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Fully developed flow and heat transfer in metal-foam filled tube with uniform wall temperature (UWT) is semi-analytically 
investigated based on the Brinkman–Darcy model and the two-equation model, in which the inertia term, axial conduction, and 
thermal dispersion are ignored. A two-dimensional numerical simulation that adopts the full governing equations is also con-
ducted to analyze the effects of neglected terms on flow and thermal transport performance by comparing with the semi-analy- 
tical solution. The effects of the relevant parameters and thermal boundary conditions including UWT and uniform heat flux 
(UHF) on the heat transfer characteristics are discussed based on the semi-analytical solution. The results show that the inertia 
term has a significant effect on the prediction of pressure drop, but has a relatively mild effect on Nusselt number. The axial 
conduction has significant effect on the Nusselt number at lower Reynolds number, and the effects of thermal dispersion can 
be neglected when the thermal conductivity ratio between fluid and solid is remarkably smaller for air/metal foam as example 
(kf/ks<3×10−3). The predicted Nusselt number of the semi-analytical solution is about 8% to 15% lower than that of the numer-
ical solution with full model in the range of 4×10−5<kf/ks<3×10−3. Moreover, the temperature profile of solid is more sensitive 
to pore density and porosity than that of fluid under UWT condition. The Nusselt number under UWT is about 7% to 25% 
lower than that under UHF, and the difference is mainly determined by interfacial convection rather than solid conduction. 
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Nomenclature 

sfa  specific surface area, [m−1]; 

eBi  dimensionless quantity, 2
sf sf seh a R k ; 

c  specific heat capacity [J kg−1 K−1]; 

IC  inertia coefficient; 

DC  thermal dispersion constant; 

fd  fiber diameter of metal foam [m]; 

pd  pore size of metal foam [m]; 

Da  Darcy number; 

h  heat transfer coefficient [W m−2 K−1]; 
k  thermal conductivity [W m−1 K−1]; 

dk  thermal dispersion coefficient [W m−1 K−1]; 

K  permeability [m2]; 
L  axial length of tube [ m ]; 
Nu  Nusselt number, f2 xh R k ; 

p  pressure [Pa]; 

P  dimensionless pressure; 
Pr  Prandtl number; 

w,xq  local heat flux at the wall [W m−2]; 

r  radial coordinate [m]; 
R  tube radius [m]; 
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Re  Reynolds number,  2u R  ; 

KRe  permeability Reynolds number, u K  ; 

T  temperature [K]; 

f,bT  bulk-mean temperature of fluid [K]; 

u  axial velocity [m s−1]; 

mu  mean axial velocity [m s−1]; 

U  dimensionless velocity; 
v  radial velocity [m s−1]; 
x  axial coordinate [m]. 

Greek symbols 

  porosity 
  dimensionless radial coordinate, r R ; 

  dynamic viscosity [kg m−1 s−1]; 

  dimensionless temperature,    w f,b w T T T T ; 

  density [kg m−3]; 

  pore density of metal foam, pores per inch  
(

pppi=0.0254 d ). 

Subscripts 

b bulk; 
e effective; 
f fluid; 
in inlet; 
s solid; 
w wall. 

1  Introduction 

The energy shortage and environmental pollution have be-
come the significant issues with the development of the 
industry and economy. Therefore, many advanced materials 
and technologies have been developed to improve the effi-
ciency of energy utilization [1–3]. Metal foams, as a kind of 
novel porous medium with high porosity and high thermal 
conductivity, may exhibit excellent thermal performance 
when used in compact exchangers and heat sinks due to its 
high surface-area density and strong flow-mixing capability. 
This attractive advantage gives rise to extensive investiga-
tions on flow and heat transport phenomena in metal-foam 
filled structures in recent years.  

In principle, metal foams with open cells belong to po-
rous media in which the medium has a distinct but continu-
ous and rigid solid phase, and a fluid phase. The most 
common theoretical models for describing flow transfer in 
porous media are the Darcy and the non-Darcy models. For 
the flow with low Reynolds number in the porous medium, 
such as ground-water hydrology, petroleum reservoir, and 
geothermal operations, the Darcy model is generally adopt-

ed to investigate the flow transport features [4]. However, 
the Darcy model has significant deviations for flow predic-
tion with high Reynolds number due to neglecting viscous 
force of impermeable boundary and inertia force; the effects 
of viscous force and inertia force in the porous media were 
discussed in detail by Vafai and Tien [5]. Considering these 
non-Darcy effects, the Brinkman-Darcy model and the 
Brinkman-Forchheimer-Darcy model were proposed, the 
former includes the boundary effect, whereas the latter in-
cludes both the boundary and the inertia effects. Hooman  
[6] analytically studied the fully developed forced convec-
tion through a porous medium filled with parallel plates 
based on the Brinkman–Forchheimer-Darcy model by ap-
plying the asymptotic expansion technique. Zhao et al. [7] 
then solved the same flow model for flow characteristics in 
a channel filled with porous media by utilizing the ho-
motopy analysis method. Dukhan [8] applied the Brink-
man–Darcy model to analytically study the flow character-
istics in a cylindrical porous tube, and conducted a related 
verification experiment using aluminum foam. The predict-
ed friction factor from the analytical solution agreed well 
with the experimental data for the foam, with 20 pores per 
inch (ppi) in the Darcy regime. In present study, the Brink-
man–Darcy model is used as the momentum equation to 
describe the flow characteristics in metal-foam filled tube. 

