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In this paper, we investigate an inertial two-neural coupling system with multiple delays. We analyze the number of equilibri-
um points and demonstrate the corresponding pitchfork bifurcation. Results show that the system has a unique equilibrium as 
well as three equilibria for different values of coupling weights. The local asymptotic stability of the equilibrium point is stud-
ied using the corresponding characteristic equation. We find that multiple delays can induce the system to exhibit stable 
switching between the resting state and periodic motion. Stability regions with delay-dependence are exhibited in the parame-
ter plane of the time delays employing the Hopf bifurcation curves. To obtain the global perspective of the system dynamics, 
stability and periodic activity involving multiple equilibria are investigated by analyzing the intersection points of the pitchfork 
and Hopf bifurcation curves, called the Bogdanov-Takens (BT) bifurcation. The homoclinic bifurcation and the fold bifurca-
tion of limit cycle are obtained using the BT theoretical results of the third-order normal form. Finally, numerical simulations 
are provided to support the theoretical analyses.  
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1  Introduction 

The dynamic analysis of neural systems has drawn signifi-
cant attention since Hopfield established a simplified net-
work model [1]. However, as the number of neurons in a 
Hopfield network increases, the analysis of such a system 
tends to become intractable. To solve this difficulty, Schieve 
et al. [2] proposed the idea of an effective neuron to simplify 
the study of large Hopfield network systems. The dynamics 
of a single effective neuron or a few neuronal systems [3,4] 
have been analyzed in detail in the theory of nonlinear dy-
namics.  

In the inertial neuron model, inertia is introduced from 

the biological viewpoint. For example, a hair cell-membrane 
in semicircular canals can be described by an equivalent 
circuit containing inductances [5,6]. Further, squid axons 
are modelled to include the phenomenological inductance 
[7]. Therefore, neural networks with an inertial term can 
characterize biological neural dynamics well. Babcock and 
Westervelt [8] combined the inertial term into a single ef-
fective neuron, where the delay was introduced using the 
neuron self-feedback. The neural output was connected to 
its input through an RLC circuit. Chaotic behavior has also 
been explored in a two-neuron coupling system. Wheeler 
and Schieve [9] discuss equilibrium stability and chaos in a 
two-neuron model with one/two inertial terms. Tain et al. 
[10,11] included an inertial term into neuronal models for 
chaotic memorial searching. 

In real neural network systems, time delays are an im-
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portant effect of transmission dynamic behavior because of 
transmitter releasing dynamics and transmembrane resis-     
tance [12,13]. The dynamic analysis of an inertial neuron 
network with delayed coupling has also been a subject of 
extensive research. Liao’s research group systematically 
considered a single delayed neural model with an inertial 
term. The Hopf bifurcation [14], chaotic behavior [15], and 
stability of bifurcating periodic solution [16] were investi-
gated in detail using the normal form theory, non-mono-     
tonic activation function, and mean value theorem. Two 
inertial neurons can form a two-neuron inertial system by 
connecting a symmetrical RLC circuit [8], where the output 
of one neuron is the input of the other. Liao et al. [17,18] 
considered the dynamical behavior of such neural systems 
with one delay. They studied the equilibrium stability, Hopf 
bifurcation and chaotic behavior using the normal form, 
center manifold, and numerical simulations. 

Neural dynamics may be influenced by two independent 
varying parameters, such as time delay and coupling weight 
[19]. Thus, considering the combined influences of these 
varying parameters, certain codimension-2 bifurcations, such 
as the Hopf-pitchfork bifurcation [20], the double Hopf bi-
furcation [21], and the Bogdanov-Takens (BT) bifurcation 
[22,23], were investigated to obtain a global perspective on 
system dynamics. Recently, He et al. [24] exhibited the 
global perspective of system dynamics by employing the 
BT bifurcation in a single delayed inertial neural system. 
For an inertial two-neuron model with a single delayed cou-
pling, Dong et al. [25] found some stability coexistences for 
two resting states, two periodic solutions, and two quasi- 
periodic activities by studying the Hopf-pitchfork bifurca-
tion. Ge and Xu [26] showed the combined effects of cou-
pling weight and time delay on the dynamical behavior of 
an inertial four-neuron bidirectional associative memory 
system.  

