
SCIENCE CHINA 
Technological Sciences 

© Science China Press and Springer-Verlag Berlin Heidelberg 2015  tech.scichina.com  link.springer.com 

                           
*Corresponding author (email: zzs2623@qq.com) 

• Article • July 2015  Vol.58  No.7: 1196–1208 

 doi: 10.1007/s11431-015-5828-x 

Vision navigation for aircrafts based on 3D reconstruction from  
real-time image sequences 

ZHU ZunShang1,2*, SU Ang1,2, LIU HaiBo1,2, SHANG Yang1,2 & YU QiFeng1,2 

1 College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China;  
2 Hunan Key Laboratory of Videometrics and Vision Navigation, Changsha 410073, China 

Received November 12, 2014; accepted April 5, 2015; published online June 9, 2015 

 

In this paper, we propose a novel vision navigation method based on three-dimensional (3D) reconstruction from real-time 
image sequences. It adapts 3D reconstruction and terrain matching to establish the correspondence between image points and 
3D space points and the terrain reference (by using a digital elevation map (DEM)). An adaptive weighted orthogonal iterative 
pose estimation method is employed to calculate the position and attitude angle of the aircraft. Synthesized and real experi-
ments show that the proposed method is capable of providing accurate navigation parameters for a long-endurance flight 
without using a global positioning system or an inertial navigation system (INS). Moreover, it can be combined with an INS to 
achieve an improved navigation result. 
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1  Introduction 

The estimation of the position and attitude angle of a 
long-endurance aircraft is crucial for flight and path control. 
Fully autonomous navigation systems can improve an air-
craft’s anti-interference ability, reliability, and availability. 
Therefore, the estimation of the absolute position and atti-
tude angle of an aircraft when there is a large drift in its 
inertial navigation system (INS) and when its global posi-
tioning system (GPS) is experiencing interference or is un-
available is an important research problem.  

Vision navigation methods use passive image capture 
devices and computer vision methods to obtain the relative 
or absolute position and attitude angle information for air-
craft platforms. These methods have the advantages of high 
autonomy, no accumulation errors, and comprehensive 

measurement parameters. These methods can be used inde-
pendently or be combined with other navigation methods.  

In terms of image texture information, the topography of 
an area changes little under normal conditions. Therefore, 
for relatively large terrain-relief areas, terrain-matching- 
based vision-navigation methods are more stable than sce-
ne-matching methods. The main advantage of image se-
quences obtained in a real-time flight is the ease of match-
ing and tracking feature points with the overlapped region 
with time continuity. For a flight platform, one may choose 
a better intersection condition to achieve a better-reconstru- 
cted three-dimensional (3D) terrain. By introducing a refer-
ence terrain map, we can match the reconstructed 3D terrain 
over the flight region with the reference terrain map. This 
matching yields the correspondence between image points 
and 3D spatial points. Finally, the absolute position and 
orientation of the aircraft can be resolved by using pose 
estimation methods. Because most of the Earth’s terrain 
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information is readily available, this method can be imple-
mented for fully autonomous navigation. These methods use 
passive imaging equipment instead of radar, laser ranging, 
and other active terrain measurement equipment. Further, 
they have considerable advantages in terms of energy con-
sumption, payload weight reduction, and enhanced survival 
ability of the aircraft. 

In the absence of any prior knowledge of flight parame-
ters, the 3D reconstruction technique can only recover the 
3D structure of the target scene. It cannot obtain the abso-
lute scale scene structure unless the recovered 3D terrain 
map can be scaled to the reference terrain map. If the initial 
position cannot be determined, the navigation problem be-
comes a searching and matching problem between the re-
constructed 3D terrain and the reference terrain under scale 
and perspective transformation conditions. 

In this study, we deal with the problem of estimating the 
accurate position and attitude angle for a long-endurance 
flight. First, we employ the random sample consensus 
(RANSAC) and weighted estimator for a stable, accurate, 
and fundamental matrix estimation for 3D sequence recon-
struction. Next, we propose a peak extractor and description 
method for terrain matching under a scale transformation 
condition. Finally, we improve the orthogonal iterative pose 
estimation method by using a weighted strategy. 

2  Related work 

In general, vision navigation methods can be divided into 
three types: scene matching-based approaches, integrated 
vision navigation methods with other sensor information, 
and autonomous navigation methods based on vision con-
straints between image feature points and ground feature 
points. 

(1) Scene matching-based approaches. These methods 
calculate the position and attitude information by directly 
matching the real-time image and the pre-stored reference 
image. These methods are suitable for flat terrain and rich 
surface texture features of an area. For a low-altitude air-
craft, by undulating the terrain area, we decreased the sta-
bility and accuracy of localization, particularly the accuracy 
of the attitude parameter. Moreover, when we consider the 
weather, climate change, and textures in different seasons, 
we find that a practical scene matching navigation method 
suffers from a further decline. Furthermore, an image 
changes under different situations such as different times, 
seasons, view angles, and heights, particularly in the case of 
mountains and hilly areas. Hence, it is difficult to directly 
match a reference image and a real-time image. 

