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The mass entransy and its dissipation extremum principle have opened up a new direction for the mass transfer optimization. 
Firstly, the emergence and development process of both the mass entransy and its dissipation extremum principle are reviewed. 
Secondly, the combination of the mass entransy dissipation extremum principle and the finite-time thermodynamics for opti-
mizing the mass transfer processes of one-way isothermal mass transfer, two-way isothermal equimolar mass transfer, and iso-
thermal throttling and isothermal crystallization are summarized. Thirdly, the combination of the mass entransy dissipation ex-
tremum principle and the constructal theory for optimizing the mass transfer processes of disc-to-point and volume-to-point 
problems are summarized. The scientific features of the mass entransy dissipation extremum principle are emphasized. 
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1  Introduction  

With the direct influence of oil crisis in the 1970s, heat 
transfer enhancement has attracted scientific community’s 
attention all over the world, and became one of the most 
important subject branches in the field of thermal science 
and technology quickly. At the same time, the research into 
identifying the performance limits of thermodynamic pro-
cesses and optimizing thermodynamic processes has made 
great progress in the fields of both physics and engineering. 
In physics, it was termed Finite Time Thermodynamics 
(FTT) [1–6] by Berry, Andresen and Salamon. While in 
engineering, according to the Gouy-Stodola theory, the 
minimum entropy generation of the system denotes the 
minimum exergy loss, i.e. the thermodynamic performance 

of the system is the best, and it was termed Thermodynamic 
Optimization Theory or Entropy Generation Minimization 
(EGM) [7–10] by Bejan. In addition, Bejan [7–10] believed 
that the designs of various heat transfer processes could be 
attributed to the two types of heat transfer enhancement and 
thermal insulation. The so-called heat transfer enhancement 
was to improve the system of equivalent thermal conductiv-
ity and reduce both the heat transfer temperature difference 
and the corresponding entropy generation under the condi-
tion of the given heat transfer rate; the so-called thermal 
insulation was to reduce the equivalent thermal conductivity, 
heat transfer rate and the corresponding entropy generation 
under the condition of the given heat transfer surface tem-
perature. It was seen that the optimal designs of both heat 
transfer enhancement and thermal insulation could be at-
tributed to the pursuit of minimum entropy production. 
Therefore, the “minimum entropy production” was taken as 
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an important optimization criterion in the researches of 
thermodynamic optimization and heat transfer enhancement. 
It has attracted a large number of scholars’ attention, and a 
lot of valuable research results were gained for practical 
applications in engineering. In 1996, Bejan [11] further 
proposed the constructal theory based on the researches of 
thermodynamic optimization, and applied it into the opti-
mization of high thermal conductivity material distribution 
in the cooling of electronic components (volume-to-point 
problem) firstly [12]. Constructal theory, which was also 
called “non-equilibrium thermodynamic system configura-
tion problem” in the thermal science field, provided a theo-
retical basis for both the uniform interpretation of the natu-
ral tissues to generate the flow structures and the designs of 
a variety of flow structures.  

As a basic heat exchange device, heat exchanger plays an 
important role in the thermal energy transfer and conversion 
processes. Thus, it is one of the most important research 
objects in the fields of thermodynamic optimization and 
heat transfer enhancement. However, entropy generation 
denotes the irreversibility of heat-work conversion process-
es, and the minimum entropy production of the heat ex-
changer doesn’t always correspond to its maximum effec-
tiveness entirely. Bejan [13] analyzed the performance of 
the balanced counter-flow heat exchanger, and showed that 
the entropy generation of the heat exchanger increased 
firstly and then decreased with the increase of its effective-
ness. This phenomenon was called the “entropy generation 
paradox”. For the appearance of the “entropy generation 
paradox”, both Xu et al. [14] and Hesselgreaves [15] have 
proposed different methods for introducing modified and 
improved entropy generation number. In 1996, Guo et al. 
[16–18] analyzed the hot and cold fluid temperature fields 
in different types of heat exchangers, and pointed out that 
the counter-flow heat exchanger has the most uniform tem-
perature difference field compared with the other heat ex-
changers, while the parallel-flow heat exchanger has the 
worst uniform temperature difference field (the maximum 
and the minimum temperature differences lies at the import 
and export of the heat exchanger, respectively). As a result, 
the phenomenological theory “temperature difference field 
uniformity principle” to optimize the performance of heat 
exchanger was put forward by Guo et al. [16–18], i.e. the 
more uniform the temperature difference field is, the larger 
the effectiveness of the heat exchanger is. In 1998, Guo et al 
[19–21] further re-examined the physical mechanism of the 
convective heat transfer, and regarded the energy equation 
as a heat conduction equation where the convection term 
was taken as a heat source. They found that the overall 
strength of the heat sources not only depended on the velocity 
and the physical features of the fluid, but also depended on 
the coordination of the flow velocity and heat flow vector. 
Based on their analysis, they proposed the field synergy 
principle for convective heat transfer enhancement by 
changing the coordination relationship between the velocity 

field and temperature field, which is in favor of searching 
effective methods for controllable heat exchange.  

In 2006, according to the shortcomings of current heat 
transfer theory and based on the similarity between the heat 
conduction and electric conduction processes, Guo et al. 
[22–24] put forward a new physical quantity “entransy” (it 
was called heat transfer potential capacity [25] in 2003) 
from the perspective of heat transfer theory. The heat is 
conserved during the heat transfer process, but the entransy 
is not conserved and dissipated. The entransy dissipation 
represents the irreversible extent of heat transfer process. 
Guo et al. [22–24] also proposed the “entransy dissipation 
extremum principle”, i.e. when the entransy dissipation 
achieved its extremum for the given constraints, the per-
formance of the heat transfer process is the best. Since the 
entransy and its dissipation extremum principle have been 
proposed, it has attracted widespread concerns among domes-
tic and foreign scholars. Some scholars described the phys-
ical mechanism of the entransy from different perspectives 
[26–32], and the entransy theory was applied for the opti-
mization and enhancement of various heat transfer process-
es such as heat conduction [25,33–54], convection [55–69], 
radiation [70–75], liquid-solid phase change [76], optimal 
parameter designs of heat exchangers [77–97], and others 
[98–103]. Based on the entransy and entransy dissipation 
function, some new physical quantities including the en-
transy dissipation number [79,82,87,93,94] and the equiva-
lent thermal resistance [76,80,83] were further defined, 
which could avoid the entropy generation paradox when 
they were applied into evaluating the heat exchanger per-
formance and guiding the optimal designs of heat exchangers. 
This fully reflects the advantages of the entransy theory in 
the heat transfer performance optimization of heat exchang-
ers. In the performance optimization of heat exchanger as-
sociated with heat-work conversion, entropy generation 
should be chosen as the optimization criterion; while in that 
only associated with heating and cooling process, entransy 
dissipation should be chosen as the optimization criterion. 
This has formed a consensus in the research field [82,89]. 
The entransy theory could be combined with the finite-time 
thermodynamics to optimize the heat transfer processes in 
the heat exchanger and liquid-solid phase change process 
[76,95–97], and a series of new rules and conclusions were 
obtained, which were different from those obtained based 
on entropy generation minimization. The entransy theory 
could be also combined with the constructal theory to opti-
mize the heat transfer processes and design the structure of 
heat devices [38–54,67,68,104–113]. Both the equivalent 
thermal resistance and the average temperature difference of 
the heat transfer processes and devices could be reduced.   

