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Various types of flexure hinges have been introduced and implemented in a variety of fields due to their superior performances. 
The Castigliano’s second theorem, the Euler–Bernoulli beam theory based direct integration method and the unit-load method 
have been employed to analytically describe the elastic behavior of flexure hinges. However, all these methods require pri-
or-knowledge of the beam theory and need to execute laborious integration operations for each term of the compliance matrix, 
thus highly decreasing the modeling efficiency and blocking practical applications of the modeling methods. In this paper, a 
novel finite beam based matrix modeling (FBMM) method is proposed to numerically obtain compliance matrices of flexure 
hinges with various shapes. The main concept of the method is to treat flexure hinges as serial connections of finite mi-
cro-beams, and the shearing and torsion effects of the hinges are especially considered to enhance the modeling accuracy. By 
means of matrix calculations, complete compliance matrices of flexure hinges can be derived effectively in one calculation 
process. A large number of numerical calculations are conducted for various types of flexure hinges with different shapes, and 
the results are compared with the ones obtained by conventional modeling methods. It demonstrates that the proposed model-
ing method is not only efficient but also accurate, and it is a more universal and more robust tool for describing elastic behav-
ior of flexure hinges. 
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1  Introduction 

Flexure hinges, serving as the substitutions of conventional 
joints, have been extensively employed in micro mechanical 
systems to obtain friction and lubrication free motions with 
high resolution, high precision and small structure sizes. 
Typical implementations can be found in micro-machining 
systems [1,2], micro/nano manipulators [3,4], and mi-
cro/nano positioning stages [5,6]. Up to date, various types 
of flexure hinges with different shapes and moving features 
have been introduced, such as right circular flexure hinges 
[7], leaf-spring flexure hinges [8,9], elliptical-arc-fillet 
flexure hinges [10,11], V-shaped flexure hinges [12,13], 

conic flexure hinges [14–16], power function shaped flexure 
hinges [17], fillet flexure hinges [8,18,19], annulus-shaped 
flexure hinges [20,21], flexure hinges with freeform shapes 
[22,23] and so on. Developments of these types of flexure 
hinges will add more feasibility and flexibility to the design 
of flexural mechanisms, however, it will simultaneously rise 
difficulties for the design and optimization processes due to 
the complicated shapes of the flexure hinges which are usu-
ally hard to be accurately modeled [24,25].  

Discussions of properties and analytical models of flex-
ure hinges have been a long history [26–28]. To obtain ac-
curate models of the elastic deformation behavior of the 
notched flexure hinges and accordingly have good estima-
tions of moving features of the mechanisms, various efforts 
have been devoted by researchers to modeling the basic 
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compliances of the flexure hinges [7,11,27]. Currently, the 
Castigliano’s second theorem [8,13,15], the Euler–Bernoulli 
beam theory based direct integration method [10,14,18] and 
the unit-load method [17] are the three commonly used 
methods for analytically modeling the compliances of flex-
ure hinges. Although closed-form compliance equations can 
be obtained through these methods, each term of the com-
plete compliance matrix needs to be separately executed by 
laborious integral operations over the entire flexure length, 
significantly decreasing the modeling efficiency [29]. Be-
sides, the modeling methods require prior-knowledge of the 
beam theory, blocking practical implementations in the in-
dustry.  

To avoid tedious mathematical descriptions of the com-
pliance equations which are generally not concise enough 
for practical applications, high order polynomial approxi-
mation methods were employed to obtain empirical equa-
tions or dimensionless design graphs of certain sorts of 
flexure hinges [12,20,25]. Recently, great efforts have been 
focused on obtaining the generalized compliance models, 
and the generalized equations for the family of ellipti-
cal-arc-fillet flexure hinges and the family of conic-section 
flexure hinges have been introduced by means of unifying 
mathematical descriptions of the geometric shapes of the 
hinges [14,18,30,31]. However, as for certain flexure hinges 
with totally different dominant features, to obtain the uni-
fied mathematical descriptions seems to be difficult and 
even impossible. Thus, no universal compliance equations 
for flexure hinges with various shapes can be obtained, it is 
crucial to develop more universal and efficient modeling 
methods for flexure hinges, especially for the newly devel-