(2) Integrated vision navigation methods with other sen-
sor information. By fusing the information obtained from an 
INS, radar, or other sensors, vision-based methods achieve 
pose estimation by using the aircraft speed, landmarks, and 
terrain elevation data. Methods such aircraft motion con-

straints are rather stringent, and some belong to the active 
measurement equipment, will reduce the capacity of the 
aircraft mobility and concealment. 

(3) Autonomous navigation methods based on vision 
constraints between image feature points with ground fea-
ture points. This method uses 3D terrain information to 
eliminate the uncertainty of 3D reconstruction so as to ob-
tain the aircraft position and orientation parameters by using 
the constraints of the terrain. Wang et al. [1] proposed a 
fusion of the GPS/INS navigation- and vision system-based 
approaches by using a laser altimeter and an optical flow 
analysis to achieve 3D scene reconstruction and a naviga-
tion information solver. Stevens et al. [2] used a real-time 
image sequence captured by an aircraft and described the 
3D reconstruction ground terrain in absolute scale with the 
help of aircraft speed information. Then, they used the cor-
respondence points between the reconstructed terrain and 
the reference terrain maps to determine the absolute aircraft 
position and posture. Sim et al. [3,4] proposed a combined 
navigation parameter estimation method by matching the 
reconstructed 3D terrain and the reference terrain maps to 
estimate the relative position and orientation of the aircraft 
and by using a combination of scene and terrain matching 
methods to obtain the absolute position and orientation in-
formation of the aircraft. However, these methods rely on 
an INS or a GPS to obtain information on different time 
motions and locations of the aircraft in order to obtain a real 
absolute scale of the terrain. 

For terrain matching, Golden proposed the terrain con-
tour matching (TERCOM) method [5]. The TERCOM 
method is based on the mean absolute difference (MAD) 
between the measured elevations and the map elevations of 
a given map profile. The missile position is calculated using 
a multi-state Kalman filter technique. After the determina-
tion of the TERCOM fix, the update is obtained by fusing 
with the Kalman filter equations. The TERCOM process 
requires a terrain map that is sufficiently unique in order to 
enable a missile to traverse from the launch to the target. 
Moreover, it requires the missile to fly in parallel to the 
columns of the TERCOM map. Behzad and Behrooz [6] 
introduced an iterative closest contour point (ICCP) from 
image registration to underwater terrain matching. Rodri-
guez and Aggarwal [7] proposed an approach that uses a 
reconstructed 3D terrain map and estimated the aircraft po-
sition by matching this reconstructed terrain map with a 
pre-stored DEM. A cliff map is used as a compact repre-
sentation of the 3D surfaces.  

When the aircraft velocity and orientation information is 
unknown, scale, translation, and rotation are observed be-
tween the reconstructed 3D terrain and the reference terrain 
map when the 3D terrain generation undergoes a different 
perspective transformation. Therefore, terrain contour 
matching methods such as MAD, mean square difference 
(MSD), cross-correlation, and contour-based methods are 
no longer applicable to the verification of existence of the 
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scale transformation. Li et al. [8] presented a passive navi-
gation method of terrain contour matching by reconstructing 
a 3D terrain from an image sequence. Control point tracking, 
key frame selection, and multiple view geometry were em-
ployed to accomplish 3D reconstruction. Then, terrain 
matching with a reference map provided the navigation in-
formation. In the follow-up study [9], they proposed a 
scale-invariant terrain matching method based on the ori-
ented terrain surface features, by using the tangent of the 
terrain surface to construct the invariable features of the 
terrain and then matching the oriented terrain surface by 
calculating and comparing the distance of the feature vector. 
In [10], they improved the terrain matching method by us-
ing an invariant feature description of the 3D terrain for the 
terrain contour matching, which is robust for the similarity 
transformation of the terrain. The shape of the terrain is 
represented by an invariant feature vector based on the rela-
tive position distribution of the vertices. 

With respect to pose estimation with the reference terrain 
map, Ronen [11,12] presented a method using DTM as a 
global reference to eliminate uncertainty in pose and motion 
estimation and self-localization. In the follow-up study [13], 
he established the direct constraints on the basis of illumi-
nation continuity and optimized the camera motion and 
scene structure. This method requires prior information 
about the pose of the camera in the first frame and assumes 
that the DTM can be linearized. It can guarantee that the 
algorithm does not fall prey to local extremism. Under the 
abovementioned conditions, the iteration method can obtain 
highly accurate position and attitude angle parameters. 

3  Proposed method 

The method proposed in this paper is mainly used for find-
ing a solution for autonomous aircraft navigation when 
there are large drift errors in the INS or GPS jamming con-
ditions and for estimating the initial position and pose 
without the use of INS and GPS. It focuses mainly on two 
aspects: the terrain matching problem under the scale trans-
formation and view angle change condition, and the pose 
estimation problem when there are differences in the errors 
in correspondence between image points and 3D space 
points caused by terrain matching. By improving the stabil-
ity and accuracy of terrain matching and pose estimation, 
the proposed navigation system becomes a completely in-
dependent navigation system, which can also be expanded 
to the scope of the other vision navigation systems. 