Based on the successful application of the thermal en-
transy theory into the heat transfer optimization, Chen et al. 
[114,115] made an analogy between the heat and mass 
transfer processes, and introduced a new physical quantity, 
i.e. mass entransy (it was called the mass transfer potential 
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capacity in refs. [116–118]), into the optimizations of mass 
transfer processes. Henceforth, many scholars showed great 
interests in this aspect [119–132].  

2  Mass entransy and its dissipation extremum 
principle  

2.1  Thermal entransy and its dissipation extremum 
principle  

To reveal the essence of heat transfer phenomenon, Guo et 
al. [25] defined heat transport potential capacity and its dis-
sipation function from the viewpoint of heat transfer. They 
pointed out that the physical meanings of the two defini-
tions were the total amount and dissipation rate of the heat 
transfer ability, respectively. Through comparing heat con-
duction with electric conduction as shown in Table 1, Guo 
et al. [22–24] clarified that the heat transfer potential capac-
ity was a new physical quantity corresponding to the elec-
tric potential energy, which described the total heat transfer 
ability of the object, and called it entransy. The heat transfer 
ability loss during the heat transfer process was called en-
transy dissipation. The entransy dissipation extremum prin-
ciple was also proposed by Guo et al. [22–24]. Since the 
entransy and its dissipation extremum principle were pro-
posed, a new direction for heat transfer optimization was 
also opened, and they avoided the limitation and inaccuracy 
of both the conventional thermal resistance and entropy 
production to evaluate the heat transfer performance. Guo et 
al. [24] introduced some new physical quantities such as 
potential, potential energy, velocity and kinetic energy of 
heat into heat transfer theory based on analogy with me-
chanics and electrics, established the conservation equation 
of thermal motion (considering the motion process of heat 
as the diffusion process of the phonon gas), and consum-
mated the system of heat transfer theory.  

By analogizing heat with electrics as shown in Table 1, 

Guo et al. [22–24] defined a new physical quantity corre-
sponding to the potential energy in the capacitor, i.e. en-
transy (ever interpreted as heat transfer potential capacity in 
ref. [25]):  

   21 1
,

2 2h h vE Q T Vc T  (1) 

where the subscript “h” denotes the physical quantity relat-
ed to the heat, the temperature T is an intensive quantity, the 
thermal capacity VcvT is an extensive quantity, and the 
new physical quantity has the meaning of “thermal potential 
energy”. According to that the naming of entropy comes 
from the ratio of heat to temperature, so the physical quan-
tity was called entransy or thermal entransy. The heat con-
servation equation for the steady-state heat conduction 
without the internal heat source is  

  
  


,v

T
c q

t
 (2) 

where q is the heat flow density vector. Multiplying both 
sides of eq. (2) by the temperature T yields   

           
 21

( ) ,
2 vc T qT q T

t
 (3) 

where T is the temperature gradient. The left side of eq. (3) 
is the entransy change of the infinitesimal body over the 
time, and the first term of its right side is the entransy flow 
into the infinitesimal body, while the absolute value of the 
second term of its right side is the entransy dissipation rate 
of the infinitesimal body, i.e. the entransy dissipation func-
tion h [22–24]:  

     .h q T  (4) 

The entransy dissipation function denotes the irreversi-
bility of heat transfer ability loss. When the heat transfer  

Table 1  Analogies between electrical and thermal parameters [22–24] 

Electrical charge stored in a capacitor Electrical current (charge flux ) Electrical resistance Capacitance 

Ue I qe Re 

[V] [C/s]=[A] [C/(m2·s)] [V·s/C] 

Heat stored in a body Heat flow Thermal resistance Heat capacity 

Uh=T 
hQ  hq  Rh 

[K] [J/s] [J/(m2·s)] [s·K/J] 

Electrical potential Electrical current density Ohm’s law Electrical potential energy in a capacitor 

Qe Ce 
  e

e e

dU
q k

dn
 

Ee=(QeUe)/2 

[C] [F] [J] 

Thermal potential (temperature) Heat flux density Fourier law 

? Uh=T 
hQ  

  h
h h

dU
q k

dn
 

[K] [J/s] 
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obeys Fourier heat conduction law, eq. (4) becomes  

   
2

,h T  (5) 

where  is the thermal conductivity. From eq. (4), the en-
transy dissipation rate over the entire volume is given by  

    d .h h
V

E V  (6) 

Based on the concept of the entransy and its dissipation, 
the heat transfer efficiency E (i.e. the entransy transfer ef-
ficiency) is given by  

 





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

,, ,
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E
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From eq. (7), when the entransy flow input Eh,in or en-
transy flow output Eh,out is specified, the smaller the entransy 
dissipation Eh is, the higher the entransy transfer efficiency 
E will be. Cheng et al. [33] used the weighted residual 
method from the differential equation of heat conduction, 
and established the variational principle corresponding to 
the entransy. It pointed out that for the given heat flow con-
dition, the temperature difference of heat conduction 
achieved its minimum value when the entransy dissipation 
rate of the object achieved its minimum value. The corre-
sponding expression is  

         21
d 0.

2h
V

Q T k T V  (8) 

For the given temperature difference condition, the heat 
flow of heat conduction achieved its maximum value when 
the entransy dissipation rate of the object achieved its 
maximum value. The corresponding expression is  

       21
d 0.

2h
V

T Q k T V  (9) 

Refs. [22–24] summarized them as the entransy dissipa-
tion extremum principle, i.e. “For certain constraints and the 
given boundary condition of heat flow, the performance of 
heat conduction process is the best (i.e. the temperature dif-
ference is the minimum) when the entransy dissipation 
achieves its minimum value, while for the given boundary 
condition of temperature, the performance of heat conduc-
tion process is best (i.e. the heat flow is the maximum) 
when the entransy dissipation achieves its maximum value”. 
Based on the entransy dissipation concept, the equivalent 
thermal resistance RE for the complex multi-dimensional 
heat conduction problem is given by 
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where hQ  is the heat flow rate pass through the boundary 

of control volume, T  is the average temperature differ-

ence. The entransy dissipation extremum principle can be 
attributed to the minimum thermal resistance principle 
[22–24], and is described as: “For the heat conduction 
problem with certain constraints (such as adding a certain 
amount of high thermal conductivity material into substrate), 
if the equivalent thermal resistance of the object is the 
minimum, the heat conduction performance of the object is 
the best (i.e. the heat flow is the maximum for the given 
temperature difference condition, or the temperature differ-
ence is the minimum for the given heat flow condition”.  