While for heat transfer in porous media, the one-equation 
or the two-equation models can be adopted. The fluid and 
solid phases are assumed in local thermal equilibrium in the 
one-equation model so that the fluid-saturated porous me-
dium can be treated as a continuum. Hooman and Merrikh 
[9] used the one-equation model combining with the 
Brinkman-Darcy model, to obtain a Fourier series type of 
solution for thermally fully developed convection in a hy-
perporous-medium filled rectangular duct with constant heat 
flux on the walls. Also, based on the one-equation model 
and the non-Darcy model, Chikh et al. [10] analytically in-
vestigated forced convection in porous-medium partially 
filled pipe, in which the inner is exposed to constant heat 
flux and the outer is thermally insulated. Zhu et al. [11] car-
ried out a numerical study on heat transfer inside rotating 
porous disk subjected to uniform heat flux. However, the 
one-equation model was found to be inaccurate when the 
difference between thermal conductivity of fluid and porous 
solid is significant, just as the case of metal foam involved 
in present study. While the two-equation model can be ap-
plied because it treats the fluid and solid separately, and 
considers the local temperature difference between the fluid 
and solid. Yang et al. [12] applied the one-equation and 
two-equation models to analyze comparatively the forced 
convection in a tube with wall covered with porous medium 
layer under constant heat flux boundary condition. The re-
sults showed that the two-equation model was more accu-
rate than the one-equation model when the temperature dif-
ference between the solid and fluid was obvious. Calmidi 
and Mahajan [13] used the non-Darcy model and the 



 Zhang J J, et al.   Sci China Tech Sci   December (2014) Vol.57 No.12 2489 

two-equation model to conduct a numerical and experi-
mental study on forced convection in aluminum-foam filled 
tube with uniform heat flux boundary condition, and the 
excellent agreement between the experimental and the nu-
merical results confirmed the effectiveness of the 
two-equation model. In addition, the literatures [14–21] 
applied the non-Darcy model and the two-equation model to 
investigate forced convection heat transfer in different 
structures filled with metal foam under constant heat flux 
condition. Therefore in this study, the two-equation model 
is employed as the energy equation to analyze the heat 
transfer in metal-foam filled tube. 

The above mentioned studies about convection heat 
transfer in porous medium adopted the uniform heat flux 
(UHF) as the thermal boundary condition. For the condition 
of uniform wall temperature (UWT), Kamiuto and Saitoh 
[22] theoretically studied the fully developed convection in 
a cylindrical packed bed, Hooman et al. [23] and Nield et al. 
[24] analyzed thermally developing convection in porous 
medium filled with rectangular ducts and parallel channels, 
respectively. However, these studies on porous medium 
under UWT condition all used the one-equation model as 
energy equation, this model will be inappropriate for the 
case of metal foam based on the above reviews. Nield et al. 
[25] employed the two-equation model to investigate the 
thermally developing convection in porous media filled 
parallel-plate channel with UWT condition for the case of 
low porosity (=0.5) and high fluid-solid thermal conduc-
tivity ratio (kf/ks≥0.1), but due to the difficulties in solving 
convergence, the case of high porosity (≥0.85) and low 
thermal conductivity ratio (kf/ks<0.01) was not involved, 
which just are the feature of metal foams.  

As reviewed, the previous studies about convection heat 
transfer in porous medium mostly adopt the UHF thermal 
boundary condition. Few literatures consider the UWT con-
dition, particularly for metal foam with two-equation model. 
This may be due to the fact that accurately solving the en-
ergy equation under the UWT condition is hard, and also 
few experimental data are available because of the difficulty 
in the implementation of UWT thermal environment. How-
ever, in practical applications there are also many constant 
wall temperature cases such as the steam condensate heating, 
wall cooling in catalytic reaction, and plate-fin heat ex-
changer with UWT condition [26] and so on. Therefore, 
considering the potential applications of metal foams in 

above cases, the related study about metal foams with UWT 
condition is necessary and significant. In the current study, 
a semi-analytical investigation on fully developed forced 
convection in a metal-foam filled tube with UWT is con-
ducted by applying the Brinkman–Darcy model and the 
two-equation model. A two-dimensional numerical simula-
tion based on the full momentum and energy models is also 
performed to analyze the effects of the inertia term, axial 
conduction, and thermal dispersion, which are ignored in 
the semi-analytical study. In addition, the effects of relevant 
parameters on the heat transfer characteristics are discussed 
based on the semi-analytical solution. The boundary condi-
tion of UHF and UWT are compared for the temperature 
profile and Nusselt number. 