The basic idea of 3D reconstruction terrain matching- 
based vision navigation is to use terrain features to establish 
the relationship between image points and the 3D reference 
points. The main procedure is shown in Figure 1. It can be 
divided into three main parts: 3D reconstruction from an 
image sequence, terrain matching, and navigation parameter 
solving. 

3.1  Two-view reconstruction 

Image sequence capture from a flying platform is used for 
easily satisfying an epipolar constraint relationship. We can 
use a two-view-based reconstruction technique to recover 
the terrain of the overlapped region from two images. In 
terms of the two-view geometry theory, the recovered ter-
rain or targets can only maintain the shape and structure. 
Without any prior information of absolute scale, the esti-
mated translation vector undergoes a scale transform with 
the actual translation vector, which implies that the recov-
ered targets are not of the actual size. If the camera position 
or some control point information can be obtained, we can 
realize the absolute 3D reconstruction for the target position, 
shape, and size. 

On a flight platform such as UAV, the mobility is large 
and the pitch angle and roll angle change significantly. 
Therefore, 3D reconstruction needs to ensure that the recon-
struction frame selection has a large overlap and intersec-
tion angle. On the other hand, it is a more stable and accu-
rate motion recovery method, namely the fundamental ma-
trix estimation the problem. 

The relationship between the fundamental matrix F and 
the correspondence points x x  in images can be rep-

resented as follows: T 0. x Fx  Given no less than 8 
groups, the matching points can form linear equations.  

Considering the mismatch and accuracy problems in 
feature point matching, in this study, we combine the 
RANSAC and adaptive weighted iteration methods for 
solving the fundamental matrix. This method first selects 
the inner point set by using RANSAC and applies this set to 
the epipolar line distance as the weighted function in the 
iteration procedure. This method can not only guarantee a 
robust solution but also achieve a highly accurate solution. 
On the basis of the nature of the fundamental matrix and the 
camera’s internal parameters, the fundamental matrix can be 
decomposed into a relative projection matrix of the two 
cameras. Then, the 3D reconstruction can be realized by 
intersection. 

The detailed steps of the algorithm are as follows. 
(1) Using two-view feature extraction and matching, get 

the matching points ( , ).x x  

(2) Solving the fundamental matrix F with the matching 
points by the RANSAC method, get the subset of the inner 
points.  

(3) Using the sum of the inner points to the epipolar line 
distances as the objective function and the individual points 
to the epipolar line as the weighting factor, and then, mini-
mizing the objective function, get the optimized estimation 
of the fundamental matrix. 

(4) Using the camera’s intrinsic parameter K1 and K2, 
decompose the fundamental matrix into the relative rotation 
matrix R and translation vector t of the two cameras.  

(5) Using the relative camera motion R and t, calculate  
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Figure 1  Main procedure for vision navigation system.

the projection matrix as follows: 

    1 1 2 20 ,  .K K PI R tP  (1) 

(6) Using the following equations, calculate the intersec-
tion of all the matching points: 

 1 2,  .   x P x Px x  (2) 

3.2  Terrain matching based on shape description of 
mountain peak 

3D terrain matching is the process of comparing a similarity 
and search process between the real-time reconstructed 3D 
terrain and the reference terrain maps. In order to design a 
property similarity measurement, we need to choose a 
compact and complete description. A terrain feature de-
scriptor is the quantitative data for the local structure feature 
description, which should be able to fully reflect the shape 
and texture features of the local topographic area.  

This method first detects the extreme local peaks in the 
terrain map, uses the elevation distribution to fit the surface 
of the peaks, and then uses the characteristic quadric to de-
scribe the shape. The characteristic quadric gives the initial 
similar transformation. We then adopt the region-based- 
matching method to find the correspondence matching 
points between the reconstructed 3D terrain and the refer-
ence terrain. This description has been proven to be invari-
ant to similar transformations and is therefore applied to 
realize terrain matching between the reconstructed 3D ter-
rain and the reference terrain. 

3.2.1  Peak extraction 
Unlike the MSER [14] method, the objective of the pro-
posed method is terrain elevation. MSER extracts the fea-
ture region from the local texture distribution of the image; 
the texture of the same region has considerable uncertainty. 
However, the terrain elevation in the local range may not 
change without rules.  

The MESR operator detects the maximally stable ex-
treme region by the change in the water level. Inspired by 
the MSER method, we used the water level changes and the 
region growth method to detect the peak regions of the ter-
rain. It is worth noting that the relative height of different 
peaks is constant and invariant to a similar transformation. 
During the detection of peak regions, the area of the previ-
ous peak region is specified by the subsequent lower peak 
region. 

As shown in Figure 2(a), the terrain was inundated with 
water. When the water receded, the mountain was revealed 
gradually. Once the water level falls, one or more of the 
following four situations may occur: (1) No new peaks ap-
pear. (2) One or more new peaks appear. (3) The appeared 
peaks become larger. (4) Some peak areas merge. 

