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It has been extensively recognized that the engineering structures are becoming increasingly precise and complex, which 
makes the requirements of design and analysis more and more rigorous. Therefore the uncertainty effects are indispensable 
during the process of product development. Besides, iterative calculations, which are usually unaffordable in calculative efforts, 
are unavoidable if we want to achieve the best design. Taking uncertainty effects into consideration, matrix perturbation 
methodpermits quick sensitivity analysis and structural dynamic re-analysis, it can also overcome the difficulties in computa-
tional costs. Owing to the situations above, matrix perturbation method has been investigated by researchers worldwide re-
cently. However, in the existing matrix perturbation methods, correlation coefficient matrix of random structural parameters, 
which is barely achievable in engineering practice, has to be given or to be assumed during the computational process. This has 
become the bottleneck of application for matrix perturbation method. In this paper, we aim to develop an executable approach, 
which contributes to the application of matrix perturbation method. In the present research, the first-order perturbation of 
structural vibration eigenvalues and eigenvectors is derived on the basis of the matrix perturbation theory when structural pa-
rameters such as stiffness and mass have changed. Combining the first-order perturbation of structural vibration eigenvalues 
and eigenvectors with the probability theory, the variance of structural random eigenvalue is derived from the perturbation of 
stiffness matrix, the perturbation of mass matrix and the eigenvector of baseline-structure directly. Hence the Direct-Variance- 
Analysis (DVA) method is developed to assess the variation range of the structural random eigenvalues without correlation 
coefficient matrix being involved. The feasibility of the DVA method is verified with two numerical examples (one is truss- 
system and the other is wing structure of MA700 commercial aircraft), in which the DVA method also shows superiority in 
computational efficiency when compared to the Monte-Carlo method.  
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1  Introduction 

Alongside the dramatically rapid development of science 
and technology, people are getting increasingly interested in 
the content of two aspects in the research area of modern 
engineering structure system. On one hand, engineering struc-   
ture systems (e.g. aircraft-carrier and hypersonic-vehicle) 

are becoming more and more complex and extensive [1], 
but their serving environment is usually very hostile [2]. 
The situation mentioned above leads to the fact that the 
nonlinear, strong-coupled [3], time-varying and high-sensi-    
tive characteristics of engineering structure system are be-
coming extraordinarily significant [4]. On the other hand, 
engineering structure systems have to cope with various 
uncertain factors in their whole life cycle from design to 
retirement. It has been realized gradually that the various 
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uncertainties are objective. For example, different technical 
merit designers and operators that enrolled, errors caused by 
equipment in the process of manufacture, differences in raw 
materials [5–7], differences in specification and implemen-
tation, variations in usage condition of structure system can 
all play an essential role in structural performance [8–12]. 

The so-called uncertainty effects are usually treated as 
modifications of structural parameters caused by the cross- 
coupled various uncertain factors. These uncertainty im-
pacts will be amplified remarkably under the influence of 
the nonlinear, strong-coupled, time-varying and high-sensi-     
tive characteristics of large complex structures [10]. Con-
sequently, it will lead to the reduction of structural perfor-
mance or even structural failure. Considering the situation 
mentioned above, people will benefit from researching on 
the quick structural re-analysis method, which could be ap-
plied to the modification in structural parameters resulting 
from random perturbation of uncertain factors. This kind of 
investigation will make contributions to estimating the 
propagation and influence of uncertain factors precisely. 
Additionally, the standard of design, analysis and optimiza-
tion in engineering structure will be enhanced by avoiding 
reduction of structural performance and structural failure 
caused by uncertainty effects [9]. 