2.2  Mass entransy and its dissipation extremum principle 

For the mass transfer process, the mass fraction c of some 
component in the mixture is the intensive quantity, while 
the total mass Vc of the component is the extensive quan-
tity. According to the analogy between heat and mass trans-
fer processes, Chen et al. [114,115] defined the mass en-
transy Em (it was called the mass transfer potential capacity 
in refs. [116–118]) to describe the diffusion ability of the 
component in the mixture to its surrounding medium:  

   2 21 1 1
,

2 2 2
E mc Mc Vc  (11) 

where m is the total mass of the component in the mixture 
and m=Mc=Vc. According to the law of mass conservation 
and for the transient-state diffusion process without internal 
mass source, the mass diffusion equation of the component 
in the mixture is given by  

 

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
( )

( ).
c

g
t

 (12) 

When the mass fraction c of the component or effect of 
the component mass transfer on the mixture density  is 
small, the mixture density of the control volume keeps con-
stant, i.e. =const. Eq. (12) further becomes [114–119]  

  
 


( ),

c
g

t
 (13) 

where g is the mass flow density vector. Multiplying both 
sides of eq. (13) with the mass fraction c yields  

 21
( ) ,

2
c gc g c

t
          

 (14) 

where c is the mass fraction gradient. The left term of eq. 
(14) is the time variation of the mass entransy stored per 
unit volume. The first term on the right is the rate of the 
mass entransy transfer associated with the component diffu-
sions, while the absolute value of the second term on the 
right is the local rate of mass entransy dissipation. When the 
mass diffusion process is in steady state, the left term of eq. 
(14) is equal to zero. In this case, the mass entransy flow 
calculated from the inlets and outlets of the unit volume in 
eq. (14) is equal to the mass entransy dissipation calculated 
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from the mass diffusions between the high and low concen-
tration streams. The mass entransy dissipation rate denotes 
the irreversible loss due to the concentration gradient during 
the component diffusion process, and measures the irre-
versibility of the component diffusion process. The mass 
entransy dissipation function m is given by [114–119]  

     .m g c  (15) 

When the mass transfer process obeys Fick’s diffusive 
mass transfer law, eq. (15) becomes [114–119] 

   
2

,m D c  (16) 

where D is the diffusive mass transfer coefficient. From eq. 
(15), the mass entransy dissipation rate Em over the entire 
volume is given by 

    d .m m
V

E V  (17) 

It should be noted that the above entransy dissipation 
function was derived based on the mass diffusion equation 
without internal mass source and the fact that the mass 
transfer does not affect the density  of the control volume 
[114–119]. When the density  changes during the mass 
transfer process, i.e. =(c), one has to derive the mass en-
transy dissipation function from the definition of the mass 
entransy [127,132]. Similarly, based on concepts of the 
mass entransy and its dissipation, the mass transfer effi-
ciency E (the mass entransy transfer efficiency) can be 
defined, as follows:  

 
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From eq. (18), it can be seen that for the given mass en-
transy flow input Em,in or mass entransy flow output Em,out, 
the smaller the entransy dissipation Eh is, the larger the 
mass entransy transfer efficiency E is.  

Chen et al. [114,115] optimized the convective mass 
transfer process, and established the mass dissipation ex-
tremum principle, namely: “For certain constraints and giv-
en mass flow boundary conditions, the performance of mass 
transfer process is the best (i.e. the concentration difference 
is the minimum) when the mass entransy dissipation 
achieves its minimum value, while for the given concentra-
tion boundary conditions, the performance of mass transfer 
process is the best (i.e. the mass flow is the maximum) 
when the mass entransy dissipation achieves its maximum 
value”. Based on the concept of mass entransy dissipation, 
the equivalent mass resistance for the complex multi-dimen-     
sional mass transfer problem is defined, as follows:  
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E
m
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R
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where G  is the mass flow rate pass through the boundary 

of the control volume, and c  is the average concentration 
difference. Similarly, the mass entransy dissipation extre-
mum principle can be attributed to the principle of mini-
mum mass resistance principle, which is expressed as: “For 
the mass transfer problem with certain constraint conditions, 
if the equivalent mass resistance of the control volume 
achieves its minimum value, its mass transfer performance 
is the best (the mass flow is the maximum for fixed concen-
tration difference, or the concentration difference is the 
minimum for given mass flow)”.  

3  Combination of the mass entransy dissipation 
extremum principle and the finite-time thermo-
dynamics  

Finite time thermodynamics [4,7–10,133–157] is the com-
bination of thermodynamics, heat transfer, fluid mechanics 
and other transport sciences. The main goal of this theory is 
to reduce both the irreversibilities of various transfer pro-
cesses induced by finite potential differences (concentration 
difference, pressure difference, chemical potential differ-
ence, etc.) and the loss of useful work. It is a physical theory 
to optimize practical processes, cycles and devices with the 
irreversibilities of heat and mass transfer, fluid flow and 
other transport phenomena. It is also called “thermodynamic 
optimization” or “entropy production minimization” in en-
gineering. It can be seen that the mass entransy dissipation 
extremum principle provides a new theoretical basis for the 
optimizations of various mass transfer processes induced by 
the finite potential difference, which is different from that 
provided by the entropy generation minimization, and opens 
up a new research direction for finite time thermodynamics. 
Combination of the mass entransy dissipation extremum 
principle and the finite-time thermodynamics could be used 
to optimize the mass transfer processes of one-way isother-
mal mass transfer, two-way isothermal equimolar mass 
transfer, isothermal throttling and isothermal crystallization 
etc., and the obtained results are different from those ob-
tained by entropy generation minimization.  

3.1  Mass entransy dissipation minimization for one- 
way isothermal mass transfer process [127,128]  

Figure 1 shows the model of one-way isothermal mass trans-
fer process. Both of the mixtures at the high- and the low- 
concentration sides are binary. The component that partici-
pates in the mass transfer process is called the key compo-
nent, and the other is called the inert component. The con-
tact surface between the two mixtures only allows the key 
component to pass. c1 and c2 (c1>c2) are the key component 
concentrations (expressed as the mass fraction or mole frac-
tion) corresponding to the mixtures at the high- and the low- 
concentration sides, respectively. m1 and m2 are the amount 
of the flow rates per unit length (expressed as the mass flow  
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Figure 1  Model of one-way isothermal mass transfer process. 

rate or mole flow rate per unit length) of the key compo-
nents. M1 and M2 are the total amount of the flow rates per 
unit length (expressed as the mass flow rate or mole flow 
rate per unit length) of the mixtures. l is the total length of 
the mass transfer equipment. The mass transfer rate between 
the high- and the low-concentration sides is g, which satis-
fies the relation g= dm1/dx = dm2/dx.  