To the best of our knowledge, no research has thus far 
been conducted on the dynamical analysis of multi-delayed 
inertial neural systems, and this motivates our present re-
search. In fact, multiple delays should be considered in 
neural systems (for instance, ref. [21,27,28]). The dynam-
ical investigation of combined multi-delay influences facil-
itated the development of neural network applications for a 
few engineering problems. In this paper, we outline a few 
critical conditions for multiple equilibria and stability switches 
in inertial neural systems with multiple delays. In particular, 
one of the codimension-2 bifurcations – the BT bifurcation– 
is investigated for global dynamics through the normal form 
system. Although the inertial neural system is similar to the 
model in [8,9], it involves multiple delays and is established 
as follows: 
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2 2 2 1 1

( ) ( ) ( ) ( ( ) ( )),

( ) ( ) ( ) ( ( ) ( )),

x t a x t b x t c f y t h y t
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where ai, bi, ci>0, and hi0 are all nonnegative real numbers, 

x(t) and y(t) denote the activation level of a neuron, whereas 
c1 and c2 correspond to the neuron interaction coefficient. 
Further, h1 and h2 represent the inhibitory influence of neu-
ral history. This implies that neuron response is modulated 
by a dynamical threshold that depends on the history of its 
activation [29,30]. i>0 (i=1, 2) are coupling delays of iner-
tial neurons that can lead to wide-ranging behaviors in sys-
tem dynamics. For simplicity, we assume that the activation 
function is f(x)=tanh (x).  

Employing the following transformation [29], 
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one obtains the following system which is topologically 
equivalent to system (1). 
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where 1 1 2 1 1 2 2 2( ) ( ), ( ) ( ), ( ) ( ), ( ) ( )x t z t x t z t y t z t y t z t     .  

The structure of this paper is as follows. In the next sec-
tion, the number of equilibrium points is theoretically stud-
ied and the corresponding pitchfork bifurcation is numeri-
cally exhibited. The system model illustrates a single equi-
librium, as well as three equilibria for different values of the 
coupling weights. In section 3, asymptotic stability near the 
equilibrium point is studied by employing the characteristic 
equation, and stability conditions involving multiple delays 
are obtained. The analyses indicate that dynamical stabil-
ity-switching may occur in some delayed regions. Further, 
stable regions are shown in the delayed parameter plane 
using the Hopf bifurcation curve. In order to obtain the 
global perspective on system dynamics, the stability and 
periodic activity involved in multiple equilibria are investi-
gated in Section 4 by analyzing the intersection point of the 
pitchfork and the Hopf bifurcation curves, which is BT bi-
furcation. The homoclinic bifurcation and the fold bifurca-
tion of the limit cycle are obtained by employing the theo-
retical results of the third-order BT normal form. Some nu-
merical simulations are used to verify these theoretical re-
sults. We conclude with our reflections in Section 5.  

2  Equilibrium and pitchfork bifurcation analysis  

In this section, we theoretically study the equilibrium point 
of the system and numerically exhibit the corresponding 
pitchfork bifurcation. It is obvious that (x1, y1, x2, y2)=(0, 0, 
0, 0) is the trivial point of the system in eq. (2). The linear-
izing system in eq. (2) near the point (0, 0, 0, 0) produces 
the following linear system: 
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The corresponding characteristic equation is  
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 =0. (4) 

Therefore, 

 1 2 1 2 1 2(1 1 )(0) )(b b c c hF h  . (5) 

Then, if system parameters are 1 2 1 2 1 2(1 )(1 )b b c c h h   , 

we have ( ) ,  F       and (0) 0F   for all values 

of 1 0   and 2 0  . Further, ( )F   is a continuous 

function with regard to . There exist * 0   that satisfies 
*( ) 0F    for 1 0   and 2 0  . Thus, the characteristic 

eq. (4) exhibits a zero having the positive real part. The 
trivial point exhibits delayed independent instability.  