In the detection of peak regions, the region growth 
method is used for connecting and marking the peak regions. 
Each independent peak is represented by a region centroid 
and area. Moreover, the terrain limited threshold will inevi-
tably cause repetitive detection. Therefore, a distance 
threshold was employed to eliminate the repetitive peaks. 
Figures 2(b) and (c) show the terrain in 3D and grayscale. 
The peak regions are shown in Figure 2(d). 

The use of the water level can lead to a correct detection 
of a peak only when the terrain is under the World Coordi-
nate System (WCS). However, the reconstructed 3D terrain 
will suffer rotation transformation in the case of a relatively 
large viewpoint. Therefore, before the peak detection, we 
conduct a principle component analysis (PCA) to approxi-
mately match the reconstructed 3D terrain to that under the 
WCS.  

 

Figure 2  (Color online) The demo of peak extraction. (a) Water level 
change demo; (b) 3D terrain map; (c) terrain in grayscale map; and (d) 
peak region map. 
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The detailed steps of the peak extraction are as follows. 
(1) Find the highest point and the lowest point of the ter-

rain, and convert the topography into a grayscale image 
changing from 0 to 255. 

(2) Use different thresholds for binary processing with 
the grayscale image. When the surface is greater than the 
threshold, the gray value will be marked as 255. 

(3) Using the region growth method to connect the region 
marked as 255, calculate the centroid and area, and then, 
count the number of independent peaks. 

(4) According to the requirement of peak counts, set the 
threshold count for Steps (2) and (3), and then, repeat them. 

(5) Set the false alarm and confirm the threshold for the 
area of the peak region. When these areas reach this thresh-
old, the centroid and area of the peaks will be added to the 
storage list. 

(6) Employ the centroid distance of the peaks to deter-
mine the repeated peaks in the entire stored list. Set the 
minimum distance threshold. When the distance is less than 
this threshold, leave only the peaks located at the front of 
the list. 

After extracting the peaks of the terrain by using this 
method, we can obtain the position and area information of 
the peaks, denoted as follows:   ,i i i ix y AP  

1, , . i n  
Considering the practical application, we find that many 

peak areas are spread over the larger range of the terrain 
reference map and that the peak areas are relatively few in 
the reconstructed 3D terrain. The peak detection method 
detected the peak areas according to the sequential of the 
peak height. Therefore, we need to select a proper local 
range during the peak extraction for the terrain reference 
map. 

3.2.2  Peak description 
Among the peaks, the most common shapes are the ridge 
and the apex, as shown in Figures 3(a) and (b). Further, the 
main structure of the terrain can be simplified by using 
quadric surfaces. The approximate shape of these peaks can 
be represented by quadrics. 

The quadrics can be described in a polynomial function 
form as follows: 

 
2 2 2
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6 7 8 9
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F

 (3) 

Then, it can be represented by a symmetric matrix as 
follows: 
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Figure 3  (Color online) Different types of peak shapes and quadric esti-
mation: (a) apex area and (b) ridge area. 

where 

0 3 4 6

3 1 5 7

4 5 2 8

6 7 8 9

 
 
 
 
 
 

a a a a
a a a a
a a a a
a a a a

Q  can identify the unique 

quadric, Q denotes a 4 × 4 symmetric matrix, and x = [x, y, 
z, 1]T. 

Since the matrix Q is symmetrical, it can be decomposed 
into the form Q = UTDU. Further, U represents an orthogo-
nal matrix and D denotes a diagonal matrix. The elements 
of matrix D can be 0, 1, or 1 according to an appropriate 
scale transformation. Then, the quadrics can be expressed in 
several standard forms, such as ellipsoid, hyperboloid, cone, 
paraboloid, and cylinder surface. 

Corresponding to the features of the 3D terrain, this 
quadratic component can reflect the contour and shape of 
the terrain. The ellipsoid and paraboloid surfaces are similar 
to gentle peak areas, and the hyperboloid and cone surfaces 
are similar to saddle peak areas. 

0 3 4

3 1 5

4 5 2

 
   
  

a a a
a a a
a a a

A  represents the quadratic component 

of Q. The eigenvalues x, y, and z represent the curvature 
in the different principal axes of the quadric surface, and the 
eigenvalues vx, vy, and vz represent the directions of the 
principal axes. The main structure of a typical peak area and 
the quadric fitting are shown in Figure 4. 

Upon the application of a point transformation , x Hx  
Eq. (4) becomes 

 T T T T 0.    x Q x Hx Q Hx x H Q H x x QxT = ( ) ( ) = ( ) = =  (5) 
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Figure 4  (Color online) Peak description: (a) peak area and (b) quadric 
fitting. 

This results in the following transformation rule for a 
quadric: T 1.  Q H QH  The transformation between Q 

and Q′ can be expressed by saying that a quadric transforms 
a covariant. Further, point transformation H can be an arbi-
trary homogenous transformation; therefore, a similar 
transformation is included. 

Assume that two peak areas P1 and P2 and the corre-
sponding eigenvalues are e1 = (11, 12, 13) and e2 = (21, 
22, 23); the corresponding eigenvectors are as follows: 

 
11 12 13 21 22 23

1 14 15 16 2 24 25 26

17 18 19 27 28 29

,  .