From eq. (11), the mass entransy E of the key component 
is given by  

   21 1
,

2 2
E mc Mc  (20) 

where c is the key component concentration in the mixture. 
When the concentration c is expressed as the mass fraction, 
m and M are the mass of the key component in the mixture 
and the total mass of the mixture, respectively; when the 
concentration c is expressed as the mole fraction, m and M 
are the mole numbers of the key component in the mixture 
and the total mole number of the mixture, respectively. The 
mole mass of the key component only depends on its phys-
ical characteristic, so the expression of the mass fraction is 
equivalent to that of the mole fraction. The mass entransy E 
could be used to represent the ability of the key component 
in a mixture for transferring mass to outside. From eq. (20), 
one further obtains the change of the mass entransy E, as 
follows:   
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 

1 1 1
d d d d ,

2 2 2
E mc m c c m  (21) 

where the first term on the right ride of the second equal 
sign is the change of the mass entransy due to the change of 
the key component concentration, and the second term on 
the right ride of the second equal sign is the change of the 
mass entransy due to the change of the amount of the key 
component. The mixture consists of two parts, which in-
clude the key component and the inert component. Let the 
amount of the inert component in the mixture be m , one 
further obtains  

     (1 ) (1 ) .m M c m c c  (22) 

Eq. (22) further gives  
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Differentiating eq. (23) with respect to the concentration 

c yields 
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Substituting eqs. (23) and (24) into eq. (21) yields  
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Integrating the left and right sides of eq. (25) along the 
length of the equipment at both the high- and low-concen-      
tration sides, respectively, yields  
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where the three items before the last equal sign in eq. (26) 
are the differences of the mass entransy flows between the 
inlet and outlet at the high-concentration side, and the last 
item in eq. (26) is the mass entransy flow into the low- 
concentration side. It is the similar situation in eq. (27).  

From eq. (14), for the steady state, the mass entransy dis-
sipation can be derived by calculating the mass entransy 
flows at the inlets and outlets of the equipment. Therefore, 
the entransy dissipation function E of the mass transfer 
process can be derived by combining eq. (26) with eq. (27):  
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where E1 is the total entransy flow output from the fluid at 
the high-concentration side, E2 is the total entransy flow 
input into the fluid at the low-concentration side, and the 
difference between them is the entransy dissipation function 
E of the mass transfer process. Eq. (28) also shows that the 
total entransy flow Eout of the high- and the low-concentra-     
tion side mixtures at the outlet is smaller than that at the 
inlet, and the difference between them is the entransy dissi-
pation function E of the one-way isothermal mass transfer 
process. From eq. (28), the equivalent mass resistance RE 
based on the mass entransy dissipation function E during 
the mass transfer process is obtained, as follows:  
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where G is the amount of key component mass transfer per 
unit time for the mass transfer process. RE measures the 
effectiveness of the mass transfer process. The smaller RE is, 
the better the effectiveness of the mass transfer process is. 
From eq. (29), one can see that optimizing the mass transfer 
process with the objective of the minimum E is equivalent 
to that with the objective of the minimum RE when the total 
mass transfer amount G is fixed. From eqs. (26)–(28), one 
further obtains the mass transfer efficiency based on the 
mass entransy, which is given by 

 
  

 
 

2 1

1 1

.E

E E E

E E
 (30) 

If the total mass transfer amount G is given, i.e. both the 
initial concentration c1,inl and final concentration c1,out of the 
fluid at the high concentration side are fixed, the total input 
entransy flow E1 is also fixed from eq. (26). For the fixed 
mass transfer amount G, optimizing the mass transfer pro-
cess with the objective of the minimum entransy dissipation 
is equivalent to that with the objective of the maximum 
mass transfer efficiency E. In summary, for the given mass 
transfer amount G, the smaller the entransy dissipation is, 
the smaller the mass resistance RE is, and the higher the 
mass transfer efficiency E is.  

For the constraint of the given mass transfer amount, the 
optimality condition corresponding to the minimum entransy 
dissipation of the mass transfer process is obtained by opti-
mal control theory. Based on the universal optimization 
results, the two special cases for the linear and diffusive 
mass transfer laws, i.e. [  ( )g ] and [  ( )g c ], are 

obtained, respectively. The obtained results are also com-
pared with the strategies of the minimum entropy generation, 
constant concentration ratio and constant concentration dif-
ference operations. The results show that the optimal mass 
transfer strategy for the minimum entransy dissipation of 
the mass transfer process with the diffusive mass transfer 
law is that the product of the square of the key component 
concentration difference between the high- and the low- 
concentration sides and the inert component concentration 
at the low-concentration side is a constant, and the optimi-
zation result for the linear mass transfer law is evidently 
different from that for the diffusive mass transfer law as 
shown in Figures 2 and 3; the mass transfer strategy of con-
stant driving force operation is close to the optimal mass 
transfer strategy; since the entropy generation and the en-
transy dissipation denote different physical meanings, the 
optimization objective selection for the performance opti-
mization of the mass transfer process depends on the prac-
tical thermodynamic system and the corresponding demand. 
According to Gouy-Stodola theory [23], the minimum en-
tropy generation denotes the minimum available energy loss. 
For a mass transfer process associated with energy conver-
sion, such as distillation and separation processes [158–164] 
as well as isothermal chemical engines [165–169], the  

 

Figure 2  The optimal key component concentration c1 versus the position 
x for different mass transfer laws. 

 

Figure 3  The optimal key component concentration c2 versus the position 
x for different mass transfer laws. 

minimum entropy generation should be chosen as the opti-
mization criterion. For a mass transfer process without en-
ergy conversion, such as decontamination ventilation in 
space station cabins [116,117,119] and evaporative cooling 
process [120–122], the minimum mass entransy dissipation 
(at the boundary condition of fixed mass flow) should be 
chosen as the optimization criterion.  

3.2  Mass entransy dissipation minimization for two- 
way isothermal equimolar mass transfer [129] 

Figure 4 shows the model of two-way isothermal equimolar 
mass transfer process. Both of the mixtures at the high- and 
the low-concentration sides are binary for simplicity (Any 
inert carrier plays no role, so long as it does not pass from 
one flow to the other), which are composed of component 1 
and component 2, respectively. According to the concentra-
tion of component 1, the first fluid is called high-concen-     
tration mixture, while the second fluid is called low-con-     
centration mixture. c1 and c2 (c1>c2) are the key component 
concentrations (expressed as the mass fraction or mole frac-
tion) corresponding to the mixtures at the high- and the low-  
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Figure 4  Model of two-way isothermal equimolar mass transfer process. 

concentration sides, respectively. m1 and m2 are the amount 
of the flow rates per unit length (expressed as the mass flow 
rate or mole flow rate per unit length) of component 1. M1 
and M2 are the total amount of the flow rates per unit length 
(expressed as the mass flow rate or mole flow rate per unit 
length) of the mixtures. l is the total length of the mass 
transfer equipment. The mass transfer flow rate between the 
high- and the low-concentration sides is g, which satisfies 
the relation g= dm1/dx=dm2/dx. The mass transfer obeys 
Fick’s diffusive mass transfer law [  ( )g c ], i.e.  