To exhibit the varying location of the equilibrium point, 
static bifurcation is investigated in system (2). This implies 
that an eigenvalue crosses the imaginary axis for varying 
system parameters. Assigning =0 in (4), we obtain system 
(2) exhibiting a static bifurcation at (0, 0, 0, 0) if 

1 2 1 2 1 2(1 )(1 )b b c c h h   . Because neural system (2) always 

has the equilibrium point (0, 0, 0, 0), the static bifurcation is 
either pitchfork bifurcation or transcritical bifurcation. In 
what follows, employing some theoretical analyses, one ex-
hibits neural system (2) to undergo a pitchfork bifurcation.  

The equilibrium point of neural network system (2) satis-
fies the following equations: 
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 (6) 

From (6), we observe that x1 satisfies  
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Let  1 1 1 1 1 2 2 1 2( ) ( 1) (1 ) ( )h x b x c h f c h f x b    , then  
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Obviously, 1 1 2 1 2 2(0) ( 1) ( 1) .h b c c h h b      

Supposing 1 2 1 2 1 2(1 )(1 )b b c c h h   , one has (0) 0h  . 

Further, from f(u)=tanh (u), we notice that ( )f u  obtains 

its maximum value if u=0, i.e.,  

 max ( ) (0) 1.
u R

f u f

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ii) If 1 2(1 )(1 ) 0h h   , it is clear that 

 
1 1 1 2 1 2 1

2 2 1 2 2 1

( ) ( 1)( 1) ( )

            (1 ) ( ) 0.

h x b c c h h f x

f c h f x b b b

    

   
 

Therefore, 1( ) 0h x   provided 1 2 1 2 1 2(1 )(1 )b b c c h h    

is true; subsequently, h(x1) is a monotonically increasing 
function on R. It is obvious that h(0)=0. Therefore, h(x1)=0 
has the single root x1=0. This shows that (7) only has a solu-
tion at (0, 0, 0, 0). 

We now analyze the case where 1 2 1 2 1(1 )b b c c h  

2(1 )h  . In this case, (0) 0h  , implying that there is a 

neighborhood (0, )U   that is satisfied by 1( ) 0h x   for 

1 (0, )x U  . Further, (0) 0h  , suggesting that 1( ) 0h x   

for 1 (0, )x U   and 1 0.x   Furthermore, employing the 

neural activation function |f(u)|=|tanh(u)|1, we obtain 

1 1( ) , h x x    . Thus, there exists a 1
1 0x   satis-

fying 1 1
1 1( ) 0,  ( ) 0h x h x   and 1( ) 0h x   for 1x   

1
1(0, )x . Considering 
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where 1 1
1 2 2 1 1 2(1 ) ( )x c h f x x b   , we can obtain (0)H   

1
1( ) 0h x   and  
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It is obvious that 1 0
1 1( ) ( )f x f x   is true, when 0

1x   
1

2 2 1 2(1 ) ( )c h f x b . Thus, the following conclusion can be 

obtained for all 1

11x x , 

1 0
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1
1
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H x b c c h h f x f x b

h x
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Thus, the equation 1( ) 0h x   only has a solution 1
1x  on 

(0, ) . Let 1 1
1 1y x . Then, (6) has a solution only at 

1 1
1 1( , ,0,0)x y , such that 1

1 0x  . Similarly, we observe that 

equation (6) has only one other root satisfying 2
1 0x  . 

Therefore, we have the following theorem: 
Theorem 1. System (2) displays a pitchfork bifurcation 

at the point (0,0,0,0)  when 1 2b b  1 2 1 2(1 )(1 )c c h h  . To 

be more precise, the neural system (2) exhibits the single 
equilibrium point (0,0,0,0) for 1 2 1 2 1 2(1 )(1 )b b c c h h   . 

Further, there exist three equilibria, one of which is (0,0,0,0) 
and the other is nontrivial, for 1 2 1 2 1 2(1 )(1 )b b c c h h   . 
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For example, choosing a1=0.7, a2=0.5, b1=0.9, b2=1.2, 
and h2=0.4, we obtain the pitchfork bifurcation curves illus-
trated in the (c1, c2) plane, in Figure 1(a) for h1=0.8, and in 
Figure 1(b) for h1=1.8. It follows that two bifurcation dia-
grams are different for thinking the system parameters with 
positive value. In fact, system (2) undergoes a pitchfork 
bifurcation under the necessary condition (1–h1)(1–h2)>0. 
When h1=1.8, a bifurcation curve may result for a negative 
value of c2 (refer Figure 1(b)). Figure 2 shows one-dimen-     
sion bifurcation diagrams corresponding to c1=5 along Line 
1 (Figures 2(a) and (b)) and c2=5 along Line 2 (Figures 2(c) 
and (d)), respectively. It follows that system (2) exhibits 
multiple equilibrium points by using the pitchfork bifurca-
tion at the trivial point (0, 0, 0, 0).  