   
       
      

v v v v v v
v v v v v v
v v v v v v

V V  

Since the SVD is an orthogonal decomposition, the ei-
genvectors give the direction along each axis of the quadric 
surface. The rotation matrix from P1 to P2 can be resolved 
by using 1

1 2 .VV  

The 3D reconstruction method can only recover the 3D 
terrain with a scale factor up to the reference map. In the 
case of the scale transformation s, the eigenvalues of Q and 
Q′ satisfied the following equation: 

 22321 22

11 12 13

.
 

  
   s  (6) 

Furthermore, the scale transformation has no influence 
on the quadric structure; the ratio between the curvatures of 
the different axes is constant, and the relationship can be 
expressed by the following equation: 

 11 21 12 22

13 23 13 23

, .
   
   

   (7) 

In this model and under approximate conditions, quadric 
surface fitting was applied to the detected irregular surface 
areas, and the model parameters for the peaks were obtained. 
The characteristics of the peaks were represented by the 
quadric description. Furthermore, an iterative process can 
obtain a more stable peak position and description.  

Select an appropriate standard coordinate system; the 
peak description can give the size information in the x and y 
directions as s1 and s2, and the angle information .  

These parameters can be expressed as follows: 

 1 11 13 2 12 13/ ,  / .    s s  (8) 

In the previous PCA correction procedure, the angle of 
the pitch and roll is corrected according to the WCS, and the 
yaw angle represents the direction of the peaks, which can 
be expressed as follows: 

 11 12arctan( / ).  v v  (9) 

By using the peak description method, we can obtain the 
position, scale, and direction information of the peaks; this 
can be denoted as follows:  

 1 2 ,i i i i i ix y s sP  1, , . i n  

3.2.3  Peak matching 
Since the peak extractor and description is based on the 
main structure of the peak, the peak description Pi is insuf-
ficient to identify the variety of peak shapes. Considering 
the search range, independence, and repeatability of feature 
description, we adopted a coarse-to-fine strategy to realize 
the matching procedure. First, the initial similar transfor-
mation between reconstructed 3D terrain is performed and 
the reference terrain map is estimated by using the peak 
descriptions. Then, an iterative matching method based on 
the local height distribution is employed to identify the cor-
respondence matching points.  

A similar transformation can be defined as follows: 

 1 11 2 12 0 1 2

1 21 2 22 0 1 2

,

1 1

   
                             

x

y

x x
t s r s r a a ax

y y
t s r s r b b by

 (10) 

where 11 12

21 22

cos sin
,

sin cos

 
 

   
   
  

r r
r r

 which is given by the 

angle information, and 
 
 
 

x

y

t
t

 denotes the translation vector. 

Further, (x, y) and (x′, y′) are the coordinates of the image 
pairs. 

We use a0, a1, a2, b0, b1, and b2 as the transformation pa-
rameters. Considering the noise and similar transformation, 
we can approximately describe the intensity variation be-
tween image pairs as follows: 

 1 1 2 0 1 2 0 1 2

2

( , ) ( , ) ( , )

  ( , ),

     



g x y n x y g a x a y a b x b y b
n x y

 (11) 

where n1 and n2 denote the random noise, and g1 and g2 
represent the intensity values of the image pairs. 

The least squares matching (LSM) method estimates 
movement by iteratively modifying the affine transfor-
mation and radiometric shift parameters to minimize the 
intensity difference in the correspondence area. The error 
equation for each pixel can be described as follows: 
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 2 0 1 2 0 1 2 1( , ) .g g a x a y a b x b y b g        (12) 

After linearization, the above equation can be rewritten 
as follows:  

 0 0 1 1 2 2 3 0 4 1 5 2 ,v c da c da c da c db c db c db g        (13) 

where da0,  , db2 denote the parameter deviation and the 
initial values given by the peak description, g = g2(x, y) 
g1(x, y), represent the intensity difference. 

The parameters of the error equation can be expressed as 
follows: 

 
0 1 2 3 4 5

2 2 2 2 2 2

[ , , , , , ]

,

 

, .

  

, , ,

c c c c c c
g g g g g gx y x y
x x x y y y

      
        

 (14) 

According to the theory of LSM, for all the pixels within 
the match window, the objective function s(x) of this opti-
mized problem can be described as follows: 

 T

1

min ( ) .


 
n

i i
i

xs v v  (15) 

The linear Eq. (13) can be rewritten into a matrix form as 
follows: 

 , v Ax b  (16) 

where 
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g g g g g gx y x y
x x x y y y
g g g g g gx y x y
x x x y y y

g g g g g g
x y x y
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A  

 T
0 1 2 0 1 2[d d d d d d ] , a a a b b bx  

 T
21 11 21 12 2 1[ ] .    n ng g g g g gb  

When n > 6, Eq. (16) is an over-determined equation and 
the solution of x can be computed by using the conventional 
linear least squares method: 

 T 1 T( ) .x A A A b  (17) 

This iterative matching method iteratively estimates the 
displacement by minimizing an error function on the basis 
of the space distance within the matching window. 