       1 1 2 2 1 2 1 2 1 2( , ) (1 ,1 ) ( , ) ( ),g c c g c c g c c h c c  (31) 

where g1(c1,c2) is mass transfer flow rate of component 1, 
g2(1c1,1c2) is mass transfer flow rate of component 2, and 
h is the mass transfer coefficient. From eq. (31), one further 
obtains the entransy balance equations corresponding to the 
high- and low-concentration sides of the mass transfer pro-
cess, respectively, as follows:  
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Combining eq. (32) with eq. (33) yields  
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Eq. (34) shows that the total entransy flow Eout of the 
high- and the low-concentration side mixtures at the outlet 
is smaller than that at the inlet, and the difference between 
them is called the entransy dissipation function E of the 
two-way isothermal mass transfer process. The entransy 
dissipation function E measures the irreversibility of the 
mass transfer ability loss. For the given mass transfer 
amount, the smaller E is, the better the effectiveness of the 
mass transfer process is.  

For the constraint of the given mass transfer amount, the 
optimal concentration allocations of the components corre-
sponding to the high- and the low-concentration sides for 
the minimum entransy dissipation of the mass transfer pro-
cess are obtained by applying optimal control theory and 
compared with the mass transfer strategies of the minimum 
entropy generation and constant concentration ratio opera-
tions. The results show that the optimal mass transfer strat-
egy for the minimum entransy dissipation is that the same 
component concentration difference between the high- and 
the low-concentration sides is a constant, which is evidently 
different from that for the minimum entropy generation 
[159] as shown in Figure 5. Meanwhile, the mass transfer 
process studied herein is not involved in energy conversion 
process significantly, so the optimization principle should 
be the minimum entransy dissipation. The entransy dissipa-
tion of the mass transfer process for the strategy of constant 
concentration difference is smaller than that for the strategy 
of constant concentration ratio, so the former is superior to 
the latter.  

3.3  Mass entransy dissipation minimization for iso-
thermal throttling process [130] 

Throttling is a particular flow process with notable pressure 
drop, which is due to local resistance when the gas flows in 
the pipe. For instance, this process will occur when the gas 
flows through the tube necking or the adjusting valve. This 
phenomenon is known as throttling or Joule-Thomson effect. 
During the adiabatic throttling process, the specific enthalpy 
decreases with the increase of the flow velocity in the vicinity 
of shrinkage orifice, and the kinetic energy of fluid increases 
when the fluid passes through the shrinkage orifice. The 
pressure drops, and a strong disturbance and friction convert 
the increase in kinetic energy into heat energy that absorbed 
by the fluid. Therefore, the specific enthalpy of the fluid 
before the throttling process is equal to that after the throt-
tling process. The pressure after the throttling process cannot  

 
Figure 5  The entransy dissipation density d(∆E)/dx versus the position x 
for two-way isothermal equimolar mass transfer process under various 
mass transfer strategies. 
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turn back to that before the throttling process due to the 
irreversibility of the disturbance and friction, so the adia-
batic throttling process is irreversible. Strong disturbance 
and vortex occur near the orifice, the fluid lies in an extreme 
imbalance state as shown in Figure 6. The state near the 
orifice cannot be analyzed by using the equilibrium ther-
modynamics. But in a place far away from the orifice, such 
as sections 1-1 and 2-2 as shown in Figure 6, the fluid is 
still in an equilibrium state. It could be analyzed by using 
the equilibrium thermodynamics. The temperature change 
of the fluid (liquid, gas) before and after the adiabatic throt-
tling process is called the temperature effect of the throttling, 
which could be characterized by the adiabatic throttling 
coefficient or Joule-Thomson coefficient J. Its physical 
meaning is the temperature change value per unit pressure 
drop, as follows:  

 
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p c
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After throttling process, the pressure of the fluid is de-
creased. From eq. (35), when J>0, the temperature of the 
fluid is decreased after the throttling process, and this phe-
nomenon is called throttling cold-effect. When J<0, the 
temperature of the fluid is increased after the throttling pro-
cess, and this phenomenon is called throttling hot-effect. 
When J=0, the fluid temperatures before and after the 
throttling process are equal to each other, and this phenom-
enon is called throttling zero-effect. For ideal gas, the adia-
batic throttling process is the throttling zero-effect due to 
that   ( ) pT V T V .  

In ref. [188], the mass entransy dissipation of an iso-

thermal transport network is defined as   *E F P , where 

F* is the injecting flow of the transport network, and P  
is the weighted average potential difference. Consider a 
one-dimensional isothermal gas expansion process, the 
pressure drops from p1 to p2, and the rate of expansion de-
pends on the pressure difference. In this process, the gas  

 

Figure 6  Model of throttling process [170]. 

flow rate is g(p1, p2). Based on the definition of the mass 
entransy dissipation in ref. [188], the mass entransy dissipa-
tion E of the isothermal gas expansion process (J=0) is 
given by  
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The impact of heat exchange with the environment is ig-
nored herein. From eq. (36), one further obtains the mass 
resistance RE based on the entransy dissipation E, which is 
given by  
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where G is the total mass transfer amount of the throttling 
process.  

For the constraint of the given mass transfer amount, the 
optimality condition corresponding to the minimum entransy 
dissipation of the process is obtained by applying optimal 
control theory. Based on the universal optimization results, 
the special cases for the mass transfer law [  ( )mg p ] and 

the linear mass transfer law [  ( )g ] are further obtained. 

The obtained results are also compared with those obtained 
for the mass transfer strategies of the minimum entropy 
generation, constant pressure ratio and constant pressure 
difference operations. The results show that the pressure 
difference between the high- and low-pressure sides with 
the mass transfer law [  ( )mg p ] based on minimum mass 

entransy dissipation is a constant (p=const), which is dif-
ferent from that based on minimum entropy generation evi-
dently. The entropy generation for the mass transfer strategy 
of μ=const is smaller than that of p=const, which reflects 
that the driving force of the mass transfer process expressed 
by the entropy is the chemical potential difference. The 
mass entransy dissipation for the mass transfer strategy of 
p=const is smaller than that of μ=const, which reflects 
that the driving force of the mass transfer process expressed 
by the mass entransy is the pressure difference. The mass 
transfer strategy of p1p2=const is superior to that of 12= 
const in the reduction of mass entransy dissipation. The 
optimal pressure ratio between the high- and low-pressure 
sides with the linear mass transfer law [  ( )g ] based on 

minimum entropy generation is a constant. The mass trans-
fer strategy of 12=const is always superior to that of 
p1p2=const in the linear mass transfer law [  ( )g ], and 

this result is independent of the selection of the optimization 
objective (minimum entropy generation or the minimum 
mass entransy dissipation). This indicates that the constant 
driving force operation is close to the optimal strategy of the 
mass transfer. As shown in Figures 7 and 8, the heat transfer 
laws have significant effects on the minimum mass entransy 
dissipation of the throttling process and the corresponding  
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Figure 7  The optimal inlet pressure p1 versus the time t for different 
mass transfer laws. 