3  Stability switches and Hopf bifurcation 

In this section, we study the stability of the trivial equilib-
rium point to find some stability criteria. The necessary and 
sufficient condition for the point (0, 0, 0, 0) to be asymptot-
ically stable is that all roots of the characteristic eq. (4) have  

 

Figure 1  Pitchfork bifurcation curve splits the (c1, c2) plane into two 
regions for (a) h1=0.8 and (b) h1=1.8, where the other parameter values are 
a1=0.7, a2=0.5, b1=0.9, b2=1.2 and h2=0.4.  

negative real parts. To this end, we begin, for simplicity, 
with the case where 2=0 as follows: 

1 1
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Without loss of generality, letting 1=0 in (12) implies  
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Employing the Routh-Hurwitz criterion, we obtain the 
necessary and sufficient condition for all zeros of (13) with 
the negative real parts: 

2 2
3 0 2 3 1 1 2 3 1 0 30,  0,  0, 0.m m m m m m m m m m m      

 
 (14) 

This implies that when system parameters are in accord 
with conditions expressed in eq. (14), the trivial point has 
local asymptotic stability for non-delayed systems.  

As delay 1 varies from zero, the trivial point may tend to 
instability. To exhibit the critical values, supposing eq. (12) 
has a pair of pure imaginary roots =±iv(v>0), we obtain  
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Separating (15) into real and imaginary parts provides  
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Eliminating 1 from (16) by 2 2
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Thus, we have the following theorem: 
Theorem 2. If neural system (2) has values expressed by 

eq. (14), the following conclusions hold:  
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Figure 2  One-dimension bifurcation diagrams corresponding to (a) (c1, x1) (b) (c1, y1) for the fixed c2=5 and (c) (c2, x1) (d) (c2, y1) for c1=5, where the other 
parameters are a1=0.7, a2=0.5, b1=0.9, b2=1.2, h1=0.8 and h2=0.4. 

(i) When L1(v)=0 does not have the root v>0, all zeros of 
(12) exhibit negative real parts for any delayed 1 values.  

(ii) When L1(v)=0 exhibits only a single real root v>0, a 
critical value 1 0c   can be obtained, where eq. (12) ex-

hibits all roots with negative real parts for 1 1(0, )c   and 

the least root with a positive part for 1 1
c  .  

(iii) When L1(v)=0 exhibits two least positive real roots 
0<v1<v2<···, we can obtain a 1-delayed interval sequence 
for eq. (12) to exhibit all roots with negative real parts.  

To obtain the combined effects of multiple delays on 
system dynamics, we consider delay 2 to be the variable 
parameter for the chosen 1. Letting =i as the simple root 
of (4), one obtains  
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Separating the real and imaginary parts provides 
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1 2 1 2 2 1 1

( ) cos

              cos cos cos

              sin sin 0,

( ) ( ) sin

              cos sin

b b c c a a b b c c h

c c h c c h h

c c h h

a b a b a a c c h

c c h h c c

  
  
 

  
 

     

 

 

   

  2 2 2

1 2 1 2 1 2

sin

              cos sin 0.

h

c c h h


 









  

  (19) 

Eliminating 2 from (19), we have  

 2 1 3 2 2 3cos ( ) ( ) ,  sin ( ) ( ) ,f f f f        (20) 

where 

2 2 4
1 2 1 2 1 2 1 1 2 1 2
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h b b a a b b

cf

 

  
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  



  

      

     

    

     

     





  2
2 2 1 1 1(1 2 cos ).c h h h  

 

This implies that  

 2 2 2
1 2 3( ) ( ) ( ) ( ) 0.G f f f        (21) 

If (21) exhibits some positive zeros ,  1, 2,i i   , eq. 