In the design and analysis of realistic engineering struc-
ture, iterative calculation is inevitable if we want to obtain 
the best design when structural mechanical behaviors (such 
as vibration property) have changed. However, the time 
consumption of iterative calculation (e.g. the Monte-Carlo 
simulation, the response surface approximation) is far too 
much for large and complex engineering structure [13]. Ob-
viously, it is unacceptable in the fierce market and military 
competition currently. Hence, matrix perturbation method 
which permits quick sensitivity analysis and structural 
re-analysis is booming and is widely regarded as a vital is-
sue in recent years. High computational efficiency and less 
time consumption are the conspicuous features of matrix 
perturbation method, therefore numerous researchers have 
been enthusiastic about this topic [9,10,14]. By introducing 
the uncertain-but-nonrandom theory into the structural vi-
bration problem, Qiu [15] analyzed the influence of uncer-
tain parameters on structural natural frequency. Yang and 
Chen [16] applied the Pade approximation to the matrix 
perturbation theory and the expressions of eigenvalue and 
eigenvector were deduced. Kleiber and Hien [17] made 
contributions to the development of stochastic finite ele-
ment method and made an implementation in computational 
program. Graham and Deodatis [18] studied the responses 
and eigenvalue analysis of stochastic finite element system 
under multi-correlativity. Pradlwarter and Schuëller [19] did 
some researches on the computation of large structural ran-
dom eigenvalue with Monte-Carlo simulation method. Ref. 
[20] expanded the structural eigenvalue and eigenvector 
with polynomial chaos expansion method, presenting the 
theory of forced vibration response analysis in linear ran-

dom system. In ref. [21], the reliability optimization of truss- 
structure was proposed with stochastic finite element theory 
which is built upon generalized perturbation theory. 

Concerning the engineering structure system, we can see 
that the random properties of stiffness matrix and mass ma-
trix result from the random properties of structural parame-
ters. In current work, a common method of calculating the 
structural random eigenvalue statistics is to expand the 
stiffness matrix and mass matrix near the mean value of 
random structural parameter with Taylor-series expansion 
method [14] (which is named Taylor-series-perturbation 
method). In Taylor-series-perturbation approach, the vari-
ance of eigenvalue is derived from, namely, standard devia-
tion of random structural parameters, correlation coefficient 
matrix of random structural parameters and sensitivity ma-
trix of eigenvalue. Accordingly, in order to determine the 
variance of random structural eigenvalue, we have to know 
or to assume the correlation coefficient matrix of structural 
parameters. Unfortunately, the correlation coefficient matrix 
of structural parameters is barely obtainable in realistic en-
gineering problem. Therefore, the application of matrix 
perturbation method in solving the problem of random ei-
genvalue variance analysis is restricted within narrow limits. 
From the perspectives above, a novel method that is more 
convenient in application is imperative. 

This paper aims to develop a new method which is ap-
plication-oriented and executable in engineering problem. 
In this proposed Direct-Variance-Analysis (DVA) method, 
we only need to know the variance of random structural 
parameter instead of the correlation coefficient matrix in 
calculating the variance of eigenvalue. So it is unnecessary 
for us to acquire or to assume the correlation coefficient 
matrix of structural parameters. Hence, this paper has made 
processing the statistical properties of random structural 
eigenvalue more convenient, and this paper has laid the 
foundation of widely applying the matrix-perturbation-based 
DVA method in engineering. The remainder of this paper is 
arranged as follows. Initially, the eigenproblem of structural 
vibration is systematically discussed. Secondly, the matrix 
perturbation method in dealing with the eigenproblem of 
structural vibration is introduced. Thirdly, a novel DVA 
method is developed based on the matrix perturbation 
method, and the correlative computational equations are de-
duced in detail. Fourthly, two numerical examples (one is 
planar truss-system and the other is wing structure of MA700 
commercial aircraft) are investigated in order to validate the 
proposed method. Lastly, the conclusions are drawn. For the 
purpose of making the logic and venation of this paper un-
derstandable, the structural flowchart of this paper is pre-
sented in Figure 1.  

2  Eigenproblem of structural vibration 

Ignore the damping effect and consider the natural vibration  
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Figure 1  Structural flowchart of this paper. 

equation of linear structure as 

 0 Mq Kq , (1) 

where q  denotes a generalized acceleration vector, q de-

notes a generalized displacement. M and K represent mass 
matrix and stiffness matrix, respectively.  