 

Figure 8  The optimal outlet pressure p2 versus the time t for different 
mass transfer laws. 

optimal paths of the pressure over the time.  

3.4  Mass entransy dissipation minimization for iso-
thermal crystallization [131] 

During a crystallization process, the key component crystal-
lizes out of solution on to the surfaces of the crystals al-
ready present, where its concentration is higher than the 
equilibrium concentration in the solution. The initial dimen-
sions (masses) of the crystals are variable, and can be char-
acterized by some distribution. Let the mass transfer rate of 
the crystallization process be 1( , )eqg c c . The mass flow rate 

g depends on the net surface area of the crystals F which, in 
turn, depends on the mass M of crystals. For a crystal with 
initial mass Mi(0), the surface Fi(Mi) is proportional to 

2/3
iM  based on the assumption that all of the crystals are 

sphere. Since the dependence Fi(Mi) is convex as shown in 
Figure 9, it is guaranteed that the net surface F, as result of 
averaging of Fi(Mi) over all Mi, is less than the value of the 
net surface calculated by assuming that the masses of all the 
crystals are the same and equal to the average crystal mass 
at t=0. The mass transfer flow depends monotonically on  

 

Figure 9  The surface area Fi of the crystal versus its mass Mi. 

the mass transfer coefficient, and it increases if the surface 
of the crystals increases. Therefore the use of the depend-
ence   3/2F KM  gives low limits on the entropy genera-

tion and the entransy dissipation. Assume that both the nu-
cleation and recrystallization don’t exist during the crystal-
lization process herein, all of the crystals are the same dur-
ing the crystallization process. Consider that the crystalliza-
tion process obeys the mass transfer law g(M2/3, c1,ceq), and 
then the net mass M of the crystals changes according to the 
following equation:  

     2/3
1 0

d
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g M c c M M M M

t
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where  is the total period of the crystallization process. The 
entransy dissipation E of the crystallization process is  
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From eqs. (38) and (39), one further obtains the mass re-
sistance RE based on the entransy dissipation, which is given 
by  
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For the constraint of the given crystals mass, the optimal 
concentration configuration for the minimum entransy dis-
sipation of the crystallization process is obtained by apply-
ing optimal control theory, and the obtained results are also 
compared with those obtained for the mass transfer strate-
gies of the minimum entropy generation, constant concen-
tration and constant mass flux rate operations. The results 
show that the 2/3 times net mass of the crystals for the 
minimum entransy dissipation of the crystallization process 
with the diffusive mass transfer law changes with time line-
arly, and the entransy dissipation rate of the process keeps 
constant, which coincides with equipartition of entransy 
dissipation [85]; both the minimum entransy dissipation of 
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the crystallization process with the linear mass transfer law 
and the corresponding optimal concentration configuration 
are different from those for the diffusive mass transfer law 
as shown in Figures 10 and 11; since the crystallization 
process is not involved in energy conversion process, the 
optimization principle should be the minimum entransy 
dissipation.   

4  Combination of mass entransy dissipation 
extremum principle and constructal theory of 
mass transfer  

Since the constructal theory was put forward by Bejan, it 
has been developed vigorously. Many scholars have shown 
great interests in constructal theory. Plentiful of researches 
have been carried out based on this theory, and its content 
has been greatly enriched. The fields covered by the con-
structal theory are large, including heat and mass transfer, 
fluid flow, electricity, magnetism, transport, piping network, 
efflorescence and torrefaction, economy decision-making, 
climate forecast, physical geography, economic transporta-
tion, product platform design, organization structures and  

 
Figure 10  The optimal concentration versus the time for different mass 
transfer laws. 

 
Figure 11  The optimal crystal mass versus the time for different mass 
transfer laws. 

physiology of animals and plants, social dynamics, medical 
treatment, global security and sustainability, pedestrian dy-
namics, collection of organism, circulation market dynamics, 
coastal beach morphology, and so on [171–185]. By com-
bining thermal entransy theory and constructal theory, dif-
ferent results [38–54,67,68,104–109] have been obtained 
for various kinds of processes with the thermal entransy 
dissipation rate extremum (minimum or maximum).   

Combination of mass entransy dissipation extremum 
principle and constructal theory for mass transfer process 
involves constructal optimizations of “disc-to-point” and 
“volume-to-point” mass transfer. Traditional constructal 
theory concentrates on the optimization objective of maxi-
mum pressure difference minimization which indicates local 
optimization of porous media [186]. The results based on 
the minimization of entransy dissipation rate indicate the 
global optimization of mass transfer in porous media.  

4.1  Mass entransy dissipation rate minimization for 
“disc-to-point” mass transfer process [187]  

4.1.1  Radial-patterned disc  

The mass transfer model of radial-patterned disc is as 
shown in Figure 12. The radius of the disc is R0 and the 
permeability is K. The mass current (     2

0m m R , where 

m  is the mass generation rate) which is generated uni-
formly in the disc flows through the high-permeability paths 
towards the center of the disc. The permeability of the ma-
terial is K0 and the thickness is D0. The number of the 
high-permeability paths which are distributed uniformly 
over the disc is N. The pressure of the disc is above P0.  

According to the distribution of high-permeability paths, 
the disc can be divided into a number of equal sectors, 
N=2R0/(2H0). The radial boundary (dotted line) of each 
sector is not penetrable. Each sector as depicted in Figure 
13 is a fundamental element and N sectors fit in a complete 
disc arrangement. One assumes N>>1 so that each sector is  

 

Figure 12  Mass transfer model of radial-patterned disc. 
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Figure 13  Elemental sector. 

sufficiently slender to be approximated by an isosceles tri-
angle of base 2H0 and height R0.  

The distribution of pressure difference of the element for 
y>0 is  
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The entransy dissipation rate of the element is  
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where J  is entransy dissipation rate of the mass. The 
mean pressure difference is  
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and the optimal construct and the corresponding mean 
pressure difference are, respectively, given by  
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The minimal dimensionless mean pressure difference is  
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However, the optimal construct with the minimization of 
maximum pressure difference and the corresponding di-
mensionless mean pressure difference are, respectively, 

given by  
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According to eqs. (44) and (47) it is obtained that the 
optimal construct of the element based on the minimization 
of entransy dissipation rate is different from that based on 
the minimization of maximum pressure difference. From 
eqs. (46) and (48), one can see that the optimal construct 
based on the former can decrease the mean temperature 
difference to a great extent compared with the optimal con-
struct based on the latter, with a clear improvement in the 
mass transfer performance.  