(4) takes the following delayed critical values determined 
by (20): 

 , ( 2 ) , 1, 2, ; 0,  1,  2, ,i j i ij i j         (22) 

where [0, 2 )i    is satisfied by  

1 3 2 3cos( ) ( ) ( ) ,  sin( ) ( ) ( ).i if f f f        

For the sake of simplicity, we represent the minimum 
value of 

,i j
  by c, such that ,min( )c i j  . Letting c be 
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the positive root of (18) for 2=c and differentiating  with 
respect to 2 in (4), we obtain  

1 1 2

2 1

( )
1 2 1 2 2 1 1 2

2 3
1 2 1 2 1 2

1 2 1 1 2 2 1 2 1 2

2 ( (e ) ) / ( e (

2( ) 3( ) 4 )

(e e ( ))).

( ) c c h h a b a b

a a b b a a

c c h h h h

   

 



  

 



 

    

     

  

 

 (23) 

Employing the Hopf bifurcation theory for delayed dif-
ferential equations, we have: 

Theorem 3. The following statement is valid if eq. (15) 
exhibits all zeros with negative real parts: 

(i) When G()=0 does not have the positive root, the 
trivial point of system (2) exhibits asymptotic stability for 
the arbitrary delay 2.  

(ii) When G()=0 exhibits one single positive root satis-
fying  2

Re ( ) 0   , the point (0, 0, 0, 0) of system (2) is 

asymptotically stable for 2 [0, )c  . Further, system (2) 

displays a Hopf bifurcation from (0, 0, 0, 0) if 2=c.  
(iii) When G()=0 exhibits at least two real roots 

1 20      satisfying  2Re ( ) 0   , there is some 

delayed interval sequence where (0, 0, 0, 0) is asymptoti-
cally stable. This implies that the dynamical behavior of 
system (2) near the point (0, 0, 0, 0) switches from stability 
to instability, and back again as time delays increase beyond 
the critical values.  

For example, consider system (2) with the fixed parame-
ters a1=0.7, a2=0.5, b1=0.9, b2=1.2, h1=0.8, h2=0.4, c1=0.8 
and c2=1.2. The coupling delays 1 and 2 are the variable 
parameters. The roots of G() and the real parts of the ei-
genvalue in (4) are displayed in Figure 3 for delay 1. Figure 
3(a) shows that the curve determined by G() does not in-
tersect with G()=0 when >0. This implies that G() has 
no positive real root. All eigenvalues exhibit negative real 
parts, as shown in Figure 3(b). The dynamical behavior of 
system (2) near the point (0, 0, 0, 0) is locally asymptoti-
cally stable for all of 2.  

With the value of 1 increasing to one, the G() curve 
moves down and crosses the -axis. Function G() has two 
positive roots, 1=0.5354 and 2=0.6975, shown in Figure 
3(c). It follows from Figure 3(d) that 2 has some regions 
where the system’s eigenvalues are negative. The dynamical 
behavior becomes stable as 2 increases in value. Time de-
lays adjust system (2) into a stability region to suppress 
system vibrations. When the value 1 increases to eight, 
G() has two pairs of positive roots, as shown in Figure 
3(e). However, at the same time, the maximum eigenvalue 
of (4) for the fixed delay 2=0 – that is, the characteristic 
equation (15) – has a positive real part, as shown in Figure 
3(f). System (2) is unstable at the trivial point for all delays 
2.  

The partial eigenvalues and time histories of system (2) 
with 1=1.0 are shown in Figures 4 and 5 for varying delay 

2. When the time delay is set to 2=1.0, the maximum ei-
genvalue is 0.0204±0.7067i, as shown in Figure 4(a). This 
implies that the system is locally asymptotically stable at 
the trivial point, as shown in Figure 5(a). Considering 1= 
1.0 and varying 2, we obtain the maximum eigenvalues in 
the right-hand plane by crossing the imaginary axis. When 
2=4.0, the maximum eigenvalues are 0.0391±0.5957i (Fig-
ure 4(b)). This implies that the trivial point loses its stability. 
The temporal history of the system is shown in Figure 5(b). 
With increase in the delay 2, the maximum eigenvalues 
with negative real parts return to the left-half of the plane. 
Figure 4(c) illustrates the eigenvalues with 0.0141±0.5232i 
for 2=7.0. The stability of the trivial equilibrium is con-
trolled by delay 2, which is shown in Figure 5(c). Further, 
if 2=12.0, the pair eigenvalues have the positive real part 
0.0226±0.65i (Figure 4(d)). The trivial point loses its stabil-
ity, as shown in Figure 5(d). In short, multiple delays induce 
the dynamic system to exhibit multi-stable regions. The 
trivial point shows the multiple switching from stability to 
instability, and back to stability.  