By considering that the natural vibration of structure is 
harmonic vibration, q in eq. (1) can be written as 

 { }cos( )t  q u , (2) 

where {u} is modal vector. By substituting eq. (2) into eq. 
(1), the eigenvalue problem of structural vibration is given 
as 

 { } { }K u M u , (3) 

where =2 is the square of natural vibration frequency. 
The natural frequency of structural vibration and modal 
vectors will be obtained via solving eq. (3). To acquire a 
non-zero solution in the equation above, the sufficient and 
necessary condition should be 

 det( ) 0 K M . (4) 

Eq. (4) is the structural eigenvalue equation. Let the 
structural DOF be N after discretization, thus both K and M 
are matrices with dimensions N×N. If the structure involved 
has no rigid freedoms, T{ } { } 0u K u  is true for any non- 

zero displacement {u}. In other words, K is a positive defi-
nite matrix. If there exists rigid body displacement {u0} in 
the structure, then 

T
0 0{ } { } 0u K u , which means K is posi-

tive semi-definite. The corresponding eigenvalue is =0
2=0. 

Concerning the engineering structure, apparently, struc-
tural vibration will generate the kinetic energy. Hence for 
any non-zero {u} we have T{ } { } 0u M u , which implies 

M is a positive definite matrix. If mass matrix M is positive 
semi-definite, we can eliminate the pure static DOF by us-
ing the static-condensation method. In this way, mass ma-
trix M will become positive definite matrix. 

M and K in eq. (3) can be achieved by using the finite 
element method. Besides, M and K are real symmetric as 
well as positive definite matrix, or at least positive semi- 
definite. Therefore, the N eigenvalues i(i=1,2,···,N) that are 
derived from eigenproblem can be arranged according to 
their magnitudes as 012···N; the corresponding ei-
genvectors are {ui}(i=1,2,···,N). Thus eq. (3) turns to 

 { } { }i i iK u M u , (5) 

considering the first j(jN) eigenvalues, we have 

 { } { }K U M U  , (6) 

where {u} denotes the modal matrix with dimensions N×j, 
each column of matrix {u} is one of the structural j eigen-
vectors.  denotes diagonal matrix with dimensions j×j, 
each diagonal element in  represents the corresponding 
eigenvalue. {u} and  in eq. (6) can be written as 

 
diag

1 2{ } [ , , , ],

( ), 1,2, , .

j

i i j




 





U u u u


 (7) 

Note that if {ui} is an eigenvector, a{ui} will also be an 
eigenvector that corresponds to the same eigenvalue i. 
Therefore {ui} is just a direction vector with dimensions 
N×1. By normalizing the eigenvectors, we make every ei-
genvector unique. Hereinafter, {ui} is regarded as normal-
ized eigenvector. Owing to the orthogonality of the eigen-
vector, we also have  

 
T

T

{ } { } ,

{ } { } .

i j ij

i j i ij



 

 




u M u

u K u
 (8) 

3  Matrix perturbation method in coping with 
the eigenproblem of structural vibration 

Perturbation theory of distinct eigenvalue is the focus of this 
paper. Note that in eq. (3), the variations of structural pa-
rameters are reflected in the changes of mass matrix M and 
stiffness matrix K. Hence, mass matrix M and stiffness ma-
trix K under perturbation are represented as 

 0 1

0 1

,

,




 
  

M M M

K K K
 (9) 

where  is a minim, K0 denotes stiffness matrix of the base-
line system and M0 denotes mass matrix of the baseline 
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system, respectively. K1 and M1 denote the perturbations 
of K0 and M0, respectively. In addition, we have 

 0 1

0 1

, 0,
   s.t.

, 0.




  
  

K K K

M M M
 (10) 

According to the perturbation theory, we extend the ei-
genvector {u} and eigenvalue  as power series  

 2
0 1 2{ } { } { } { }     ( 1, 2, , )i i i i i n      u u u u , (11) 

 2
1 2     ( 1,2, , )i i i i

o i n          , (12) 

where 0
i is the ith eigenvalue in the baseline system, 1

i and 
2

i are the first-order perturbation and the second-order per-

turbation of the ith eigenvalue, respectively. 0{ }iu  is the ith 

eigenvector in the baseline system, 1{ }iu  and 2{ }iu  are the 

first-order perturbation and the second-order perturbation of 
the ith eigenvector, respectively. 