oped ones. 
In this paper, a novel finite beam based matrix modeling 

(FBMM) method is proposed to numerically obtain com-
pliance matrices of flexure hinges with complicated shapes. 
Comparing with conventional modeling methods, the main 
advantages of the FBMM can be summarized as follows: 1) 
It requires no knowledge of the beam theory and even the 
calculus, well extending practical applications of the 
FBMM; 2) terms of the complete compliance matrix can be 
obtained during one calculation process by simple matrix 
operation; 3) since matrix based calculation can be con-
ducted more efficiently and accurately by computers [9, 
32–34], the proposed modeling method will be very prom-
ising for facilitating computer-aided-design of flexure hing-
es; 4) in view of the modeling principle, compliance matri-
ces of hinges with any shapes can be simply and directly 
obtained, even the ones described by discrete points. 

2  Compliance modeling  

Generally, in view of the shapes of the central axis, the 
flexure hinges can be categorized into two sorts, namely the 
circular- axis flexure hinges as shown in Figure 1(a) and the 
straight-axis flexure hinges. As for the straight-axis flexure 
hinges, they can be further categorized into two sorts from 
the view of notch shapes, namely the single-directional 
flexure hinge with variable width as shown in Figure 1(b), 
and the bi-directional flexure hinge with both variable width 
and variable thickness as shown in Figure 1(c).  

As shown in Figure 1, the o-xyz denotes the global Car- 

 
Figure 1  Schematic of typical flexure hinges. (a) Circular-axis hinge; (b) single-directional hinge; (c) bi-directional hinge. 
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tesian coordinate of the flexure hinges. As for the circu-
lar-axis flexure hinges shown in Figure 1(a), the shape of 
this sort of flexure hinges can be determined by the median 
radius R, the center angle m, and the radius of the two cir-
cle curves r1 and r2. y=f() denotes the mathematical de-
scription of the distance between the upper and the lower 
curves of the flexure hinges, respectively. For more details 
about the geometry and the mathematical descriptions, one 
can refer to ref. [35]. As for the straight-axis flexure hinges 
shown in Figures 1(b) and (c), l represents the total length 
of the notch; y=fw(x) and z=fb(x) denote the mathematical 
descriptions of the outer curves along the x-axis and the 
z-axis in the global coordinate frame, respectively.  

During the modeling, each sort of the flexure hinges will 
be uniformly divided into N pieces, and each piece can be 
treated as a micro Euler–Bernoulli beam with rectangular 
cross-section. The oixiyizi denotes the local Cartesian coor-
dinate of the i-th micro- beam as shown in Figure 1. Over- 
all, with the assumption that the effects of stress distribu-

tions on elastic deformations of flexure hinges can be ig-
nored, each sort of the flexure hinges will be regarded as 
series connections of all the micro-beams. Based on the 
matrix based modeling method, the compliance of the flex-
ure hinge in the global coordinate can be expressed by [1, 
34] 
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beam is derived by 
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where E and G are the modulus of elasticity and the modu-
lus of rigidity, respectively. bi and wi denote the cross- sec-
tion dimensions of the i-th micro-beam, L denotes the length 
of the micro-beam, and αs is the shear coefficient of the 
material. With  being the Poisson ratio, the shear coeffi-
cient s introduced by Cowper for the micro-beams with 
rectangular cross-section is employed [37]: 
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To accurately describe the torsion behavior of the micro- 
beam, a newly developed torsion compliance which is 
thickness-to-width ratio independent is employed with the 
definition of the ratio zi=bi/wi [38]: 
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Referring to eq. (1), the CTM iT  takes on the following 

form [9, 32–34, 39]: 
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where Ri(i) is the rotation matrix of the local coordinate 
oixiyizi with respect to the global coordinate o-xyz with a 
rotation angle i around the z-axis, which can be expressed 
by 
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ri is the position vector of the point oi expressed in the glob-
al coordinate. Si(ri) represents the skew-symmetric operator 
for the vector ri=[xi,yi,zi] with the notation: 

 

0

0 .