The detailed implementation steps are as follows: 
(1) Detect the peak areas in a real-time recovered terrain, 

and give the shape description to the peaks. 
(2) Detect the peak areas in the reference terrain map, 

and give the shape description to each peak; this procedure 

can be performed in advance, and the peak extractor should 
be taken block by block. 

(3) Use the peak description information (scale and di-
rection of the peak) to normalize the match area, and find 
the potential matching for each peak in the real-time terrain. 

(4) Adopt the iterative matching method to confirm the 
match results. 

3.3  Pose estimation 

Since the reference terrain map provides the 3D coordinates 
of the ground points, with the corresponding image points, 
the estimation of the camera position and attitude angle be-
comes a standard pose estimation problem. When there are 
more than 6 non-planar or 4 coplanar feature points, the 
external camera parameters can be resolved by using a line-
ar solution. Considering that the imaging process is nonlin-
ear, we find that the accuracy of the direct linear solution is 
not high. In this study, the initial external parameters were 
obtained by using a linear solution first, and then, a nonlin-
ear iteration was employed to optimize the initial solution. 

The basic principle of vision-based navigation is to use 
the correspondence between image points and 3D space 
points to estimate the position and attitude angle of the 
onboard camera. The schematic representation is shown in 
Figure 5, where O denotes the optical center of the camera 
on the aircraft, I1–In represent the image points, and T1–Tn 
indicate the 3D position of the object point on the ground. 
Using the image coordinates and the world coordinates of 
the corresponding points, the central perspective projection 
model can solve the position and attitude angle of the air-
craft. 

3.3.1  Initial pose estimation 
The central perspective projection model can be represented 
as follows: 
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Figure 5  (Color online) The principle of vision-based navigation. 
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where u and v denote the image coordinates of the object 
points; and X, Y, and Z represent the 3D location in world 
coordinates. Further, fx, fy, Cx, and Cy denote the camera 
focal length and principal point coordinates; the internal 
camera parameters can be calibrated in advance. R and t 
represent the rotation matrix and the translation vector from 
the WCS to the CCS, respectively, which have 6 degrees of 
freedom. Each corresponding point can provide two equa-
tions; therefore, the problem becomes solvable if there are 
more than 6 pairs of corresponding points. Thus, the collin-
earity equation can be written as follows: 
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Normalize the parameters by tZ, and let si = ri/Tz (i = 0, 
 , 8), s9 = Tx/Tz, and s10 = Ty/Tz. Therefore, the above equa-
tion can be rewritten as the following equation: 
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By solving these linear equations, we can obtain s0–s10. 
According to the constraint 2 2 2

6 7 8 1,  r r r  

2 2 2
6 7 81/ ( ).  Zt s s s  The rotation matrix R and transla-

tion vector t can be resolved naturally. According to the 
definition of the attitude angle, the yaw, pitch, and roll an-
gles can be decomposed by using the rotation matrix.  

3.3.2  Adaptive weighted orthogonal iteration pose estima-
tion 
The fast and global convergence orthogonal iterative (OI) 
algorithm is one of the optimal methods for real-time pose 
estimation. Lu et al. [15] proposed the OI algorithm, which 
is a pose estimation algorithm for a single camera, in 2000. 

With the knowledge of image points and their corre-
spondence space points, the OI algorithm minimizes the 
space co-linearity error and calculates the rotation matrix 
and the translation vector simultaneously. However, the 
optimization of this method is based on the least squares 

theory; only when the errors follow the Gaussian distribu-
tion can we achieve the optimal solution. The corresponding 
image points and 3D terrain points obtained by terrain 
matching will inevitably suffer from errors. Moreover, the 
error may not follow the Gaussian distribution because of 
the terrain relief and undulate. In order to achieve a 
high-precision, robust pose estimation for the aircraft, we 
developed a weighted function for each match point and 
adjusted the weighted factor during the iteration.  

Given a set of non-collinear 3D coordinates of object 
points pi = (xi, yi, zi)

T, i = 1,  , n and n  3 in the WCS, we 

can describe the corresponding  T, ,  i i i ix y zq  in the 

CCS as follows: 

 , i iq Rp t  (21) 

where  TT T T
1 2 2 ,, ,R r r r  ( , , ) x y zt t tt  denote the rota-

tion matrix and the translation vector. Let the image point vi 

= (ui, vi, 1)T be the projection of pi on the normalized image 
plane. The collinearity equation can be expressed as fol-
lows: 

  .i i i  Rp V Rp tt  (22) 

Therefore, the object space collinearity error can be de-
rived as follows: 

    ,  i i ie V Rp tI  (23) 

where  T T/i i i i iV v v v v  represents the observed 

line-of-sight projection matrix. This error can be interpreted 
as the distance from the point to the line of sight. 

The objective function of the OI algorithm is to minimize 
the object space collinearity errors. We added a weighted 
function to the objective function. The objective function 
can be expressed as follows: 
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where wi denotes the weighted factor. Since the goal is to 
minimize the sum of the point errors, we use the Huber 
weighted function with the distance from the point to the 
line of sight. 

The weighted function is defined as follows: 
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where =1.4826(1+5/(n7)) with the median |ei| in com-
mon and n denotes the number of corresponding points.  