Figure 6 shows the global perspective of stability regions 
illustrated in the (1,2) plane for fixed parameters a1=0.7, 
a2=0.5, b1=0.9, b2=1.2, c1=0.8, c2=1.2, h1=0.8 and h2=0.4. 
The (1,2) plane is divided into different regions with stable/ 
unstable trivial equilibrium points. It follows from Figure 6 
that the trivial equilibrium is the delay 2-independent sta-
bility when 1 (0, 0.707)  . However, the point exhibits 

multiple switching from stability to instability and back to 
stability, if delay 1 surpasses its critical value, 2=0.707. 
This circumstance is called delayed dependent stability. 
Time delays are helpful to control trivial equilibrium.  

4  Multi-stability coexistence and BT bifurcation 

It follows from section 3 that multiple roots of eq. (21) can 
lead system (2) near the point (0, 0, 0, 0) to switch between 
stability and instability when delays surpass the critical 
values determined by the Hopf bifurcation. Further, system 
(2) possesses multiple nontrivial equilibrium points using 
the pitchfork bifurcation. The effects that follow when sys-
tem (2) employs the Hopf and the pitchfork bifurcations 
together are described here.  

To this end, the Hopf and pitchfork bifurcation curves 
represented by the coupling weight c2 and time delay 2 are 
shown in Figure 7. The other parameters are fixed at a1 = 
1.7, a2=0.5, b1=0.9, b2=1.2, c1=5.0, h1=0.8, h2=0.4 and 
1=0.1. From Theorem 1, system (2) has the critical value 
for the pitchfork bifurcation, c2=1.8. To exhibit the type of 
bifurcation point for the intersection value of the Hopf and 
pitchfork bifurcation curves, we illustrate the changing 
trends of . In fact, the evolution of  with coupling weight 
c2 is shown in Figure 8. It is obvious that  approaches zero  



 Song Z G, et al.   Sci China Tech Sci   May (2014) Vol.57 No.5 899 

 

Figure 3  Roots of function G() (left column) and the real parts of eigenvalues with 2 varying (right column) for fixed delays (a)–(b) (1=0), (c)–(d) 
(1=1.0), and (e)–(f) (1=8.0). The other parameters are a1=0.7, a2=0.5, b1=0.9, b2=1.2, c1=0.8, c2=1.2, h1=0.8 and h2=0.4.  

when coupling weight c2 reaches the critical value of the 
pitchfork bifurcation, 1.8. This suggests that the intersection 
point is the double zero bifurcation point.  

In fact, we can obtain the coordinates of the intersection 
point using theoretical analysis. It is obvious that eq. (4) has 
the root =0 if  

 1 2 1 2 1 2(1 )(1 )b b c c h h    (24) 

and the derived function of (4) at =0 is  

  2 1 1 2 1 2 1 2 1 1 2 2 1 1 2 2 0.a b a b c c h h h h h h          (25) 

This implies that (4) has a double zero root if conditions 
(24) and (25) are true. Thus, system (2) assumes a pair-zero 
eigenvalue for the following critical values: 

 
 

1 2
2

1 1 2

2 1 2 1 1 2 1 2 1 1
2

1 2 1 2

,
(1 )(1 )

(1 ) (1 )( )
.

(1 )

b b
c

c h h

h h a b a b b b h

b b h h




   
      

 (26) 

The trivial equilibrium point (0, 0, 0, 0) exhibits a codi-
mension-2 singularity, indicating that it has a BT bifurca-
tion.  