2  Physical and mathematical model 

2.1  Physical description 

The geometric configuration for the forced convection 
through a tube filled with metal foams is shown in Figure 1. 
The metal foams are filled in a circular tube with a diameter 
of 2R and a length of L. The wall temperature was kept 
uniform and constant as the value of Tw. The fluid flows 
through the tube and exchanges heat with the tube wall 
through the metal foams. The steady and incompressible 
flow of fluid with constant physical properties is assumed 
while the natural convection and thermal radiation are both 
negligible. The metal foams filled in the tube are homoge-
neous and isotropic, and with constant physical properties. 

2.2  Governing equation 

The full momentum equations and energy equations based 
on the non–Darcy model and the two-equation model are 
presented as follows: 
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Figure 1  (Color online) Geometric configuration of the metal-foam filled tube.
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where  , K , IC  are the porosity, permeability, and iner-

tia coefficients of the metal foams, respectively; sfa  and 

sfh  are the solid–fluid interfacial surface area density and 

the interfacial heat transfer coefficient, respectively; sek  

and fek  are the effective thermal conductivities of the solid 

and fluid, and dk  is the thermal dispersion coefficient. 

The present study focuses on forced convection heat 
transfer with fully developed condition in a metal-foam 
filled tube. For the definition of fully developed flow, the 
radial velocity component is negligible and the axial veloc-
ity does not change along the axial direction, thence eq. (6) 
can be presented as follows [27]: 

 0
u

x





, 0v  , 

d
constant.

d

p

x
  (6) 

For the fully developed heat transfer, the heat transfer 
coefficient keeps constant and the first derivative of dimen-
sionless temperatures for fluid and solid across the duct is 
zero, thence eqs. (7) and (8) hold as follows [27]:  
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Eq. (7) can be rewritten as follows: 
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For the wall condition with uniform heat flux (UHF), eq. 
(10a) holds.  
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constant.
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By substituting eq. (10a) into eqs. (9a) and (9b), eq. (10b) 
can be obtained.  
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Therefore, the axial conduction is exactly zero for the 
UHF condition as shown in eq. (10c)  
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For the present uniform wall temperature (UWT), eq. 
(11a) holds. Therefore, eqs. (9a) and (9b) can be rewritten 
as eq. (11b) in the following.  
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Eq. (11b) indicates that the axial conduction is not zero 
for the UWT condition. Applying the law of energy con-
servation to a differential control volume of the tube, eq. 
(11c) can be obtained as follows: 
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By substituting eqs. (6), (11b) and (11c) into eqs. (1) to 
(5), the governing equations for fully development convec-
tion in metal-foam filled tube under UWT can be obtained 
in eqs (12)–(14):  
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The corresponding boundary conditions are shown as 
follows: 
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There are three typical nonlinear terms as follows: Inertia 

term of f IC
u

K


 u  in eq. (12), axial conduction terms of 
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 in eq. (14). Notably, eqs. (12)–(16) can be 

solved by numerical approach, but they are difficult to solve 
by analytical approach due to the existence of above three 
nonlinear terms. However, these nonlinear terms can be 
neglected for some typical conditions in practice. The iner-
tia term has a limited effect on flow and heat transfer for the 
low permeability or low velocity cases as indicated in Vafai 
and Tien [5]. The axial conduction terms play little role 
when the heat convection is dominant where strong 
flow-mixing capability occurs in the metal-foam. In addi-
tion, the enhancing effects of thermal dispersion terms are 
extremely low for the porous medium with high thermal 
conductivity, such as the case of metal-foam [14]. Therefore, 
these nonlinear terms are usually removed when solving the 
analytical solution of forced convection in metal-foam 
[14–17]. Based on these, the three nonlinear terms are ne-
glected in present semi-analytical study to facilitate the im-
plementation of analytical approach. The effects of three 
neglected terms can be discussed by comparing with the late 
numerical solution with the complete model. 

2.3  Normalization 

After neglecting the inertial term, axial conduction term and 
thermal dispersion terms in eqs. (12)–(14), the equations 
and boundary conditions can be normalized by introducing 
the following dimensionless quantities: 
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The obtained dimensionless equations and boundary 
conditions are then presented as follows: 
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3  The semi-analytical solution procedure 

3.1  The momentum equation 

The momentum equation, eq. (18), is a modified Bessel 
equation of zero order with a non-zero right-hand side, 
which can be solved as presented in the Appendix. Thus, the 
exact solution of velocity profile and pressure drop can be 
obtained as follows: 
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where 0 ( )I   and 1( )I   are the first-type modified Bessel 

functions of zero order and first order and can be found in 
the Appendix. 