Substituting eqs. (9), (11) and (12) into eq. (3) yields 

2
0 1 0 1 2

2 2
1 2 0 1 0 1 2

( )({ } { } { })

( )( )({ } { } { }).

i i i

i i i i i i
o

  

      

  

     

K K u u u

M M u u u  (13)
 

Extending eq. (13) with the O(3) terms ignored, then 
comparing the coefficients of the same power terms of on 
each side of the equation, we get 

 0
0 0 0 0 0:    { } { }i i i K u M u , (14) 

1
0 1 1 0 0 0 1 0 1 0 1 0 0:    { } { } { } { } { },i i i i i i i i      K u K u M u M u M u

 (15) 

2
0 2 1 1 0 0 2 0 1 1 1 0 1:   { } { } { } { } { }i i i i i i i i      K u K u M u M u M u  

 1 1 0 2 0 0{ } { }i i i i  M u M u , (16) 

here 1{ }iu  and 0{ }su  are subject to 

 1
1 0

1

{ } { }
n

i s
s

s

C


u u . (17) 

Substituting eq. (17) into eq. (15) yields 

 
1 1

0 0 1 0 0 0 0
1 1

0 1 0 1 0 0

{ } { } { }

 { } { }.

n n
s i i s

s s
s s

i i i i

C C

 
 

 

 

 K u K u M u

M u M u  (18)

 

Premultiplying eq. (18) with 
T{ }s

ou  gives 

 

T T

T T T

1
0 0 1 0

1

1
0 0 0 0 1 0 1 0 0

1

{ } { } { } { }

{ } { } { } { } { } { }.

n
s s s i

s o o
s

n
i s s i s i i s i

s o o o
s

C

C   







  





u K u u K u

u M u u M u u M u  (19)

 

Note that the orthogonality of the eigenvector in eqs. (8) 
and (19) can be rewritten as 

T T1 1
0 1 0 0 0 1 0 1{ } { } { } { }s s i i i s i i

s o S o isC C       u K u u M u . (20) 

Rearranging the equation above, we have 
T T1

0 0 1 1 0 0 1 0( ) { } { } { } { }i s i s i i s i
S is o oC        u K u u M u . (21) 

It should be noted that if i=s, 0 0
i s  , then eq. (21) will 

be expressed as 

 T T
1 1 0 0 1 0{ } { } { } { }i i i i i i

o o  u K u u M u . (22) 

In the case of i s , 0is  , it is derived from eq. (21) 

as 

 T T1
1 0 0 1 0 0 0({ } { } { } { }) ( )s i i s i i s

S o oC     u K u u M u . (23) 

Considering that { }iu  is subject to mass orthonormali-

zation condition as 

 T{ } { } 1,i i u M u  (24) 

substituting eqs. (9) and (11) into eq. (24), we have 

 
T2

0 1 2 0 1 0

2
1 2

({ } { } { }) ( )({ }

        { } { }) 1.

i i i i

i i

  

 

  

  

u u u M M u

u u  (25)
 

Expanding eq. (25) with the O(3) terms ignored, then 
comparing the coefficients of the same power terms of  on 
each side of the equation, we have 

 T0
0 0 0:    { } { } 1i i u M u , (26) 

T T T1
0 0 1 1 0 0 0 1 0:    { } { } { } { } { } { } 0.i i i i i i   u M u u M u u M u  (27) 

Premultiplying eq. (17) with T
0{ }i

ou M  gives 

 T T1
0 0 1 0 0 0

1

{ } { } { } { }
n

i i i s
s

s

C


 u M u u M u , (28) 

if i=s, it can be deduced from eq. (28) that 

 T1
0 0 1{ } { }i i

iC  u M u . (29) 

Note that Ci
1 is a scalar, by transposing eq. (29), we have 

 T1
1 0 0{ } { }i i

iC  u M u . (30) 

Substituting eqs. (29) and (30) into eq. (27) gives 

 T1
0 1 0

1
{ } { }

2
i i

iC   u M u . (31) 

Taking eqs. (31), (23) and (17) into consideration, the 
first-order perturbation of the structural eigenvector can be 
written as 

T T

T

1
1 0

1

1 0 0 1 0 0

1 0 0

0 1 0 0

{ } { }

({ } { } { } { }){ }

( )

1
 ({ } { }){ }.