In order to reduce the impact of the larger re-projection 
error matching points, the Huber weighted function was 
employed to adjust the weight factor. The small 
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re-projection error matching points were regarded as interi-
or points by the Huber weighting function and assigned a 
weight of 1. In a practical application, the weighting func-
tion should be further designed on the basis of the engi-
neering requirements. 

4  Simulations and experiments 

In order to evaluate and verify the performance of the pro-
posed approach for vision-based navigation, a series of sim-
ulations and flight experiments were carried out. 

4.1  Flight imaging simulation 

The discrete 3D terrain data were stored by DEM in the 
standard manner. The undulating and disorder terrain sur-
face data could not be represented by an arbitrary formula. 
In order to generate an image under a perspective projection, 
we proposed a flight imaging simulation method based on 
line-to-plane intersection with iterative searching. A set of 
DEM data with texture was employed to simulation the 3D 
scene, and the aircraft position and attitude and the camera’s 
intrinsic and external parameters were given as required. 
Assume that the optical center of imaging Pc = (xc, yc, zc) is 
coincident with the aircraft under the DEM coordinate sys-
tem and the camera external parameter is Rc. Then, the rela-
tionship between the image coordinates and the DEM coor-
dinate system can be derived as follows: 

 ( ). c c w cX R X P  (26) 

The line direction vector given by image point (u, v) and 
the camera’s principal point can be expressed as follows: 
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where (u0, v0) denotes the principal point and f represents 
the focal length. The ray from the optical center to the im-
age point and intersection the 3D terrain surface at P′ = (x′, 
y′, z′) can be expressed as follows: 
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where k denotes the depth from the optical center to the 
terrain surface. Because the 3D terrain data are composed of 
3D discrete points and cannot be described by a parametric 
equation, the ray intersection with the 3D terrain data can-
not be solved directly with an analytical method and can 
only use the search method. 

With the knowledge of the range of elevation distribution, 
the initial corresponding position can be calculated by pre-

setting a reference plane. Then, an iterative searching 
method is employed to minimize the point-to-line distance 
and to find the best intersection position. The reference 
plane intersection and iterative procedure is shown in Figure 
6. 

We simulate the flight and imaging procedure by using a 
group of 3D landscape maps as the test dataset, including 
3D terrain maps and texture data. The range of elevation is 
1900–4600 m, and the grid size is 30 m × 30 m. The simu-
lated image size is 640 × 480 pixels, and the focal length is 
400. The simulation environment is shown in Figure 7(a). 
The DEM in grayscale is shown in Figure 7(b). Two simu-
lation images from different view angles and locations are 
shown in Figures 7(c) and (d), respectively. 

4.2  Reconstruction precision analysis 

We select two areas with different undulations among the 
terrain and compare the reconstruction terrain data with the 
real reference terrain data. Because the image matching 
method is based on the assumption of an affine transform, 
the matching precision of the planar area is higher than that 
of an area with larger undulation. The results are shown in 
the following figures. 

4.2.1  Simulation parameters 
The simulated image size is 640 × 480 pixels, the focal 
length is 400, and the principle point is at (9000 m, 8500 m, 
8000 m). The overall range of the terrain height is from 
1900 m to 4600 m, and the grid size is 30 m × 30 m. The 
planar area height ranges from 3440 m to 3510 m, and the 

 
Figure 6  Corresponding point location procedure: (a) ray-to-plane inter-
section and (b) iterative searching. 
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Figure 7  (Color online) Flight imaging simulation on DEM: (a) simula-
tion environment; (b) DEM in grayscale; (c) view angle 1; and (d) view 
angle 2.  

peak area height ranges from 3863 m to 4150 m. The dif-
ferent areas are shown in Figure 8. 

4.2.2  Reconstruction precision evaluation 
By introducing the baseline information, we can obtain the 
absolute space points by 3D reconstruction. Then, we give 
the errors between the reconstructed space points with the 
reference terrain map.  

As we can see from Figure 9, the errors in the x and y di-
rections are smaller than those in the z direction, and the 
errors in the z direction are related to the degree of variation 
on the terrain surface. Moreover, the errors are related to the 
texture feature above the surface; therefore, the errors in the 
x, y, and z directions seem to vibrate periodically. 

4.3  Terrain matching experiments 

In order to evaluate the performance of our approach for 
peak matching, we used a series of geometry transfor-
mations to verify them. Through the peak extractor, de-
scription, and iterative matching, we obtained the matching 
peaks. The matching results under scale, rotation, and simi-
lar transformations are shown in Figure 10. 

As long as the reconstructed 3D terrain and the reference 
terrain map had at least one matched peak, we could esti-
mate the similar transformation relationship between the 
reconstructed 3D terrain and the reference terrain map, and 
determine the location of the reconstructed 3D terrain in the 
reference terrain map. Furthermore, the region-based 
matching method was employed to improve the accuracy of 
terrain matching. 