For example, choosing the system parameters as a1=1.7, 
a2=0.5, b1=0.9, b2=1.2, c1=5.0, h1=0.8, h2=0.4 and 1=0.1, 
we obtain the BT bifurcation point (c2,2)=(1.8, 2.85833), 
which is the “?” point in Figure 7. The corresponding ei-
genvalues are shown in Figure 9. System (2) has a zero ei-
genvalue with multiplicity 2. The trivial equilibrium point  
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Figure 4  Distribution of partial eigenvalues with delay 2 varying as follows: (a) 2=1.0, (b) 2=4.0, (c) 2=7.0, and (d) 2=12.0 for fixed parameters a1=0.7, 
a2=0.5, b1=0.9, b2=1.2, c1=0.8, c2=1.2, h1=0.8, h2=0.4 and 1=1.0. 

 

Figure 5  Time histories with delay 2 increasing (a) 2=1.0, (b) 2=4.0, (c) 2=7.0, and (d) 2=12.0 for fixed parameters a1=0.7, a2=0.5, b1=0.9, b2=1.2, 
c1=0.8, c2=1.2, h1=0.8, h2=0.4 and 1=1.0.  
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Figure 6  Stability regions in the (1,2) plane for a1=0.7, a2=0.5, b1=0.9, 
b2=1.2, c1=0.8, c2=1.2, h1=0.8 and h2=0.4.  

 
Figure 7  Hopf and pitchfork bifurcation curves in the (c2,2) plane for 
parameters a1=1.7, a2=0.5, b1=0.9, b2=1.2, c1=5.0, h1=0.8, h2=0.4 and 
1=0.1.  

exhibits the BT bifurcation.  
Considering the activation function of the system f(x)= 

tan h(x) to exhibit f(x)=f(x), we obtain system (2) as 
Z2-symmetric. The normal form of the BT bifurcation on 
the center manifold is an odd function, which is topologi-
cally equivalent to the dynamic behavior of system (2) near 
the BT point. Following (0) 2 0f      and using the 

computation of the normal form of the function differential 
equations introduced by [24,32], we can obtain the truncated 
three-order normal form of the BT bifurcation as follows: 

 
1 2

3 2
2 1 1 2 2 1 1 2

,

,

 

       




   




 (27) 

where 1,2 are expressed in terms of the unfolding parame-
ter of time delay 2 and coupling weight c2. Based on non-
linear dynamic theory, complete bifurcation diagrams of 
system (2) near the BT bifurcation point can be drawn (refer 
[24,31,32]). Here, we briefly list the results.  

 

Figure 8  The evolution of  with coupling weight c2 for the fixed pa-
rameters a1=1.7, a2=0.5, b1=0.9, b2=1.2, c1=5.0, h1=0.8, h2=0.4 and 
1=0.1. 

 

Figure 9  Eigenvalues near the critical value of the BT bifurcation point 
(c2,2)=(1.8, 2.85833), where the parameter values are fixed as a1=1.7, 
a2=0.5, b1=0.9, b2=1.2, c1=5.0, h1=0.8, h2=0.4, and 1=0.1.  

 
Theorem 4. The trivial point of system (2) exhibits a BT 

bifurcation for conditions (26). The complete bifurcation 
diagram is obtained as follows: 

(i) The system exhibits a pitchfork bifurcation at the 
trivial point when  (1)

1 2 1 2( , ) : 0,F R      . 

(ii) The system exhibits a Hopf bifurcation at the trivial 
point when  (1)

1 2 2 1( , ) : 0, 0H       .  

(iii) The system exhibits a Hopf bifurcation at nontrivial 
points when  2

(2)
1 2 1 1( ,  ) : , 0H        .  

(iv) The system exhibits a homoclinic bifurcation when 

 1 2 2 1 1 1( ,  ) : 4 5 ( ), 0P o          .  

(v) The system exhibits a fold bifurcation of the limit cycle 
when  1 2 2 0 1 1 1 0( ,  ) : ( ), 0, 0.752K o             .  

The phase portraits and bifurcation diagram are shown in 
Figure 10. Using these bifurcation curves, the parameter (2, 
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c2) plane is divided into different dynamical regions. The 
numerical simulations of the phase portraits near the BT 
bifurcation point are shown in Figure 11.  