The aspect ratio (i.e. eq. (44)) determines the number of 
elements which fit in a complete disc arrangement: 
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So eq. (44) shows that the optimal aspect ratio agrees 
with the above assumption. The radius of the disc is   
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and the corresponding dimensionless mean mass flow re-
sistance  
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The radius of the disc is not determined but results from 

the optimization, and depends on A0, 0 and 
0K . The 

product  00K  is an important quantity. Large  00K  sig-

nifies more high-permeability material, a more slender ele-
ment and a disc with larger radius.  

The number of disc elements in the disc and the radius of 
the disc based on the minimization of maximum pressure 
difference are, respectively 
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Comparing eq. (49) with eq. (52), and eq. (50) with eq. 
(53) one can see that both the number of elements and the 
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radius of the disc based on the minimization of entransy 
dissipation rate are smaller than those based on the minimi-
zation of maximum pressure difference. That is, the area of 
the disc based on the minimization of entransy dissipation 
rate is not equal to that based on the minimization of maxi-
mum pressure difference. Therefore, eqs. (51) and (54) are 
not compared in this paper.  

4.1.2  Branch-patterned disc  

As shown in Figure 14, the perimeter of the branch-patterned 
disc is assembled by many elemental sectors of the radial- 
patterned disc. One K1 blade (thickness is D1) stretches ra-
dially to a distance R1 away from the disc center, continues 
with a number (n) of tributaries (with thickness D0 and 
high-permeability K0) that terminate on the rim.  

The distribution of temperature difference of central A1 
sector for y>0 is 
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The entransy dissipation rate of central sector A1 is  
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The entransy dissipation rate of A0 element is composed 
of the entransy dissipation rate introduced by the mass cur-
rent flowing through A0 element and the entransy dissipa-
tion rate introduced by the mass current flowing through 
high-permeability blade of central sector A1, i.e.  

 

Figure 14  First-order assembly of disc. 
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The entransy dissipation rate of A sector is  
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1 .c pJ J nJ  (58) 

After some mathematical calculations, eq. (58) becomes  
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where  1 0D D D  is the ratio of thicknesses of high- 

conductivity blades, and  1/2
0R R A  is the dimensionless 

radius of the disc. The mean pressure difference of mass 
transfer is    1 1 ( )P J m A , and the corresponding dimen-

sionless mean pressure difference of mass transfer is   
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The fraction of the amount of high-permeability K0 and 
K1 materials allocated to the disc is 
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Eq. (61) determines the relationship among n, D , R , 


0K  and 0. Because 1,  0K  and 1K  are fixed (e.g., 1= 

0.1, 
0 1000K  and 1 1000K ), the relation between D  

and 0 is obtained when n and R  are given. From eq. (60), 
one can obtain minimal dimensionless mean pressure dif-

ference,  1,minP  and the corresponding 0,opt and  optD .  

Figure 16 shows the characteristics of the dimensionless 

mean pressure difference  1P  and blade thickness ratio 

D  versus the elemental volume fraction 0 with n=2, 
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 4R , 1=0.1 and   
0 1 1000K K . The solid and dotted 

lines represent the analyses based on mean pressure differ-

ence and maximum pressure difference ( 1P ), respectively. 

From Figure 16, one can see there exist optimal blade 

thickness ratio (0,opt) and elemental volume fraction ( optD ) 

which lead to minimum  1P  and  1P , respectively. 0,opt 

obtained based on minimum  1P  is smaller than that based 

on minimum  1P , but the conclusion is reversed for optD . 

Therefore, the optimal constructs obtained based on the two 
optimization objectives are evidently different, and the 
mean pressure difference is reduced by adopting the former 

optimal construct. Moreover, the effects of  0K , 1K , n and 

R  on the optimal constructs (0,opt and optD ) and optimal 

flow performances ( 1,minP  and  1,minP ) are showed in Fig-

ures 17–20, respectively.  
In each of the cases optimized in Figures 17–20, both the 

elemental area and dimensionless radius of the disc were 
fixed. This means that the minimization of dimensionless 
mean flow resistance of the entire disc is equivalent to the 
minimization of dimensionless mean pressure difference:  

 

Figure 15  First-order assembly of sector. 

 

Figure 16  1P , 1P  and D  versus 0 characteristics. 1, entransy 

dissipation rate minimization; 2, maximum pressure difference min-    
imization. 

 

Figure 17  Effect of dimensionless radius R  on the optimal construct. 

 

Figure 18  Effect of the number of elemental branches on the optimal 
construct. 
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Based on the same elemental area and the same amounts 
and properties of high-permeability materials, one compares 

1,minf  with 0f  as shown in Figure 21. The dimensionless 

radius of the radial-patterned disc is (cf. eq. (50)) 
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When  0K , 1K  and 1 are fixed, the dimensionless ra-

dius R  can be obtained from eq. (63). The dimensionless  
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Figure 19  Effect of high-permeability K0 on the optimal construct. 

 
Figure 20  Effect of high-permeability K1 on the optimal construct. 

 

Figure 21  Effects of 0K , 1K  and 1 on dimensionless mean flow 

resistances of radial-patterned and branch-patterned discs. 

radius R  of a branch-patterned disc in Figure 14 can be 

free to vary. This is the reason that  
0 ( )f R  is and  

1,min ( )f R  

are a point and a curve in Figure 21, respectively. In this 

figure the dotted line indicates 0f  with different  0 1K , 

and the solid lines indicate 

1,minf  with different dimension-

less radius of the branch-patterned disc. From the figure, 

one can see that when the dimensionless radius R  exceeds 
that of the optimized branch-patterned disc, lower mean 
flow resistance is achieved when the high-permeability ma-
terial is distributed according to the branch pattern. The 
mean flow resistance can also be decreased and the mass 
transfer performance of the porous media is improved by 

increasing  0 1K  or 1 1K . 

Table 2 lists the optimal constructs for different optimi-
zation objectives (i.e. the minimizations of maximum pres-
sure difference and mass entransy dissipation rate) with n=2, 

 4R ,   
0 1 1000K K  and  1 0.1 . From the table one 

can see that the two optimal constructs are different. The 
optimal construct based on the minimization of entransy 
dissipation rate can decrease the mean flow resistance, with 
an improvement in the mass transfer performance. 

4.1.3  Branch-patterned disc without the premise of opti-
mized last-order construct  

The optimal aspect ratio of the elemental sector is used to 
assemble the branch-patterned disc in the former subsection. 
In this subsection, this aspect ratio is not specified, but to be 
optimized. The branch-patterned disc of the first-order as-
sembly is optimized again by relaxing the premise of opti-
mized last-order construct and taking the aspect ratio of the 
elemental sector, H0/R0, as a new freedom. H0/R0 and H1/R1 
both vary.  