2

n
i s

s
s

s i i s i sn
o o

i s
s
s i

i i i

C



 








  








u u

u K u u M u u

u M u u  (32)
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4  Stochastic eigenvalue variance analysis of 
random parameter structure 

Due to the uncertainties of material capability, structural 
parameters and loading environment, the structural mass 
matrix and stiffness matrix are always stochastic, which 
further leads to the stochastic properties of structural eigen-
value and eigenvector.  

Concerning the structure with stochastic parameters, the 
stiffness matrix K, mass matrix M, eigenvalue  and eigen-
vector {u} can be represented as 

 d r K K K , (33) 

 d r M M M , (34) 

 i i i
d r    , (35) 

 { } { } { }i i i
d r u u u , (36) 

where  is a minim parameter; Kd, Md, d
i, { }i

du  are deter-

ministic parts of K, M,  and {u}, respectively; while Kr, Mr, 

r
i, { }i

ru  are random parts of K, M,  and {u}, respectively. 

Additionally, the mean values of Kr, Mr, r
i, { }i

ru  are all 

zero. 
Taking expectation of eq. (33)–(36) yields 

 [ ] [ ] [ ]d r dE E E  K K K K , (37) 

 [ ] [ ] [ ]d r dE E E  M M M M , (38) 

 [ ] [ ] [ ]i i i i
d r dE E E       , (39) 

 [{ }] [{ }] [{ }] { }i i i i
d r dE E E  u u u u . (40) 

Squaring eq. (35) gives 

 2 2 2 2( ) ( ) 2 ( )i i i i i
d d r r        . (41) 

Taking expectation of eq. (41) we have 

 2 2 2 2[( ) ] [( ) ] [( ) ]i i i
d rE E E     , (42) 

i is subject to 

 Var 2 2( ) [( ) ] ( [ ])i i iE E    . (43) 

Taking eqs. (43) and (42) into consideration we have 

 Var 2 2( ) [( ) ]i i
rE   . (44) 

It should be noted that according to eq. (36), 

T T

T T T T2

{ }{ } ({ } { })({ } { })

{ }{ } { }{ } { }{ } { }{ } .

i i i i i i
d r d r

i i i i i i i i
d d d r r d r r

 

  

  

   

u u u u u u

u u u u u u u u  (45)
 

Taking expectation of eq. (45) yields 

 T T T2[{ }{ } ] [{ }{ } ] [{ }{ } ]i i i i i i
d d r rE E E u u u u u u . (46) 

The covariance matrix of the eigenvector can be written 
as  

T T T

T T T T

T T

Cov[{ },{ } ] ({ } [{ }]) ({ } [{ } ])

{ }{ } { }{ } { }{ } [{ }] [{ } ]

[{ }{ } ] { }{ }

i i i i i i

i i i i i i i i
d d

i i i i
d d

E E E

E E E

E

     
     

 

u u u u u u

u u u u u u u u

u u u u

 

T T[{ }{ } ] [{ }] [{ } ].i i i iE E E u u u u  (47) 

Considering eqs. (46) and (47), we have 

 T TCov 2[{ },{ } ] [{ }{ } ]i i i i
r rEu u u u . (48) 

Note that as for the system with N-DOF, TCov[{ },{ } ]i iu u  

denotes a matrix with dimensions N×N, in which the diago-
nal elements are the variance of each mode, while the off- 
diagonal elements are the covariance of each mode. 

Substituting eqs. (33)–(36) into eq. (3), we get 

 
( )({ } { })

( )( )({ } { }).

i i
d r d r

i i i i
d r d r d r

 

   

 

   

K K u u

M M u u  (49)
 

Expanding eq. (49) with the O(3) terms ignored, then 
comparing the coefficient of the same power terms of  on 
each side of the equation, we yield 

 0 : { } { }i i i
d d d d d K u M u , (50) 

1 : { } { } { } { } { }i i i i i i i i
d r d d r d r d r d d r d      K u M u M u M u K u .