0

 
   
  

i i

i i i

i i

z y
z x
y x

S  (7) 



 Zhu Z W, et al.   Sci China Tech Sci   January (2015) Vol.58 No.1 59 

As is discussed above, there are seven key parameters 
needed to be determined during the modeling process, 
namely the dimension parameters bi, wi, and L, the position 
vector ri=[xi, yi, zi] and the rotation angle i of the CTM. 

As for the straight-axis flexure hinges, the rotation angle 
i will be zero. The dimension parameters are bi=2fb(xi), 
wi=2fw(xi) and L=l/N. In view of the single- directional flex-
ure hinges with just variable width, bi will be constant, i.e. 
bi=b0. The position vector will be ri=[xi, 0, 0].  

In view of the circle-axis flexure hinges, bi is constant. wi 
can be derived in terms of the geometry model of the circu-
lar-axis flexure hinges presented in ref. [35]. Unlike the 
straight-axis flexure hinges, this sort of hinges will be uni-
formly divided in terms of the center angle m. The model 
parameters can be determined by 
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For the number of the divided pieces N, it is definite that 
larger N will lead to more accurate results. Since the matrix 
computation process is computationally efficient, it will be 
a good solution to just choose a large enough value of N to 
obtain accurate enough results. In this paper, N is set as 
1000. 

3  Compliance modeling verification 

To verify the efficiency and the accuracy of the proposed 
method, the compliance matrices of two typical sorts of 
straight-axis flexure hinges including the elliptical-arc-fillet 
flexure hinges [10,18] and the power-function-shaped flex-
ure hinges [13,17] are investigated, and the results are 
compared with the ones obtained by conventional methods. 
Besides, a newly reported two-segment circular-axis sym-
metric notch flexure hinge [35] and a family of bi-axis flex-
ure hinges with both variable width and variable thickness 
[40–42] are also modeled and validated to demonstrate the 
feasibility of the proposed modeling method for flexure 
hinges with much more complicated shapes. 

3.1  Compliance matrices of typical flexure hinges 

3.1.1  Case 1: Elliptical-arc-fillet flexure hinges 
Chen et al. [10,18] proposed a sort of the generalized ellip-
tical-arc-fillet flexure hinge which is illustrated in Figure 2, 
where a, b, t, l and m are dimensional parameters of the 
flexure hinge, governing the geometric feature. By choosing 
specified parameters, various types of flexure hinges, such 
as elliptical (E) types, elliptical arc (EA) types, elliptical 
fillet (EF) types, elliptical arc fillet (ECF) types, right cir-
cular (RC) types, circular (C) types, circular fillet (CF) 

types and so on, can be obtained. More details about this 
sort of flexure hinges and the geometric models can be 
found in refs. [10,18].  

To investigate the accuracy of the proposed modeling 
method for this class of flexure hinges, the compliance ma-
trices obtained by the FBMM are compared with the ana-
lytical results obtained in refs. [10,18]. During the calcula-
tion process, the modulus of elasticity and the modulus of 
rigidity are chosen as 2.07×1011 and 8.1×1010 N/m2, respec-
tively. The thickness is chosen to be 10 mm. The other di-
mensional parameters are detailed in Table 1. The first three 
types are from ref. [10], and the rests are from ref. [18]. 
Results obtained by Chen et al. [10,18] as well as the 
FBMM method are presented in Table 2 denoting as (C) and 
(Z), respectively. Since the global coordinates are not the 
same, only the absolute values are adopted to make com-
parisons. 

From the results shown in Table 2, except for x /Mx of 
the first three hinges, almost all the compliance results are 
equal, and only very slight deviations (<0.1%) can be ob-
served for a small number of terms of the compliance ma-
trix. The good agreement demonstrates that the FBMM 
method is not only simple but also accurate. As for the term 
x /Mx, much larger deviations are observed which may be 
caused by the complex torsional effects. For further analysis, 
the finite element analysis results reported in ref. [10] and 
the relative errors of the analytical results of x /Mx of the 
first three hinges are presented in Table 3. As shown in Ta-
ble 3, significant improvement of the modeling accuracy is 
achieved. The results demonstrate that the modified com-
pliance matrix shown in eq. (1) is more accurate, and it is 
more suitable to describe the elastic deformation behavior 
of flexure hinges. 

 

Figure 2  Schematic of the typical elliptical-arc-fillet flexure hinge. 