3.2  The energy equations 

After obtaining the exact velocity solution, the coefficients 
in eqs. (19) and (20) are known, except for Nu , which is 
related to temperature and is deduced in the following equa-
tions. The heat transfer on the tube wall occurs through the 
solid and the fluid phases [13], and then, the local heat flux 
on the tube wall can be presented in eq. (25). 
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Eq. (25) may be rewritten in the dimensionless form as 
eq. (26): 
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Substituting eq. (26) into the definition formula of Nu  
from eq. (17), the local Nusselt number can be expressed in 
eq. (27): 
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However, given that Nu  depends on the dependent 
variables f  and s , eqs. (19) and (20) can not be solved 

precisely. Consequently, an iteration approach is employed 
to solve the solid and fluid temperature profiles, and the 
Nu  can be selected as the iterative parameter. Eq. (27) is 
not an appropriate iterative formula for the iteration con-
vergence because it depends on the temperature gradient of 
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the tube wall. Adding eqs. (19) to (20) leads to the follow-
ing equation: 

 s f
f

( )
= .NuU

 
   

 
  

    
 (28) 

Integrating both sides of eq. (28) along the radial direc-
tion and introducing eq. (27) would yield the following 
equation: 

1
s f

f0
1

( )d .
2

Nu U Nu


      
 



  
       

  (29) 

Hence, a recommended iterative formula of Nu with the 
integral form can be obtained by rewriting eqs. (29) to (30). 

 
1+1

f0
2 ( )d .n n nNu Nu U    (30) 

For the implementation of iterative calculation, eqs. (19) 
and (20) are discretized with a central difference scheme, 
with a uniform grid system for the dimensionless radius  , 

and the grid number is selected as 381 after a grid inde-
pendence checking among 351, 381 and 411. The velocity 
solutions of eqs. (23) and (24) are substituted into the dis-
crete equations of eqs. (19) and (20). The iteration flow 
chart for the energy equation is shown in Figure 2. The iter-
ation process includes the internal iteration and external 
iteration. The internal iteration is performed to obtain the 
improved f s,n n   by employing the coupling three diagonal 

matrix algorithm [28], and the convergence criterion is 
shown in eq. (31). The external iteration is conducted to 
obtain the final convergence values of nNu , while satisfy-

ing the condition in eq. (32) 

 
1 1

4 4s s f f

s f
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n n n n

n n
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   (31) 
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4  Two-dimensional numerical simulation 

4.1  Numerical model 

A two-dimensional numerical model is established on the 
whole domain of the tube (Figure 1) including the entrance 
region and the fully developed region. The numerical 
method may well deal with the nonlinear terms in governing 
equations by employing the appropriate discretization ap-
proach [29–31]. Therefore, the complete conjugate heat 
transfer model including inertia terms, axial conduction 
terms, and thermal dispersion terms are employed for the 
numerical solution with the governing equations of eqs. 
(1)–(5). The corresponding boundary conditions are shown 
in eqs. (33) to (36), where the inlet velocity and temperature 
are fixed for fluid phase, and adiabatic condition is selected 
for solid phase at the tube entrance, whereas the lo-
cal–unidirectional assumption for flow and heat transfer are 
adopted for both fluid and solid phases at the tube outlet 
when the Peclet number is high enough. The uniform and 
constant temperature is imposed at the tube wall, as well as 
the no-slip condition for flow, and the symmetric boundary 
is used for the axis of the tube. 

 s
in f in0 : , 0, , 0,

T
x u u v T T

x


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
 (33) 

 

 

Figure 2  Iteration flow chart. 
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 sf: 0,
TTu v

x L
x x x x

 
    

   
 (34) 

 sf0 : 0, 0,
TTu

r v
r r r


    

  
 (35) 

 f s w: 0, .r R u v T T T       (36) 

4.2  Numerical approach 

The numerical calculation is performed based on the 
CLEAR algorithm [32], and the governing equations are 
discretized using the central difference scheme for diffusion 
terms and the stability-guaranteed second-order difference 
(SGSD) scheme for the convective terms [33]. The ratio of 
tube length and radius, L/R, is fixed as 40 to ensure the full 
development of flow and heat transfer in the porous medi-
um. Non-uniform grid based on hyperbolic tangent function 
is adopted for the r direction, whereas uniform grid is ar-
ranged for the x direction. The grid independence is checked, 
and the final grid number is selected as 152(x)×32(r). The 
convergence criterion is that the relative variation of pres-
sure drop and the average Nusselt number between two suc-
cessive iterations are less than 105 and 107, respectively. 