 (51) 

Note that eqs. (50) and (51) are similar to eqs. (14) and 
(15) in form. Taking the distinct eigenvalue into considera-

tion, and utilizing the method adopted in Section 3, i
r  and 

{ }i
ru  are derived as 

 T{ } ( ){ }i i i i
r d r d r d  u K M u , (52) 

T

T

1 1,  

1,  

{ } ( , ){ } ( , ){ } ( , ){ }

({ } ( ){ })
{ }

( )

{ } { }
 { },

2

n n
i i i i
r r d r d r d

i i i j

i i in
id r d r d
dj i

i i j d d

i i
id r d
d

C i j C i j C i i


 

  

 

  

 
   

 
  
 

 



u u u u

u K M u
u

u M u
u  (53)

 

where Kr and Mr in eqs. (52) and (53) are random matrices 
which are different from K1 and M1 in eq. (22). 

Concerning the variance of i, we have 
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Eq. (54) is equivalent to 

 Var 2( ) [( ) ]i i
r rE  . (55) 

Substituting eq. (52) into eq. (55) yields 
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 (56) 

Then T 2({ } { })i i
d r du K u and T 2({ } { })i i

d r du M u in eq. (56) 

are expanded into quadratic forms as follows: 
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where 
1 2a ak and 

3 4a ak are elements in matrix Kr, while 

1 2b bm  and 
3 4b bm  are elements in matrix Mr. 

Substituting eqs. (57) and (58) into eq. (56) gives 
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In terms of eq. (54), we have 
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Furthermore, note that [ ] 0rE K and [ ] 0rE M , hence the expectation of the elements in Kr and Mr is zero too, thus we 

have 
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 (61) 

Assuming that each element in Kr and Mr is independent, then the expectation of each cross-element term in eqs. (59) and 
(60) is zero. Eventually, we have the simplified forms of eqs. (59) and (60) as 
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5  Numerical study 

5.1  CaseⅠ: planar truss-system 

By virtue of the numerical example in refs. [22,23], in this 
paper we take the planar truss-system in Figure 2 as a nu-
merical example in order to verify the proposed method. 

The system is composed of planar truss-structure, which 
is modeled with 4 nodes and 6 elements. The degrees of 
freedom in node 1 and node 4 are 0. The length of each 
member is shown in Figure 2, and length L takes a value of 
1.0 m, the cross-sectional area of every element is assigned 
a value of A=1.6×103 m2, the nominal values of Young’s 
modulus and weight density in each member are E=2.1×  

 

Figure 2  Planar truss-structure of numerical example. 

1011 N/m2 and =7.3×103 kg/m3, respectively. 
Firstly, without taking the uncertain effects into account, 

we analyze the structural vibration properties by taking the 
nominal values of each structural parameter into calculation. 
In this way, 4 orders of vibration frequencies and their cor-
responding eigenvalues and eigenvectors (see Table 1) are 
obtained. Note that the system global stiffness matrix K can 
be written as 
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ei i
i

i i

E A

L

 K K , (64) 

and the system lumped mass matrix M is represented as   

 1 3 5
4 42

m m m
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 
M I , (65) 

here e
iK  is elementary stiffness matrix of each member 

under the global coordinate, m1, m3, m5 denote the weight of 

members 1, 3, 5, respectively. The matrices e
iK  appearing 

in eq. (64) are as follows: 
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Let’s take the errors caused by equipment in the process 
of manufacture and the differences in raw materials into 
consideration. Hereinafter, for the purpose of calculation, 
the Young’s modulus E of each element is treated as 

Gaussian distribution 2
1 1( ,  )N   , here 1=2.1×1011 N/m2  

Table 1  Eigenvalues and Eigenvectors of the baseline-system 

Order 1st 2nd 3rd 4th 

Frequency (Hz) 367.10 1036.80 1109.70 1521.70 

Eigenvalue 5319000 42436000 48619000 91411000 

Eigenvector 
(normalized) 

u1 0.2296 0.0579 0.0661 0.2318 

v1 0.0661 0.2318 0.2296 0.0579 

u2 0.2296 0.0579 0.0661 0.2318 

v2 0.0661 0.2318 0.2296 0.0579 
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and 1=0.1×1011 N/m2. Additionally, the weight density  
of each element is also assigned as Gaussian distribution 

2
2 2( ,  )N   , here 2=7300 kg/m3, 2=200 kg/m3. 

