torque: 750 Nm, nominal 

power: 94 kW, peak power: 121 kW 
Battery Lithium manganate, capacity: 60 A h  359V  

Transmission
6-speed AMT, 

gear ratio: 6.39/3.97/2.4/1.48/1/0.73 
Final Drive Ratio: 5.571 

 
the vehicle longitudinal dynamics equation as follows 
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where Tw is the torque of wheel, T is the transmission. effi-
ciency, ig and if denote the gear ratio of AMT and the final 
drive ratio, respectively. Te is the engine torque, and Tm is 
the EM torque. Tb is for the braking torque acting on the 
wheel. m is the total mass of the vehicle which equals to the 
sum of the vehicle mass mv and passenger mass mp. The 
values of the above parameters are shown in the following 
Table 2. 

The consumption rate of compressed natural gas (CNG) 
(mL/s) for a CNG engine can be expressed as follows: 
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where Pe=Tee is the engine power. b is the compressed 
natural gas consumption rate, corresponding to the current 
engine torque and rotational speed, which can be obtained 
through calibration test. g is the density of CNG. 

The EM power PEM can be calculated as follows 
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where EM is the EM efficiency. 
A simplified physical model of battery is given by the 

dynamics of battery SOC, internal current I, and battery 
power Pess(W), which can be written as follows: 
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Table 2  Values of the parameters 

Parameter Value Parameter Value 

mv (kg) 12500 CD 0.51 
g (m/s2) 9.8 d (kg/m3) 1.2258 
V (m/s) - A (m2) 8.25 

fr 0.0076+0.0002016 V 
Wheel radius 
r (m)   CD 

0.48 

 -  1.1 
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 ess ,OCP V I  (6) 

where VOC, Rint and QB are the open-circuit voltage, internal 
resistance, and the capacity of battery, respectively.  

3  Energy management strategy of PHEB based 
on MDP 

In this section, a cost function of fuel consumption and 
electric consumption based on Markov decision process will 
be presented. Then a learning method is proposed to search 
for a minimal value of this cost function, and obtain the 
optimal control strategy simultaneously. 

3.1  Markov decision process model 

A Markov decision process [22] (MDP) is a tuple (X, A, 
{Pxa}, , R), where  

(1) X is a set of states. 
(2) A is a set of actions. 
(3) Pxa are the state transition probabilities, where 

.x X  For each x X  and action ,a A  Pxa is a dis-
tribution over the state space. More in detail, Pxa gives the 
distribution over what states we will transition to if we take 
action a in state x. 

(4)  0,1   is called the discount factor. 

(5) :R X A    is the reward function. (The reward 
function is sometimes also written as a function of the state 
X only, in which case we would have :R X   ). Then, a 
cost function of fuel consumption will be implemented by 
the MDP. 

The dynamics of an MDP proceeds as follows: it starts in 
some state x0, and get to choose some action 0a A  to 

take in the MDP. As a result of the choice, the state of the 
MDP randomly transitions to some successor state x1, drawn 
according to 

0 01 .x ax P  Meanwhile, the reward R(x0, a0) is 

obtained. Then, another a1 is picked. As a result of this ac-
tion, the state 1x  transitions to some 

1 12 .x ax P  At the 

same time R(x1, a1) is obtained again. This process will be 
continued. 

Here, let [soc, , ] ,rx T n X   where soc, Tr, n are the 

SOC of battery, torque demand, and transmission in-
put-speed , respectively. Let ,ea T A   where Te is the 

engine torque. Therefore, the optimal cost function of fuel 
consumption can be described as follows: 

 ( ) ( ) min ( ) ( )d ,xaxa
J x R x P x J x x


      (7) 

where ,xax P   where x  is the next state of state ,x  

and the reward function R is defined as the cost of fuel and 
electric consumption.  

 1 fuel 2 ele( , ) ,R x a W W    (8) 

where 1 and 2 are price of fuel and electric power respec-
tively. Wfuel and Wele are the consumption of fuel and elec-
tric power respectively. In addition, the ( )xaP x  in eq. (7) 

should be expressed. 
Because of the constraints of the hybrid powertrain, this 

optimization process might satisfy these constrains. 
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where *,min ,n  *,max ,n  *,minT  and *,maxT  are permitted 

lower and upper bound of engine or motor torque and speed, 
respectively. socmin and socmax are bounds of battery admis-
sible sets. In this paper, the gear shifting strategy could be 
mapped as a lookup table of single parameter (vehicle speed) 
[23]. 