5  Results and discussion 

5.1  Comparative feasibility for the semi-analytical and 
numerical solutions 

The correctness of semi-analytical approach is first verified 
with the numerical results with neglecting the inertial, axial 
conduction and thermal dispersion terms. The effects of 
these three terms can be further investigated with compas-
sion results between the semi-analytical results and numer-
ical results with the complete model. To present the 
semi-analytical and two-dimensional numerical solutions, 
the air is selected as work fluid through the metal-foam 
filled tubes. The pertinent parameters of metallic foam, such 
as K, IC , sfa , sfh , sek , fek , dk , are calculated by adopting 

the semi-empirical correlations shown in Attached Table. 
The thermal physical properties of air are selected as the 
values at 20°C, and the flow of Reynolds number for each 
case is no more than 2000 to fulfill the laminar flow pattern 
in porous media (correspondingly, ReK<100 [34]). The air 
inlet temperature and the tube wall temperature are respec-
tively fixed at 293.15 and 273.15 K in the two-dimensional 
numerical simulation. 

Figure 3 displays the dimensionless fluid and solid tem-
perature distributions in the whole tube, these results are 
transformed from dimensional solution of the two-dimen- 
sional numerical simulation by using eq. (17). The numbers 
in figure means the dimensionless temperature value and 
thence the dimensionless wall temperature (defined in eq.  
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Figure 3  (Color online) Dimensionless temperature fields in the whole 
tube filled with porous foam from the numerical solution (=10 ppi, 
=0.90, kf/ks=10−4, Re=2000, R=0.005 m). (a) Dimensionless fluid 
temperature f; (b) dimensionless solid temperature s. 

(17)) is constant as 0. The intensive temperature variations 
for the fluid and solid in the entrance region of the tube are 
detected. The temperature variation of the fluid and solid 
gradually weakens away from the entrance region, and fi-
nally, the dimensionless fluid and solid temperature become 
constant values when 0.6x L  ( 40L R ), indicating that 
the flow and heat transfer have accessed the fully developed 
region. This result also implies that the thermal entrance 
length of the porous-media filled tube ( 24x R  ) is much 

shorter than that of smooth tube ( 0.068 =100x R RePr  

[35]). Meanwhile, since the given numerical results include 
the thermal entrance region and fully developed region, the 
semi-analytical solution can be verified by the numerical 
results extracted in the fully developed region ( =0.8x L ) by 
substituting the dimensional numerical results into the di-
mensionless definition formulas of eq. (17). 

5.2  Fluid flow characteristics 

5.2.1  Velocity distribution 

Figure 4 shows the dimensionless velocity profile compari-
son for the analytical solution and numerical solutions with 
inertia term and without inertia term. The corresponding 
velocity profile for the smooth tube is also presented as ref-
erence. The analytical solution and numerical solution 
without the inertia term are in good agreement. However, 
the inertia term has an obvious effect on velocity distribu-
tion when considered. The velocity gradient with inertia 
effect near the tube wall is enlarged, and the fluid velocity 
in the tube center area is lowered compared to that without 
inertia term. This result is attributed to the inertia force in-
troducing a damping for flow in porous medium. In addition, 
the foam-filled tube has thinner hydrodynamic boundary 
layer and more uniform velocity distribution than the 
smooth tube because the existence of foam ligaments makes 
the velocity profile uniform. 
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Figure 4  Dimensionless velocity profile of the tube radial section. 

5.2.2  Pressure drop 

Figure 5 displays the pressure drop variation with Reynolds 
number for different solving models. The pressure drop in 
the foam-filled tube increases with increasing Reynolds 
number. The pressure drop of the analytical solution agrees 
well with that of the numerical solution without inertia ef-
fect. Meanwhile, when the inertia term is considered in the 
numerical model, the pressure drop under a fixed Reynolds 
number becomes amplified, and the effect becomes more 
significant for the case with higher Reynolds number or 
higher pore density. This result implies that the inertial term 
has a dominant role on the pressure drop for the high Reyn-
olds number flow in porous foam. 