Table 1  Dimensional parameters of the elliptical-arc-fillet flexure hinges 

 a (mm) b (mm) l (mm) t (mm) m Type 

1 7.071 4 0 1 45° EA 
2 5.774 4 0 1 60° EA 
3 5 4 0 1 90° E 
4 4 3 2 0.2 90° EF 
5 4 3 2 0.2 60° EAF 
6 3 3 0 0.2 90° RC 
7 3 3 2 0.2 60° C 
8 3 3 2 0.2 60° CF 
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Table 2  Comparison results for refs. [10,18] (C) and the proposed mod-
eling method (Z) (in SI units) 

 x/Fx y/Fy z/Fz x/Mx 

1 (C) 3.211×109 76.535 10  82.155 10  21.752 10  

1 (Z) 3.211×109 76.536 10  82.155 10  21.606 10  

2 (C) 2.481×109 75.240 10  81.884 10  21.445 10  

2 (Z) 2.481×109 75.239 10  81.884 10  21.325 10  

3 (C) 2.565×109 74.471 10  81.684 10  21.255 10  

3 (Z) 2.565×109 74.472 10  81.684 10  21.151 10  

4 (C) 1.120×108 56.051 10  87.128 10  – 

4 (Z) 1.120×108 56.052 10  87.128 10  – 

5 (C) 1.107×108 54.872 10  86.343 10  – 

5 (Z) 1.107×108 54.873 10  86.344 10  – 

6 (C) 4.777×109 66.035 10  82.014 10  – 

6 (Z) 4.777×109 66.047 10  82.015 10  – 

7 (C) 4.681×109 64.559 10  81.840 10  – 

7 (Z) 4.681×109 64.561 10  81.840 10  – 

8 (C) 4.777×109 52.896 10  84.551 10  – 

8 (Z) 4.777×109 52.896 10  84.551 10  – 

 y/My z/Mz y/Mz z/Fy 

1 (C) 43.853 10  22.311 10  41.156 10  61.926 10  

1 (Z) 43.853 10  22.311 10  41.156 10  61.927 10  

2 (C) 43.409 10  21.904 10  59.522 10  61.705 10  

2 (Z) 43.409 10  21.904 10  59.522 10  61.705 10
3 (C) 43.078 10  21.652 10  58.262 10  61.539 10  

3 (Z) 43.078 10  21.652 10  58.263 10  61.539 10  

4 (C) 31.344 10  2.234 21.162 10  66.720 10  

4 (Z) 31.344 10  2.234 21.162 10  66.721 10  

5 (C) 31.329 10  2.323 21.037 10  65.931 10  

5(Z) 31.329 10  2.323 21.037 10  65.932 10  

6 (C) 45.732 10  0.656 31.967 10  61.720 10  

6 (Z) 45.732 10  0.656 31.967 10  61.721 10  

7 (C) 45.617 10  0.132 31.704 10  61.459 10  

7 (Z) 45.617 10  0.132 31.704 10  61.460 10  

8 (C) 31.141 10  2.105 37.574 10  64.107 10  

8 (Z) 31.141 10  2.105 37.574 10  64.107 10  

Table 3  Comparisons of x/Mx between FEA (F) and analytical results 
(in SI units) 

 1 2 3 

 Value error value error value error

F 21.383 10   21.178 10  21.634 10  

C 21.445 10  5.2% 21.255 10 6.5% 21.752 10 7.2%

Z 21.325 10  4.2% 21.151 10 2.3% 21.606 10 1.7%

3.1.2  Case 2: Power function shaped fillet flexure hinges 
The typical power function shaped fillet flexure hinge is 
shown in Figure 3. The shape of this sort of flexure hinge is 
the combination of a circle arc and a power function shaped 
arc which are tangential at the connective point, and it can 
be regarded as a typical example of the newly developed 

multi- segment flexure hinges [29,31]. Generally, the gov-
erning equation of the power function arc can be expressed 
as y=(ax+p)n. When the exponent is set as n=1, the V- 
shaped fillet flexure hinge can be obtained [12,13]. To in-
vestigate the sufficiency of the proposed modeling method 
for flexure hinges with various structure features, both ana-
lytical and FEA results of the V- shaped fillet flexure hinges 
with ten series of dimensional parameters covering wide 
ranges of both the ratios R/t and the circle angles in ref. [13] 
are employed for comparisons, the specified calculation 
parameters and the comparison results are given in Table 4. 
As for the power function shaped fillet flexure hinges, four 
arbitrary series of dimensional parameters of this type of 
flexure hinges as presented in Table 5 are employed as the 
testing objects. During the calculation process, the modulus 
of elasticity and the Poisson’s ratio are set as 2.07×1011 N/m2  

 

Figure 3  Schematic of the power function shaped fillet flexure hinge. 