Then, a learning method is proposed to find the ( ).xaP x  

Suppose extracting m trial in which one repeatedly take 
actions in the above MDP as follows: 
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In the eq. (10), the action a=Te can be picked at random. 
One can be chosen to learn a linear model as follows: 

 1 ,t t t tx Ax Ba      (11) 

where ~ (0, ),t N   which is a normal distribution. The 

covariance matrix  can be computed from the data in eq. 
(10). The parameters A and B in the model (10) can be ob-
tained from the following equation: 
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Thus, a stochastic model is built, in which xt+1 is a ran-
dom function of the xt and at. The Pxa(x′) also could be giv-
en in this way. 

It is worth while to note that here the next state xi+1 is a 
linear function of the current state xt and action at. However, 
of course nonlinear functions are also available in this 
problem. Mathematically, one can use a model  
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where f and g are some nonlinear mapping of the states and 
actions.  

3.2  Fitted value iteration algorithm 

As the above mentioned, a proper approach could be im-
plemented to solve the optimal problem (7). In this section, 
a learning method is given as following. This method is 
called the fitted valued iteration algorithm, which approxi-
mates the value function of a MDP. The main idea of this 
learning method is that we are going to approximately carry 
out this step, over a finite sample of states (1) (2) ( ), , , .mx x x  
In detail, a supervised learning algorithm can be used as 
linear regression in our description below to approximate 
the cost function as a linear or non-linear function of the 
states: 

 T( ) ( ),J x x  (14) 

where  is certain appropriate feature mapping of the states. 
For each state x in finite sample of m states, fitted valued 

iteration will first compute a quantity y(i), which will be ap-
proximation to ( ) max [ ( )].

xax P
x

R x E J x     Then, it will 

use a supervised learning method to get J(x) close to 
( ) max [ ( )].

xax P
x

R x E J x     In other words, it means that 

trying to get J(x) close to y(i). 
The processes of this learning algorithm are as follows. 
(1) Randomly sample m  states (1) (2) ( ), , , .mx x x S  
(2) Initialize 0.   
(3) Repeat {  
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           } 
As mentioned above, fitted value iteration using linear 

regression as the algorithm to make J(x(i)) close to y(i) had 
written out. The step of this algorithm is analogous to a 
standard regression problem in which the vectors (x(1), y(1)), 
(x(2), y(2)), , (x(m), y(m)), are training set, and a function 
mapping from x to y should be learned. The main difference 

is that [soc, Tr, n] plays the role of x in above algorithm. 
Obviously, other regression algorithms can also used in this 
problem. 

At last, fitted valued iteration outputs J, which is an ap-
proximation to optimal J*. If the system is in some state x, 
and we need to choose a control strategy, we would like to 
choose the strategy as follows: 

 arg max [ ( )].
xax P

a
E J x   (15) 

Therefore, the optimal problem (7) can be solved by the 
approximate method and learning method. As the process of 
the above algorithm, the optimal control strategy is given by 
eq. (15). 

4  Simulation validation 

The driving cycle for simulation in this section starts from 
Yudong station (Point A in Figure 2) to Nanping station 
(Point B in Figure 2) in Chongqing city, and then returns to 
Station A, including 32 bus stops.  

Next the performance of the proposed approach will be 
compared with a baseline control policy. Here the baseline 
control strategy is the CDCS strategy, and a certain test 
driving cycle is shown in Figure 3. 

The simulation results show in details as following. As 
we know, the CDCS strategy tends to deplete battery energy 
in the first place, while the MDP makes the optimal deci-
sion based on the solving a global optimization problem. So 
the SOC-time curve of MDP exhibits better performance 
than the CDCS shown in Figure 4. In detail, the SOC com-
parison curves show that the proposed MDP strategy might 

 

Figure 2  (Color online) Bus route 303 in Chongqing. 
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Figure 3  (Color online) Velocity-time curve of the bus route 303. 

 
Figure 4  (Color online) SOC-time curve of the CDCS and MDP. 

be very close to the global optimal electric energy distribu-
tion in the given driving cycle. 

In Figure 5, the engine operating points for CDCS and 
MDP are shown respectively. The engine might operate in 
higher effective area in the MDP model compared with 
CDCS model. 

 

Figure 5  (Color online) (a) Engine operating points of CDCS; (b) engine 
operating points of MDP. 

For motor working points, it can be seen from the Figure 
6 that, the most of engine working points are located nearby 
the low-load area, which reflects lower engine efficiency. 
While more engine working points lie in the higher effec-
tive area due to the optimal distribution of MDP.  