In region 1 of Figure 10, the dynamic system has a 
unique trivial equilibrium with the stability. The phase por-
trait by numerical simulation is shown in Figure 11(a). The 
stable point then exhibits a non-degenerate Hopf bifurcation 
on the left half-axis H(1), resulting in a stable periodic mo-
tion shown in Figure 11(b).  

Two unstable nodes branch from the trivial point if the 
system parameters pass through the upper half-line of F(1) 
from region 2 to 3. In region 3, three equilibrium points are 
located in the “big” periodic motion generated in region 2, 
as shown in Figure 11(c).  

In region 4, there exist three periodic motions, a “big” 
stable one and two “small” unstable ones (refer Figure 11(d)). 
In fact, at the curve of H(2), the nontrivial equilibrium points 
simultaneously exhibit Hopf bifurcations. This leads to the 
generation of two “small” unstable periodic motions around 
the nontrivial equilibrium points. The dynamical behavior 
near the nontrivial equilibrium points becomes stable.  

Unfortunately, the unstable limit cycle cannot be dis-
played by numerical simulation in the delayed dynamical 
system. However, the phase portrait of region 4 is different 
from the one for region 5. The blank spaces around the non-
trivial equilibria shown in Figure 11(d) are located the un-
stable limit cycles, which disappear in region 5.  

Traversing line P from region 4 to 5 corresponds to the 
disappearance of “small” periodic motions and the genera-
tion of another unstable “big” periodic motion. At this point, 
the “small” motions around the nontrivial equilibria in re-
gion 4 disappear on account of a homoclinic bifurcation 

with a symmetric figure-8 shape. The saddle trivial equilib-
rium has two simultaneous homoclinic orbits. The “big” 
stable limit cycle and the two stable nontrivial equilibrium 
points are shown in Figure 11(e). 

Finally, the two “big” periodic motions collide with and 
destroy each other when they cross the line K, called the 
fold bifurcation of the limit cycle. Through such fold bifur-
cations, no periodic motions persist in the neural system. 
Therefore, we have three equilibrium points in region 6, the 
trivial saddle point and two stable symmetry-coupled non-
trivial foci/nodes (refer Figure 11(f)). The nontrivial equi-
librium points both collide with the trivial point at the lower 
half-line F(2), as the function returns to region 1.  

5  Conclusions 

Time delays are a crucial factor in signal transmission be-
tween biological neurons or electronically modeled neurons. 
Multiple delays induce neural systems to exhibit richer dy-
namical behaviors. In this paper, we studied an inertial 
two-neuron coupling model with multiple delays. We ana-
lyze the number of equilibrium points and exhibit the corre-
sponding pitchfork bifurcation. The system has a unique 
equilibrium and three equilibria for different coupling 
weights. Further, multiple delays greatly complicate the 
stability regions. The neural system (2) illustrates stability 
regions on account of delayed dependence and independ-
ence. The dynamical system exhibits multiple switching 
from stability to instability and back to stability as the delay 
increases. To obtain these thresholds to illustrating stable 
regions, the Hopf bifurcation curve is shown by employing  

 

Figure 10  Bifurcation diagram near the critical value of BT bifurcation point [31]. 



 Song Z G, et al.   Sci China Tech Sci   May (2014) Vol.57 No.5 903 

 
Figure 11  Numerical simulation for phase portraits of neural system (2) near the critical value of BT bifurcation point. 

the characteristic equation. The stable region for the trivial 
equilibrium point is derived in the delayed parameter plane. 

The multi-stability of a dynamical system implies the 
coexistence of multiple steady states for fixed parameter 
values, which is an important characteristic for engineering 
applications of neural systems. The long-term dynamic be-
havior of such systems is extremely sensitive to initial con-
ditions and stochastic disturbances. In order to study the 
multi-stability of neural systems, we investigated the Bog-
danov-Takens bifurcation, obtained by analyzing the natural 
frequency evolution near the intersection point of the pitch-
fork and the Hopf bifurcation curves. It was shown that 
multiple stability coexistence involves two stable equilib-
rium points as well as the coexistence of two points and one 
limit cycle by employing the pitchfork bifurcation, the 
symmetric figure-8 homoclinic bifurcation, and the fold 
bifurcation of the limit cycle. Further, numerical simula-

tions verify our theoretical results. 
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