Table 4  Comparing results for ref. [13] (T) and the proposed modeling 
method (Z) (in SI units) 

R (mm) m (°) t (mm)
Stiffness (×105 m/N) 

Analy. (T) Analy. (Z) FEA 
2 15 1 7.2653 7.2075 6.7824
4 30 1 7.3202 7.2710 6.7146
6 45 1 6.0704 6.0348 5.6638
8 60 1 5.2144 5.1853 4.9317
10 75 1 4.6223 4.5970 4.4131
2 15 0.5 1.5454 1.5413 1.4710
4 30 0.5 1.3136 1.3110 1.2534
6 45 0.5 1.0729 1.0709 1.0366
8 60 0.5 0.9244 0.9227 0.9001
10 75 0.5 0.8229 0.8214 0.8058
2 15 0.2 0.1787 0.1786 0.1736
4 30 0.2 0.1332 0.1331 0.1306
6 45 0.2 0.1085 0.1084 0.1071
8 60 0.2 0.0937 0.0937 0.0929
10 75 0.2 0.0837 0.0837 0.0838

The Young’s modulus and the Poisson's ratio are set as 210 GPa and 
0.28, respectively. 

Table 5  Dimensional parameters of the power function shaped fillet 
flexure hinges 

 n r (mm) t (mm) c (mm) m 

1 0.3 3 0.2 9.9 45° 
2 0.5 6 0.5 9.75 45° 
3 0.7 9 0.8 9.6 60° 
4 0.9 12 1 9.5 60° 
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and 0.288, respectively. The thickness is chosen as 10 mm. 
The reference results are calculated according to the closed- 
form compliance equations provided in ref. [17], the com-
parison results are then given in Table 6.  

As shown in Table 4, the compliance results obtained by 
the FBMM method are slightly smaller than the referred 
analytical results, but they are more accurate when compar- 
ing with the FEA results. Take the first one as an example 
where R/t=2, the relative error in ref. [13] (T) is about 
7.12% while that obtained here is about 6.41%, validating 
the improvement of accuracy of the result obtained by the 
proposed FBMM method. Moreover, with the increase of 
R/t, the two sorts of analytical results will become much 
closer to each other as well as the FEA results. When R/t> 
30, the analytical results obtained by the two methods be-
come equal. The comparisons demonstrate that the proposed 
modeling method is more accurate, and it is also more uni-
versal for flexure hinges with various structure features. 
Comparisons in Table 6 show that most of the compliance 
results obtained by the two modeling method have good 
agreements, while much larger deviations can be observed 
as for the terms z/Fz and y/Fy, which may be caused by 
the difference of the employed shear coefficients. All the 
results well demonstrate the feasibility and the accuracy of 
the proposed FBMM method for modeling flexure hinges 
with various structure features. 

3.2  Compliance matrices of flexure hinges with more 
complicated shapes 

3.2.1  Case 3: Two-segment circular-axis symmetric notch 
flexure hinges 
The typical structure of a two-segment circular-axis sym- 