5.3  Temperature profile 

5.3.1  Effects of interia term, axial conduction and thermal 
dispersion 

Figures 6(a) and (b) depict the comparison of temperature 
profiles of the fluid and solid in metal-foam filled tube un-
der different solving models. In Figure 6(a), the axial con-
duction, inertial term, and thermal dispersion are artificially 
removed in the numerical model to realize the identical as-
sumption with the present semi-analytical solution. The  
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Figure 5  Comparison of the variation of pressure drop with Reynolds 
number for different solving models. 
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Figure 6  Comparison of temperature profiles for different solving mod-
els. (a) Semi-analytical solution and numerical solution with identical 
model; (b) semi-analytical solution and numerical solutions with different 
models. 

temperature profiles of the semi-analytical and the numeri-
cal solutions are in good agreement with identical assump-
tions, thereby the feasibility of semi-analytical solution is 
verified. Meanwhile, in Figure 6(b), the axial conduction, 
inertia term, and thermal dispersion are successively added 
in the numerical model for cases 2, 3, and 4. By comparing 
case 1 vs. case 2, case 2 vs. case 3, and case 3 vs. case 4, the 
effects of axial conduction, inertia term, and thermal disper-
sion on the temperature profiles can be identified. It’s seen 
that the three terms have the relatively clearer impacts on 
the temperature profile of fluid than that of solid. The di-
mensionless fluid temperature is reduced in the tube center 
region ( <0.4r R ) by adding the axial conduction (case 1 vs. 

case 2). The addition of inertia term (case 2 vs. case 3) in-
creases the fluid temperature gradient near the tube wall. 
Moreover, the effect of thermal dispersion is hardly dis-
cernible from case 3 vs. case 4. This result shows that, when 
the thermal conductivity of fluid is much less than that of 
the solid ( 4

f s =10k k  ), the dominant role of heat transfer in 

the porous foam is through the solid conduction and interfa-
cial convection, and the fluid thermal dispersion has little 
effect on heat transfer performance, as also indicated in 
[13]. 
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5.3.2  Effects of pore density and porosity 

Figures 7(a) and (b) show the effects of pore density and 
porosity on the fluid and the solid temperature profiles, re-
spectively. Porosity and pore density are two important 
morphology parameters that determine the porous mor-
phology of metal foam; porosity is a fraction of the volume 
of voids over the total volume of foam, and pore density is 
defined as the pores per inch of the foam ( p=0.0254 d ). 

In Figure 7(a), when the pore density varies from 10 to 
20 ppi under fixed porosity of 0.90, the temperature differ-
ence between the solid matrix and the fluid notably de-
creases. This decrease is ascribed to the reduction in the 
foam ligament diameter and the improvement of associated 
specific surface area with increasing pore density at fixed 
porosity (as indicated in Attached Table), thereby leading to 
stronger interfacial convection and lower solid–fluid tem-
perature difference. In Figure 7(b), when the porosity varied 
from 0.85 to 0.95 under fixed pore density of 10 ppi, the 
solid dimensionless temperature increases, this also means 
that the temperature difference between solid matrix and 
wall increases. This result is due to that the effective ther-
mal conductivity reduces with increasing porosity under the 
other parameters fixed. Thus, the heat conduction thermal 
resistance inside the foam matrix increases, accompanied 
with increased temperature difference between the solid and 
the wall. Generally as shown in Figure 7(a) and (b), the solid 
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Figure 7  Effect of foam morphology parameters on the temperature 
profiles in porous foam filled tube. (a) Effect of pore density; (b) effect of 
porosity. 

temperature profile is much more sensitive to the variation 
of foam morphology parameters than that of the fluid. The 
phenomenon is different from the case of UHF in reference 
[14], in which the fluid temperature profile is much more 
sensitive to morphology parameters than that of the solid. 
This difference between the UHF and UWT can be ex-
plained from the conclusion obtained by Wang et al. [36,37] 
that the heat flux normal to the wall is transported mostly by 
diffusion under UWT condition, whereas by convection 
under UHF condition. This result implies that the solid 
temperature and fluid temperature profiles are more suscep-
tible to the morphology parameters of porous media for 
UWT and UHF conditions, respectively. 

5.3.3  Comparisons of UWT and UHF 

Figure 8 shows the comparison of temperature profiles be-
tween UWT of the present semi-analytical solution and 
UHF of the analytical solution in ref. [14], the same as-
sumptions in the two kinds of boundary conditions are em-
ployed. The temperature difference between solid and fluid 
for UHF is generally more uniform than that of UWT, in 
particular, the thinner thermal boundary layer is gained for 
UHF. This result implies that the UHF offers improved heat 
transfer rate than UWT, and this trend is similar for the 
smooth tube. 

5.4  Heat transfer characteristics 

5.4.1  Effects of interia term, axial conduction and thermal 
dispersion 

Figures 9(a) and (b), respectively, show the variations of the 
Nusselt number with thermal conductivity ratio of f sk k  

and the Reynolds number under different solving models. 
The addition of the axial conduction, inertia term, and 
thermal dispersion can amplify the Nusselt number by 
comparing the case 1 vs. case 2, case 2 vs. case 3, and case 
3 vs. case 4 successively. This result implies that each of the 
above terms is in favor of the heat transfer in the foam-filled 
tube. 