Based on the same elemental area and the same amounts 
and properties of high-permeability materials, one compares 

1,minf  with 0f  as shown in Figure 22. The dimensionless 

radius of the radial-patterned disc is (cf. eq. (50))  

   1/4
0 1(5 ) 2.R K  (64) 

When  0K  and 1 are fixed, the dimensionless radius 

R  can be obtained from eq. (64), and the dimensionless 

mean flow resistance 0f  of the radial-patterned disc can be 

obtained from Figure 22. The dimensionless mean flow 

resistance 

1,minf  of the branch-patterned disc decreases with 

the increase in R . Noted that  
0 ( )f R  is not the critical 

curve that distributes the high-conductivity material ac-
cording to optimized radial or branch patterns, which is  

Table 2  Optimal constructs for different optimization objectives 

Optimization objectives 0,opt  
optD  

1,minP  

Minimization of maximum pres-
sure difference 

0.097 2.2292 0.0704 

Minimization of entransy dissipa-
tion rate 

0.084 2.8775 0.0695 
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Figure 22  Effects of 0K , 1K  and 1 on dimensionless mean flow 

resistances of radial-patterned and branch-patterned discs. 

different from the case for the premise of optimized last- 

order construct. For the case of the curve,  
1,min ( )f R , with 

   
0 111 100K K , when  2.2R  each branch-patterned 

disc will be reduced into a radial-patterned disc and 

 2.36R  is not its critical point. Therefore, when the di-

mensionless radius 
R  exceeds that of the optimized 

branch-patterned disc, lower mean flow resistance is 
achieved when the high-permeability material is distributed 
according to the branch pattern. The mean flow resistance 
can also be decreased and the mass transfer performance of 

the porous media is improved by increasing  0 1K  or 

1 1K . 

4.2  Mass entransy dissipation rate minimization for 
“volume-to-point” mass transfer process [187] 

4.2.1  Constructal mass entransy dissipation rate minimi-
zation based on constant high-permeability channels  

The rectangular element, first-order assembly and second 
order assembly with constant channels are shown in Figures 
23–25. The main optimized results are summarized in Table 
3, and the optimized results based on the minimization of 
maximum pressure difference are summarized in Table 4 

[186]. In these tables  
i i iC K  indicates dimensionless 

flow conductance [186] of each high-permeability layer. 
Generally,  1 1i iC C .  

From these tables, one can see that the mean pressure 
differences are all 2/3 of the maximum pressure differences 
for the rectangular element, first-order assembly and second 
order assembly. It is interesting that the optimal constructs 
based on the minimization of entransy dissipation are the 
same as those based on minimization of maximum pressure 
difference [186]. When the thermal current density in the 
high conductive link is linear with the length, it is found that 

the optimal constructs based on the minimizations of en-
transy dissipation rate and maximum temperature difference 
for the heat transfer process are equal to each other [41]. 
Analogizing mass transfer process with heat transfer pro-
cess, due to the linear distribution of the mass current den-
sity in the high-permeability layer ( ,opt 1in ), the optimal 

constructs based on the two optimization objectives are 
identical with each other in this paper. 

4.2.2  Constructal mass entransy dissipation rate minimi-
zation based on tapered high-permeability channels 

The rectangular element, first-order assembly and second 
order assembly with tapered channels are shown in Figures 
26–28. The main optimized results are summarized in Table 5,  

 
Figure 23  Rectangular element [186]. 

 
Figure 24  First-order assembly [186]. 

 

Figure 25  Second-order assembly. 
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Table 3  Optimal constructs based on entransy dissipation rate minimization 

The order of the assembly, i i iH L  
iH  iL  ni  iP   iP a) 
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a) These results are derived from the results of ref. [186]  

Table 4  Optimal constructs based on maximum pressure difference minimization [186] 

The order of the assembly, i i iH L  
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Figure 26  Rectangular element with tapered high-permeability channel. 

 
Figure 27  First-order assembly. 

while the optimized results based on the minimization of 
maximum pressure difference are summarized in Table 6 

[186], where  
i i iC K  is the dimensionless flow conduct-

ance of the corresponding channel [186], and  iD  

   1/2 3/2
i i3 ( ) (2 )i L x L . From Figures 5 and 6, one can see 

that the optimal constructs based on the two optimization 
objectives are different from each other.  

(1) Compared with the rectangular element based on the 
minimization of maximum pressure difference, the element 
based on the minimization of entransy dissipation rate is 
more slender, and the corresponding mean pressure differ-
ence is smaller.  

(2) The first-order assemblies based on the minimizations 
of entransy dissipation rate and maximum pressure differ-
ence, respectively, have the same optimal aspect ratio. How-
ever, the number of rectangular elements assembling the 
first-order assembly based on the minimization of entransy 
dissipation rate is more and the corresponding mean pres-
sure difference is smaller.  

(3) The ith-order assemblies based on the minimizations 
of entransy dissipation rate and maximum pressure differ-
ence, respectively, have the same optimal aspect ratio and 
the number of last-order assemblies assembling the ith-order 
assembly. However, the mean pressure difference based on 
the minimization of entransy dissipation rate is smaller.  
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Figure 28  Second-order assembly. 

Table 5  Optimal constructs based on entransy dissipation rate minimization 

The order of the 
assembly, i i iH L  
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5  Conclusions  

The mass entransy dissipation extremum principle provides 
a new theoretical basis for mass transfer optimization, 
which is different from that provided by entropy generation 

minimization. The mass transfer optimization results for 
entransy dissipation minimization in finite time thermody-
namics are different from those for entropy generation 
minimization. In the mass transfer processes that are inde-
pendent of the energy transformation, the equivalent mass 
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resistance and mass transfer efficiency (or mass entransy 
transfer efficiency) can be defined based on the mass en-
transy and its dissipation. Therefore, the objective of mass 
entransy dissipation is more suitable in the optimizations of 
mass transfer processes. The optimal construct based on the 
entransy dissipation rate minimization can decrease the 
mean mass transfer pressure difference to a certain extent. 
When the mass current density linearly distributes along the 
length, the relationship between the entransy dissipation rate 
describing global mass transfer ability of the system and the 
maximum pressure difference describing local mass transfer 
ability is linear. Additionally, both the optimal local and 
optimal global mass transfer performances of mass transfer 
structures are not always achieved simultaneously, so opti-
mization for both of them should be paid attention in the 
optimization of mass transfer structure to satisfy the re-
quirement for engineering. For the optimization of mass 
transfer structure, the safety restriction of mass transfer may 
be added. With the further development of scientific re-
searches, the generalized entransy theory [188–190] will be 
more perfect and applied in a much wider field, and have 
more obvious advantages and greater influences on the sub-
jects such as heat and mass transfer and other transport sub-
jects.  

It is worthwhile to note that several authors [191–198] 
have criticized the concept of thermal entransy in recent 
years. In fact, the major comments on thermal entransy 
were based on the misinterpretations and mistakes of some 
papers, and some of them lacked academic seriousness. 
Thermal entransy has its physical bases and advantages in 
heat transfer analyses and optimizations. The responses to 
those articles [191–198] can be seen in refs. [199–203]. 
Similarly, mass entransy has its physical bases and ad-
vantages in mass transfer analyses and optimizations.  
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was supported by the National Natural Science Foundation China (Grant 
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