Table 6  Comparisons results for ref. [17] (L) and the proposed modeling 
method (Z) (in SI units) 

 z/Mz z/Fy z/My z/Fz 

1 (L) 16.428 10  36.428 10  65.957 10  87.691 10

1 (Z) 16.459 10  36.460 10  65.958 10  77.723 10

2 (L) 29.167 10  49.167 10  65.155 10  86.685 10

2 (Z) 29.225 10  49.226 10  65.155 10  86.848 10

3 (L) 23.486 10  43.486 10  64.805 10  86.403 10

3 (Z) 23.488 10  43.488 10  64.805 10  86.574 10

4 (L) 22.301 10  42.301 10  64.774 10  86.727 10

4 (Z) 22.307 10  42.307 10  64.787 10  86.720 10
 y/Mz y/Fy x/Fx  

1 (L) 36.446 10  56.429 10  94.964 10   

1 (Z) 36.460 10  56.474 10  94.964 10   

2 (L) 49.167 10  69.181 10  94.296 10   

2 (Z) 49.226 10  69.323 10  94.296 10   

3 (L) 43.486 10  63.494 10  94.133 10   

3 (Z) 43.488 10  63.576 10  94.004 10   

4 (L) 42.301 10  62.315 10  93.978 10   

4 (Z) 42.307 10  62.402 10  93.988 10   

metric notch flexure hinge proposed by Lobontiu and Cullin 
[35] is illustrated in Figure 1(a), which is a planar compli-
ance with a circular axis and variable in plane sections. By 
means of Castigliano’s second theorem, the modeling pro-
cess is introduced in ref. [35]. In this paper, this type of 
flexure hinges is investigated to verify the sufficiency of the 
proposed modeling method for more complicated flexure 
hinges.  

To have a comparison with the analytical results shown 
in ref. [35], the same material and shape parameters are em-
ployed in this paper. As for the material, the modulus of 
elasticity and the Poisson’s ratio are set as 2.07×1011 N/m2 

and 0.33, respectively. As for the flexure hinge, the thick-
ness is chosen to be 6.35 mm, the dimensional parameters 
shown in Figure 1(a) are set as follows: t=1.5113 mm, 
r1=9.8951 mm, r2=13.339 mm, m=8°, R=81.75 mm. The 
comparison results are specified in Table 6. From the results 
shown in Table 7, the two sets of analytical results are al-
most the same, the good agreement between the two analyt-
ical results demonstrate the efficiency and accuracy of the 
proposed modeling method for this sort of flexure hinges.  

3.2.2  Case 4: Bi-axis flexure hinges 
A typical sort of bi-axis flexure hinges with variable pro-
files along both the x-axis and the z-axis is illustrated in 
Figure 1(c). As shown in Figure 1(c), it possesses two com-
pliant axes due to the unique axially-collocated notches. 
The governing parameters for its geometric features are also 
illustrated in Figure 1(c). Generally, the notches can be el-
liptical curves [40], right circle curves [41], or parabolic 
curves [42]. More details about the moving principles and 
the structure features of the flexure hinges can refer to refs. 
[40–42]. Although the unique structures will provide the 
designers more compact structures and more feasible design 
process, the more complicated shapes will require more 
efforts to model its elastic deformation behavior. In this 
paper, all the three types of bi-axis flexure hinges are mod-
eled by the proposed FBMM method, and the results are 
compared with analytical results obtained by the Castigli- 
ano’s second theorem [40–42]. The employed material pa-
rameters and structure parameters are shown in Table 8, and 
the comparison results are further shown in Table 9. In Ta-
ble 9, the results for elliptical curves (BE), right circle  

Table 7  Comparison results for ref. [35] (L) and the proposed method (Z) 
(in SI units) 

 x/Fx x/Fy y/Fx 

L 84.382 10  73.765 10  73.765 10  

Z 84.381 10  73.682 10  73.682 10  

 x/Mz z/Fx y/Fy 

L 53.055 10  53.055 10  65.011 10  

Z 53.055 10  53.055 10  65.013 10  

 y/Mz z/Fy z/Mz 

L 44.211 10  44.211 10  23.703 10  

Z 44.213 10  44.213 10  23.704 10  
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curves (BC), and parabolic curves (BP) in previous work 
are denoted by (CJ) [40], (C) [41], and (L) [42], respective-
ly, while the results obtained by FEA method and the pro-
posed modeling method are denoted by (FEA) and (Z), re-
spectively.  