 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.4

0.8

1.2

1.6

2.0

2.4

 = 0.90
 = 10 ppi
Re=2000
k

f
/k

s
=104

R=0.005  m

 Uniform heat flux [14]
 Uniform wall temperature

r/R

(T
-T

w
)/

(T
f,b

-T
w

)

Fluid

Solid

 

Figure 8  Comparison of the temperature profiles between UWT and 
UHF. 



2496 Zhang J J, et al.   Sci China Tech Sci   December (2014) Vol.57 No.12 

The value of f sk k  varies by changing sk  under fixed 

fk , as shown in Figure 9(a). The axial conduction has a 

significant effect on the Nusselt number in the low thermal 
conductivity ratio region ( 5

f s <4 10k k ) by comparing 

cases 1 and 2. This result implies that the portion of axial 
conduction through solid in the total heat transfer is appar-
ent when the solid thermal conductivity is much higher than 
that of the fluid. Meanwhile, in the high thermal conductiv-
ity ratio region ( 3

f s >3 10k k  ), the comparison of cases 3 

and 4 shows that the predicted Nusselt number from the 
numerical solution with thermal dispersion is much higher 
than without thermal dispersion, revealing that the effect of 
fluid thermal dispersion is significant when the thermal 
conductivity of fluid and solid is approaching. Moreover, 
the comparison of cases 2 and 3 shows that the inertia term 
has less significant effect on the Nusselt number than the 
pressure drops (in Figure 5). This can be explained that the 
heat transfer is both influenced by flow characteristic and 
heat convection. The inertia term is a nonlinear correction 
about pressure drop caused by form drag and the flow sepa-
ration. The interfacial convective heat transfer is a conju-
gated process which depends on convection term (eq. (5)) 
and heat conduction of metal framework (eq. (4)). The high  
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Figure 9  Comparison of the Nusselt number for different solving models. 
(a) Variation of Nusselt number with thermal conductivity ratio kf/ks; (b) 
variation of Nusselt number with Reynolds number. 

heat conductivity of metal framework in comparison to the 
fluid (such as air or water) leads that the heat conduction of 
metal framework plays an important role in the overall heat 
transfer. This induces that the inertia term just has a rela-
tively limited effect on the heat transfer in metal-foam. The 
similar phenomena had also been found in the study about 
porous medium conducted by Lage [38]. The contrasting of 
cases 1 and 4 shows that the predicted Nu  of the semi- 
analytical solution has a deviation of less than 15% from the 
numerical solution with full model in the range of 54 10  

3
f s< <3 10k k , which covers the thermal conductivity 

ratio for most of metal to air. 
As shown in Figure 9(b), the effect of axial conduction 

on the Nusselt number gradually diminishes as the Reynolds 
number increases because the contribution of axial conduc-
tion to the heat transfer in porous foam becomes smaller 
when the convective heat transfer becomes stronger by 
comparing cases 1 and 2. The comparisons of case 2 vs. 
case 3 and case 3 vs. case 4 present that the effects of inertia 
term and thermal dispersion moderately amplify with in-
creasing Reynolds number, which is attributed to the fact 
that the inertia force and the thermal dispersion coefficients 
are larger for the case with higher flow velocity. In the 
studied Reynolds number range of 500< <2000Re , the 
Nu  deviations between the semi-analytical solution and 
the numerical solution with full model are mostly in the 
range of 8% to 15%. 

5.4.2  Comparisons of UWT and UHF 

Based on the semi-analytical solution, Figures 10(a) and 
10(b) present the comparisons of Nusselt number between 
the UWT and UHF conditions. The trends of Nu  varia-
tions with the variation of the corresponding parameters are 
similar for UWT and UHF; however, the Nusselt number 
under UWT condition is about 7% to 25% lower than that 
under UHF condition. As the reference [35], the Nusselt 
number for smooth tube in the fully developed region under 
UWT and UHF is 3.65 and 4.36, respectively, and the for-
mer is 19.1% lower than the latter. 

Figure 10(a) displays the effect of thermal conductivity 
ratio f sk k  on the Nusselt number under UWT and UHF 

at two fixed Reynolds numbers of 500 and 2000. The 
Nusselt number increases with the decrease of the 

f sk k because of the enhancement of solid heat conduction, 

and the Nusselt number of =2000Re  is naturally higher 
than =500Re  due to the stronger interfacial heat convec-
tion. Moreover, the Nu  difference between UHF and 
UWT is almost unchanged when f sk k  varies, indicating 

that heat conduction has similar contribution on heat trans-
fer enhancement both for UHF and for UWT. However, the 
Nu  deviation for the two kinds of boundary conditions at 

=2000Re  is larger than at =500Re , indicating that inter-
facial heat convection has more significant contribution for  



 Zhang J J, et al.   Sci China Tech Sci   December (2014) Vol.57 No.12 2497 

6x10-5 10-4 10-3 3x10-3

50

100

150

200

250

300

350

(a)