As shown in the Figure 7, simulation results under the 
bus route 303 reflect the basic curves of the PHEB in the 
given driving cycle. Obviously, in the MDP method the 
engine could well participate in the driving process almost 
on the whole driving cycle compared with the CDCS meth-
od. Therefore the energy of the battery could be well uti-
lized among the whole cycle to avoid the low-efficiency 
areas of the engine. And the total energy consumption of the 
two methods are shown in Figure 8, the energy consumption 
of the CDCS method increase rapidly when it works on CS 
mode after 2500s, due to its weaker ability to keep the en-
gine working on the high efficient areas.  

As quantitative perspective, the simulation results with 
three strategies: CDCS, MDP, DP are shown in Table 3. 
The results demonstrate that the energy consumption gener-
ated by the proposed MDP strategy is higher than that gen-
erated by the standard DP algorithm, but significantly lower 
than that of CDCS strategy. As the results shows that the 
proposed MDP strategy could reduce the energy consump-
tion through moving the operating points of two power 
sources into their own high efficiency areas. 

In theory, the proposed learning algorithm can reduce the 
computational burden due to it is constructed based on a 
large number of statistical data about the PHEB. Compared 
to the proposed algorithm in this paper, classical methods, 
such as DP, are of limited utility in solving MDP because of  

 

Figure 6  (Color online) (a) Motor operating points of CDCS; (b) motor 
operating points of MDP. 
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Figure 7  (Color online) (a) Torque split of CDCS; (b) torque split of 
MDP. 

 

Figure 8  (Color online) The total energy consumption of MDP and 
CDCS. 

Table 3  The fuel economy of CDCS and MDP 

 CDCS MDP DP 
Fuel consumption 

(m3/(100 km)) 
29.45 24.12 21.53 

Electric consumption  
(kWh/(100 km)) 

31.6 30.25 31.6 

Cost (yuan(RMB) 149.40 126.73 117.7 
Improvement (%) - 15.17 21.2 

 
their assumption of a perfect model and their great compu-
tational expense [24]. In addition, although the energy con-
sumption generated by the proposed MDP strategy is higher 
than the standard DP algorithm, the MDP strategy is to op-
timize total energy consumption over a family of random 
driving cycles in an average sense instead of optimizing 
over a given driving cycle by DP. Therefore the optimized 

results are valid for several driving cycles rather than for a 
certain driving cycle, and it has the potential to be applied in 
actual. 

5  Experiment validation 

A plug-in hybrid electric bus with the single-shaft parallel 
configuration was used to test the proposed control method. 
And the segment of the Yun Longxi highway in Wujiang 
city, Jiangsu province, was chosen as the test cycle, the ve-
hicle speed vs. time curve is shown in Figure 10. Note that 
the gearshift logic and the engine control are quite different 
with that in simulation even though the similar configura-
tions are equipped in the bus (e.g. No start-stop system is 
working on the tested bus while in simulation it does). The 
tested bus and the devices are shown in Figure 9 and the 
tested results are shown in Figure 10. 

As can be seen in Figures 10(b) and (c), the torque could 
be well distributed between engine and motor. However, the 
fuel and electric consumption are 30.07 (m3/100 km) and 
56.75 (kWh/100 km) correspondingly as shown in Figure 
10(e), which are not as well as that in simulation. The dif-
ferences might be caused by several reasons. Firstly, the 
tested bus keeps the engine in idle speed during the stop 
time along the tested cycles while in simulation it won’t. 
Therefore, the extra consumption could be added. Secondly, 
the gearshift logic could lead to some changes for engine 
work points, which would have some effects on the vehicle 
economy. Moreover, the simplification of the model could 
also influence the performance of the vehicle. Even through, 
the tested results in actual bus are not as well as that in sim-
ulation, the applicable of the proposed control method could 
also be well verified. One points should be explained is that 
the minimum resolution ratio of SOC is 5‰, therefore, the 
change of the SOC is stair-step curve, as shown in Figure 
10(d). 

6  Conclusions 

A novel learning algorithm is presented to solve the global 
energy optimization problem in the real-time controller of 
PHEB. A MDP model for the cost function of the fuel and  

 

Figure 9  (Color online) The tested bus and devices. 
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Figure 10  The results of actual experiment. (a) Vehicle speed and gear; (b) the engine and motor speed; (c) the engine and motor torque; (d) battery SOC; 
(e) fuel and electric consumption. 

electric consumption in the PHEB is constructed by the sta-
tistical method. Then a simpler function is used for ap-
proximating the cost function, and in the process of this 
method, a linear regression method is adopted which make 
the problem much easier to solve. Moreover, sample data is 
easy to be obtained because PHEBs always run on a fixed 
route many times. At last, simulation and experiment is 
given to illustrate the effectiveness of this approach. Com-
pared with the CDCS control strategy, the MDP based con-
trol strategy can get a lot better results. 
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