According to the proposed method for determining 

Var( )i
r  and Var( )i , variance of eigenvalues correspond-

ing to 4 orders of natural frequencies is demonstrated in 
Table 2. 

To validate the feasibility of the DVA method, the results 
obtained by the DVA method are compared with those of 
the Monte-Carlo method (see Figures 3–6). 

As can be seen in Figures 3–6, the results deduced with  

Table 2  Variance of eigenvalues determined by the proposed method 

Order 1st 2nd 3rd 4th 

Frequency (Hz) 367.1 1036.8 1109.7 1521.7 

Eigenvalue 5319000 42436000 48619000 91411000 

Variance 3.8234×1010 3.4646×1012 4.9275×1012 6.257×1012 

 

 

Figure 3  Comparison of the variance of 1 obtained by the Monte-Carlo 
and DVA methods. 

 

Figure 4  Comparison of the variance of 2 obtained by the Monte-Carlo 
and DVA methods. 

 

Figure 5  Comparison of the variance of 3 obtained by the Monte-Carlo 
and DVA methods. 

 

Figure 6  Comparison of the variance of 4 obtained by the Monte-Carlo 
and DVA methods. 

the Monte-Carlo method are often bigger in value than 
those deduced with the DVA method. With the increment of 
sampling number, the curves of outcomes that are deter-
mined by the Monte-Carlo method tend to be smooth. There 
are two dominant reasons that account for the deviation in 
results between these two methods.  

The deducing process of the DVA method is based on 
the first-order matrix perturbation theory. Therefore it could 
lead to certain errors from the accurate value when the var-
iance of structural eigenvalue is calculated. It is safe to say, 
by adopting the second-order matrix perturbation theory, the 
deviation will be diminished notably. 

In the DVA method, we assume that all the matrix ele-
ments in the perturbation parts of structural stiffness matrix 
and structural mass matrix are independent, which could be 
expressed as 

 
( ) ( ) ( ) 0,

( ) ( ) ( ) 0.

ij pq ij pq

ij pq ij pq

E k k E k E k

M k k M k M k

   
    

 (66) 
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The relativity between any two matrix elements is ig-
nored, therefore the cross-terms of matrix elements are absent 
when we calculate the variance of structural eigenvalue.  

With respect to the calculative time consumption, it costs 
merely about 1.3 s in calculating the variance of eigenvalues 
with the DVA method. The comparison of calculative time 
consumption between these two methods is demonstrated in 
Table 3. Both the DVA and Monte-Carlo methods are exe-
cuted with an Intel Core i7-2600@3.40GHz computer. 

As shown in Table 3, the computational time consump-
tion of the Monte-Carlo method increases conspicuously 
when the sampling number increases. Therefore, in the case 
of coping with some large and complex structures such as 
aircraft and vehicle, the computational cost will be implau-
sible. Quite on the contrary, the DVA method is low-cost in 
computational effort. In another word, the DVA method 
could be adopted in eigenvalue re-analysis of large and 
complex structure potentially.  

5.2  Case II: wing structure of MA700 commercial air-
craft 

Aiming at verifying the proposed method with a large and 
complex engineering structure, we employ the wing struc-
ture of MA700 commercial aircraft as the numerical study 
object, as can be seen in Figure 7. Initially, the modal anal-
ysis of the wing structure is accomplished, and the first two 
orders free vibration mode fringe is illustrated in Figures 8 

and 9. Secondly, in order to extract the global stiffness matrix 
and global mass matrix in f06 file created by Nastran, the bdf 
file of the wing structure, which is generated by Patran, is 
modified. Thirdly, the global stiffness matrix and global 
mass matrix are read via Matlab with a reader program.  