From the results shown in Table 9, it can be seen that the 
values of the terms y/Fy and z/Fz obtained by the pro-
posed modeling method are much larger than the values in 
previous research work. It is due to the reason that the 
shearing effects are ignored in previous work, while the 
shearing terms are included in eq. (1), resulting in the in-
crease of the values. The rest compliance components of the 
first four types of flexure hinges are equal. As for the para-
bolic shaped bi-axis flexure hinges, the FEA results are also  

Table 8  Dimensional parameters of the bi-axis flexure hinges 

 E (N/m2) μ t (mm) w (mm) ct (mm) cw (mm) l (mm) Type

1 112.1 10  0.25 1 1.5 5 5 10 BC 

2 112.2 10  0.28 3.2 4.1 9 9 18 BC 

3 112.1 10  0.25 2 3 8 10 60 BE 

4 112.2 10  0.28 1 1.5 4 6 30 BE 

5 112.0 10  0.3 0.4 0.6 1 1.5 2.5 BP 

Table 9  Comparison results of the bi-axis flexure hinges [40–42] (in SI 
units) 

 z/Mz y/Fy y/Mz z/Fz 

1 (C) 28.60 10  62.235 10  44.302 10  61.103 10

1 (Z) 28.60 10  62.273 10  44.307 10  61.138 10

2 (C) 22.10 10  71.839 10  51.924 10  71.194 10

2 (Z) 22.10 10  71.926 10  51.926 10  71.280 10

3 (CJ) 23.51 10  53.304 10  0.0011 51.539 10

3 (Z) 23.51 10  53.316 10  0.0011 51.548 10

4 (CJ) 0.2626 56.167 10  0.0039 52.741 10

4 (Z) 0.2626 56.190 10  0.0039 52.756 10

5 (FEA) 1.68 32.85 10  32.1 10  61.00 10

5 (L) 1.76 33.01 10  32.2 10  61.06 10

5 (Z) 1.72 33.08 10  32.2 10  61.40 10
5 Error (L) 4.54% 5.31% 4.50% 5.66% 
5 Error (Z) 2.38% 8.07% 4.50% 40.0% 

 z/Fy y/My x/Fx  

1 (C) 42.107 10  0.0421 81.136 10   

1 (Z) 42.109 10  0.0421 81.137 10   

2 (C) 51.242 10  0.0014 92.753 10   

2 (Z) 51.243 10  0.0014 92.753 10   

3 (CJ) 44.889 10  0.0163 81.795 10   

3 (Z) 44.895 10  0.0163 81.796 10   

4 (CJ) 0.0018 0.1167 83.300 10   

4 (Z) 0.0018 0.1167 83.301 10   

5 (FEA) 49.20 10  17.40 10  82.90 10   

5 (L) 49.70 10  17.76 10  83.04 10   

5 (Z) 49.45 10  17.56 10  83.00 10   

5 Error (L) 5.15% 4.64% 4.61%  
5 Error (Z) 2.72% 2.16% 3.45%  

employed from ref. [42]. By supposing the FEA results to 
be the accurate ones, the relative errors are also given in 
Table 9, whereby it can be seen that the relative errors of 
the proposed modeling method are about half of the ones 
obtained in ref. [42] except for the above-mentioned terms. 
The results well indicate that the proposed modeling method 
is not only more convenient but also more accurate than the 
conventional modeling methods. 

4  Conclusions 

In this paper, a novel finite beam based matrix modeling 
(FBMM) method is proposed to numerically obtain the 
compliance matrices of flexure hinges with complicated 
shapes. The main concept of the method is to treat the flex-
ure hinges as serial connections of finite micro-beams. By 
means of matrix calculations, compliance matrices of flex-
ure hinges can be derived effectively without dealing with 
numerous integral operations. To demonstrate the suffi-
ciency of this method, the basic compliance matrices of two 
typical sorts of flexure hinges and another two sorts of flex-
ure hinges with more complicated shapes are calculated and 
compared with the corresponding results reported before.  

As for the compliance results of all the flexure hinges 
obtained by the proposed modeling method, most of them 
have good agreements with the analytical results obtained 
by conventional modeling methods. However, there is little 
deviation between the results of the compliance terms as for 
the V-shaped fillet flexure hinges and the parabolic shaped 
bi-axis flexure hinges, further comparisons with finite ele-
ment analysis results indicate that the proposed method is of 
higher modeling accuracy. The results demonstrate that the 
proposed FBMM method is not only simple but also accu-
rate. 
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