104 103
3×1036×105

 = 0.90
 = 10 ppi
R=0.005 m

Re=500

Re=2000

 Uniform heat flux [14]
 Uniform wall temperature

N
u

k
f
/k

s  
 

0 10 20 30 40 50 60 70 80 90 100

50

100

150

200

(b)

Re=1000

k
f
/k

s
=103

R=0.005 m

N
u

 Uniform heat flux
 Uniform wall temperature

 =0.95

 =0.90

/ppi  

Figure 10  Comparison of Nusselt number between UWT and UHF con-
ditions. (a) Effect of thermal conductivity ratio at two fixed Reynolds 
number of 500 and 2000; (b) Effect of pore density at two fixed porosity of 
0.90 and 0.95. 

the case of UHF than that of UWT. 
Figure 10(b) shows the variations of the Nusselt number 

with pore density under the UWT and the UHF at two fixed 
porosities of 0.9 and 0.95. As the pore density increases, the 
Nusselt number for both UWT and UHF first increases 
sharply, and then gradually flattens to a plateau. This result 
may be due to the fact that the increase of pore density en-
larges the interfacial surface, resulting in enhanced convec-
tive heat transfer. Furthermore, the Nu  difference be-
tween UWT and UHF conditions increases gradually with 
increasing of pore density. This can be explained that the 
increase of pore density results in the enhancement of inter-
facial convection and the improvement is more significant 
for UHF condition than UWT condition. This result is in 
accordance with the effect of Reynolds number on the Nu  
difference, as presented in Figure 10(a). In addition, the 
Nu  difference of case with =0.9  is larger than that with 
=0.95 . The decrease of porosity leads to enlarge the in-

terfacial area and the effective thermal conductivity, result-
ing in the enhanced interfacial convection and solid conduc-
tion. As also indicated in Figure 10(a), the Nu  difference 
between UHF and UWT is nearly unchanged when the por-
tion of heat conduction is enhanced. Hence, it can be spec-
ulated that the increment of Nu  difference with decreas-

ing porosity is ascribed to the enhancement of heat convec-
tion rather than that of solid conduction. Therefore in other 
words, it can be indicated from the Figures 10(a) and (b) 
that the heat transfer performance difference between UHT 
and UWT in porous medium is mainly determined by inter-
facial convection rather than solid conduction. 

6  Conclusions 

The fully developed forced convection in a metal-foam 
filled tube under UWT condition is semi-analytically solved 
based on the Brinkman-Darcy model and the simplified 
two-equation model. The predicted results are compared 
with results from the two-dimensional numerical simulation 
with full governing equations. The thermal entrance length 
of the metal foams is shorter than that of the smooth tube. 
The semi-analytical solution is verified by temperature pro-
file predicted from the numerical solution with identical 
assumptions. The inertia term has a significant role for the 
prediction of velocity profile and pressure drop; however, it 
has a relatively limited impact on the Nusselt number. The 
axial conduction in the energy equations has obvious effects 
on the Nusselt number for the case with low Reynolds 
number or low thermal conductivity ratio ( 5

f s <4 10k k ), 

and the effects of thermal dispersion can be neglected when 
the thermal conductivity ratio between the fluid and the 
solid is remarkably smaller for metallic foam, as example 
( 3

f s <3 10k k ). The predicted Nusselt number of the 

semi-analytical solution is about 8% to 15% lower than that 
of the numerical solution with full model when 54 10  

3
f s< <3 10k k  as the ratio for typical metal to air. The 

fluid temperature gradient under UWT is lower than that 
under UHF, and the temperature profile of solid for UWT is 
more sensitive to porous morphology parameters than that 
of fluid. The predicted Nusselt number of UWT is about 7% 
to 25% lower than that of UHF in the present study range. 
The heat transfer difference between UWT and UHF is 
mainly determined by interfacial convection rather than 
solid conduction. 
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Attached Table.  Correlations of the parameters used in study 

Parameter Correlation Reference 
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 K d d d  [14] 
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Parameter Correlation Reference 

Interfacial heat-transfer coefficient hsf 
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Appendix.  Modified Bessel equation 

The generic form of modified Bessel equation is  
2

2 2 2
2

0
y y

z z z y
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, when 0  , this equation may be used for 

solving eq. (17), and the solution is in the form of    1 0 2 0y C I z C K z  . The coefficients 1C  and 2C  may be obtained 

by introducing the definite condition of eqs. (20) and (21). The terms  0I z and  0K z  are the zero-order terms of the first 

and second type modified Bessel function, respectively, which have the following expressions: 
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The first order of the two types Bessel functions are also applied and shown as follows: 
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The above four-type functions (  0I z ,  0K z ,  1I z ,  1K z ) may be ascertained by introducing the relations: 
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Correlations exist between the first order and second order functions as follows: 
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