Additionally, by adopting the DVA method (as presented 
in eq. (63)), the variance of the first-order eigenvalue of 
MA700 wing structure is achieved, which is illustrated in 
Figure 10. Simultaneously, the outcomes of the proposed 
method are compared with those of the Monte-Carlo meth-
od in Figure 10. It should be identified complementarily that 
the sampling number of the Monte-Carlo method is 60000. 
Both the DVA and Monte-Carlo methods are executed with 
an Intel Core i7-2600@3.40GHz computer. 

Table 3  Time consumption for two types of computation 

Method Computational time consumption (s) 

DVA 
1 2 3 4 

1.33 1.35 1.32 1.36 

Monte-Carlo 
sampling 
number 

7.0×103 745 222 362 1207 

8.0×103 869 261 319 1380 

1.0×104 1331 315 408 1681 

2.0×104 1741 1374 1577 3317 

4.0×104 2287 2443 2816 6480 

6.0×104 4830 4862 5862 6331 
 

 

Figure 7  (Color online) Wing structure of MA700 commercial aircraft. 

 

Figure 8  (Color online) First order free vibration mode. 
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Figure 9  (Color online) Second order free vibration mode. 

 

Figure 10  Outcomes of DVA and Monte-Carlo methods. 

According to the outcomes of Case II, the following per-
spectives could be summarized. 

Variance of eigenvalue which is determined by the DVA 
method increases alongside the increment of variation coef-
ficient.  

The result of the DVA method is relatively smaller than 
that of the Monte-Carlo method, which is similar to the sit-
uation in Case I. The reasons have already been systemati-
cally analyzed in Case I. 

It is observed that when the value of variation coefficient 
is small, the result of the DVA method is consistent with 
that of the Monte-Carlo method; with regard to the fact that 
the value of variation coefficient is approximate to 0.1, the 
gap between these two curves in Figure 10 enhances gradu-
ally. Particularly, when the value of variation coefficient is 
zero, which implies that all the structural parameters are 
deterministic without uncertainty impacts, the outcomes of 
these two methods both converge at zero value.  

With respect to the calculative time consumption, it costs 
hours of computational time in each variation coefficient 
value when the Monte-Carlo method is utilized; while the 
DVA method only takes a few seconds to fulfill the whole 
calculative procedure.  

Due to the calculation process of case II, another re-

markable advantage of the proposed method is that the ap-
plication of the DVA method is easy to fulfill via the sec-
ondary development on the basis of commercial FEM/CAE 
software. 

6  Conclusion 

Based upon the matrix perturbation theory, the present re-
search has developed a DVA method which is oriented to-
wards generalized random eigenvalue and has deduced in 
detail the expressions of structural eigenvalue’s variance 
after perturbation. According to the expressions deduced in 
the present research, the variance of structural eigenvalue 
after perturbation can be calculated with the perturbation of 
stiffness matrix, the perturbation of mass matrix and the 
eigenvector of baseline structure directly. 

To verify the proposed method, two numerical examples 
are utilized. One is planar truss-system and the other is wing 
structure of MA700 commercial aircraft. By virtue of the 
results in these two examples, the feasibility and validity of 
our research have been demonstrated clearly. The drawback 
of the proposed method, if there exists any, is that it lacks 
calculating accuracy to some extent when compared with 
the Monte-Carlo method and the reasons are analyzed in 
detail in Section 5. However, the DVA method enjoys a 
significant advantage in calculating efficiency and is easy to 
fulfill by means of secondary development of FEM/CAE 
software. 

By all accounts, the method proposed in the present re-
search could meet the requirement of calculating the varia-
tion range of structural eigenvalue quickly and efficiently 
when structural parameters have changed. It is an efficient 
method to do structural re-analysis and structural dynamic 
sensitivity analysis. Simultaneously, it is highly applicable 
to the fields of engineering practice. This method will be-
come a powerful tool in dealing with the random eigen-      
problem in large complex structures.  
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