The reconstructed 3D terrain and the match results of the 
proposed method are shown in Figure 11. As can be seen 
from the figure, the recovered terrain retained the shape and 
structure of the real terrain, but the scale and distribution of 
the elevation changed significantly. The peaks, ridges, and  

 

Figure 8  (Color online) Two selected areas for reconstruction precision 
evaluation. 

other contours became relatively blurred. Further, the 
matching results demonstrate that the proposed matching 
method can overcome the noise, blur, and scale change fac-
tors, and obtain accurate, stable peak matching.  

4.4  Pose estimation comparisons 

Because of the 3D reconstruction and terrain matching, the 
corresponding image points and space points had errors. 
The relationship between the two view angles was obtained 
by image feature point matching, and a dense disparity map 
was generated using stereo matching. Not only the image 
feature, region matching will introduce errors, but also the 
terrain matching. Because of the terrain relief and undula-
tion, the matching errors were not always uniform. As 
shown in Figure 12(a), most of the errors were within 50 m, 
but larger errors could also appear. As can be seen from 
Figure 12(b), this adaptive weighted orthogonal iterative 
pose estimation algorithm could quickly perform iterative 
convergence and significantly reduce the object space col-
linearity errors. 

4.5  Vision navigation experiments 

Based on the previous DEM environments, we simulated 
the trajectory to test the adaptability and accuracy of the 
proposed algorithm. The flight trajectory and attitude angle 
were given by Eqs. (29) and (30). The unit of time was 
seconds and x, y, and z denote the position of the aircraft on 
the ground coordinate system using the unit of meters. Ax, 
Ay, and Az represent the pitch, roll, and yaw angle, respec-
tively, in the unit of degrees. 

The position trajectory can be expressed as follows: 

 1

2

6000 30 ,

4500 200 sin ,

8000 200 sin .




  
   
   

x t
y t
z t

 (29) 

The attitude angle can be expressed as follows: 
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Figure 9  (Color online) The planar area: (a) x-direction errors; (b) y-direction errors; and (c) z-direction errors. The peak area: (d) x-direction errors; (e) 
y-direction errors; and (f) z-direction errors. 

 

Figure 10  (Color online) Peak matching results: (a) scale transformation; 
(b) rotation transformation; and (c) similar transformation. 
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Figure 11  (Color online) Terrain matching results. 

where 1 = /300 and 2 = /300. 
In this study, we used the terrain matching method de-

scribed in Section 3.2 and applied the adaptive weighted 
orthogonal iteration pose estimation method to obtain the 
position and attitude angle parameters, as shown in Figure 
13. As can be seen from the graph, this method can obtain 
stable position and attitude parameters under flight maneu-
vering conditions and can guarantee an aircraft position 
error of less than 30 m and an attitude angle error of less 
than 0.5°. Further, under different terrain relief and undula-
tion conditions, the pose estimation accuracy changes.  

4.6  Vision/inertial integrated navigation experiments 

In a vision/inertial integrated navigation system, the posi-
tion measured by the vision-based method was applied to 
correct the inertial integration error by using a Kalman filter. 
The flight trajectory and attitude angle were consistent with 
the values obtained in the previous section.  

The parameters for the INS simulation were as follows: 
(1) initial error of the accelerometer = 0.5 mg (1) 
(2) random error = 0.25 mg (1) 
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Figure 12  (Color online) Experiment for comparison: (a) terrain match errors and (b) iteration in pose estimation. 

 
Figure 13  (Color online) Pose estimation by the proposed method: (a) position trajectory; (b) attitude angle; (c) position errors; and (d) attitude angle er-
rors. 

(3) random walk error = 0.25 mg (1) 
(4) attitude angle error of the aircraft = 0.1° 
(5) initial position error = 50 m 
(6) initial velocity error = 1.2 m/s 
(7) flight duration = 350 s 
(8) inertial frequency = 100 Hz.  
(9) vision measurement frequency = 1 Hz  
Vision measurement from 0 s began to intervene and 

correct the inertial velocity with the Kalman filter. The po-
sition and velocity errors of the aircraft are shown in Figure 
14. As can be seen from Figure 14, with the vision meas-
urement data, the position and velocity errors converge to 
zero quickly. The position error of the aircraft can be main-
tained within 20 m, and the velocity error can be maintained 
within 0.25 m/s. 

5  Conclusion 

This paper gives deep insights on terrain matching and pose 
estimation for vision-based navigation problems. The peak 
extractor and description gives a robust matching result for 
terrain matching, and the adaptive weighted orthogonal iter-
ation pose estimation method is robust to the noise caused 
by feature matching, stereo matching, and terrain matching 
errors. Simulations of the fly trajectory on the DEM and 
onboard imaging for estimating the position and attitude 
angle by the proposed method demonstrate promising per-
formance in terms of providing robust and accurate naviga-
tion parameters. Further research will focus on the terrain 
matching of different perspectives and different terrain fea- 
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Figure 14  (Color online) Comparisons of aircraft position and velocity errors. (a) Flight path; (b) position error in INS; (c) position error in vision/INS; (d) 
flight velocity; (e) velocity error in INS; and (f) velocity error in vision/INS. 

tures, and applying and improving the vision-based naviga-
tion system in practical applications. 
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