
SCIENCE CHINA 
Technological Sciences 

© Science China Press and Springer-Verlag Berlin Heidelberg 2014  tech.scichina.com  link.springer.com 

                           
*Corresponding author (email: hyperchaos@163.com) 

Special Topic: Neurodynamics May 2014  Vol.57  No.5: 936–946 

• Article • doi: 10.1007/s11431-014-5534-0 

Dynamics of electric activities in neuron and neurons of network 
induced by autapses 

QIN HuiXin1, MA Jun1*, JIN WuYin2 & WANG ChunNi1 

1 Department of Physics, Lanzhou University of Technology, Lanzhou 730050, China; 
2 College of Mechano-Electronic Engineering, Lanzhou, University of Technology, Lanzhou 730050, China 

Received January 22, 2014; accepted March 4, 2014 

 

The effect of autapse on adjusting the membrane of potentials of neuron is described by imposing a time-delayed feedback on 
the membrane of neuron in a close loop type, and the Hindmarsh-Rose (HR) neuron under autapse is investigated. Firstly, the 
electric activity of single HR neuron under electric autapse and chemical autapse is investigated. It is found that quiescent 
neuron is activated due to appropriate time delay and feedback gain in the autapse, and the autapse plays an important role in 
waking up neuron. The parameter region for periodic, chaotic activity of neuron under autapse is calculated in a numerical way, 
and transition from spiking to bursting is observed by increasing the feedback gain and time delay carefully. Furthermore, the 
collective electric activities of neurons in a ring network is investigated and abundant electric activities are observed due to the 
competition between the autapse and the time-delayed coupling between adjacent neurons in the network, and time delay in 
coupling between neurons also plays an important role in enhancing synchronization in the network. 
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1  Introduction 

Neuron is a basic unit in neuronal system, i.e. electric activ-
ity of single neuron, and the collective activities of neurons 
are associated with physical behaviors due to the regulating 
action from central nervous system. More importantly, it is 
attractive to explore the brain science by using nonlinear 
analysis based on some experimental results [1–8]. It is 
confirmed that cells could be classified as two types, neuron 
and neuroglia. It was ever thought that neuroglia and glia 
just had only a passive, supporting role and protected the 
neurons like a sheath, while new evidences show that they 
can make crucial contributions to the formation, operation 
and adaptation of neural circuitry [9–12]. Indeed, it is at-

tractive to detect and explain the potential mechanism on 
information processing in brain activity and energy encod-
ing [13–15]. Most of researchers prefer to detect and ana-
lyze the electric activity of neuron and collective behaviors 
of neurons in the network, and several theoretical models 
[16–20] are presented to reproduce main properties of real-
istic neurons. For example, Hindmarsh and Rose [20] pre-
sented a simplified mathematical model to describe the 
electric activity of neuron, which is often called Hindmarsh- 
Rose model. It is found that the HR neuron model can gen-
erate multi-type dynamic behaviors, such as quiescent, pe-
riodic and chaotic activities in appropriate parameter region. 
Particularly, transition of electric activity from quiescent to 
periodic spiking, to bursting and chaotic discharging emer- 
ges by increasing the intensity of external forcing current 
carefully. Physical behaviors often depend on the coopera-
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tion of neurons in the neuronal systems. The complex dy-
namics of electric activities of neurons is often associated 
with the control and transition of electric activities of neu-
rons, parameter estimation, and synchronization [21] of 
chaotic neurons, whose the electric activities are chaotic. 
For example, ref. [22] suggested that a delayed self-feed- 
back scheme could effectively suppress the chaos in Hind-
marsh-Rose neuron model. Ref. [23] investigated the possi-
bility of bursting synchronization of neurons due to chemi-
cal synapses coupling.  

Within the neuron models, stochastic and/or coherence 
resonance is often observed under optimized noise or control-
lable bifurcation parameters [24–34]. More interestingly, sto-
chastic and/or coherence resonance (SR, CR) also emerges in 
the network of excitable media and the ordered state could be 
observed due to time-delay or external forcing under SR or 
CR. For example, SR is observed in a small-world network of 
excitable media induced by pacemaker [35]. Ref. [36] report-
ed the coherence resonance in a noisy Hodgkin-Huxley net-
work. Ref. [37] observed multiple stochastic resonances in 
scale-free network induced by time delay. Gu et al. [38] re-
ported a multiple spatial coherence resonance induction of 
spiral waves with a stochastic signal in a square lattice net-
work model composed of type I morris-lecar (ML) neurons. 
Furthermore, the ordered spatial pattern such as spiral wave 
emerges in the network of neurons, which regulate the collec-
tive behaviors of neurons like a pacemaker. For example, ref. 
[39] argues that blocking or poisoning in partial ion channels 
in local area of network plays as defects, and accounts for the 
appearance of spiral wave in the network. The dynamics of 
spiral wave in the network is often dependent on the topology 
connection, poisoning degree and noise [40–45]. For example, 
ref. [40] confirms that the formation mechanism of mul-
ti-armed spiral wave in the network is associated with the 
symmetric breaking up of target waves.  

Most of the previous work ever thought that electric cou-
pling as gap junction between neurons could be an effective 
way to realize communication among neurons, though chem-
ical coupling via neurotransmitter can also change the syn-
chronization between neurons. In fact, the most attractive 
connection in neurons could be the autapse, a self-synapse or a 
specialized connection between a neuron and itself, which is 
useful for transmitting electrical signals [46–53]. More gener-
ally, adjusting autapse on the membrane potential is often de-
scribed by imposing a self-feedback current on the membrane 
of neuron with time delay. Signals can be transmitted between 
neurons due to synapse coupling, and autapse is often classi-
fied as two types according to the transmitter media, one is 
electric autapse and the other is called chemical autapse. The 
dynamics of neuron can be changed by autapse under certain 
feedback gain or time delay [53,54], and sleep neuron starts to 
oscillate from initialized quiescent state under negative feed-
back under appropriate time delay [48]. Furthermore, autapse 
can also induce transition of the firing pattern in bursting neu-
rons [55].  

In this paper, the dynamics of Hindmarsh-Rose neuron un-
der autapse is investigated in detail. The transition of quiescent 
state to spiking, bursting and chaotic state is simulated care-
fully by selecting the time delay and feedback gain, the bifur-
cation analysis. The distribution of the largest Lyapunov ex-
ponents in the two-parameter space(time delay vs. feedback 
gain) is calculated. Finally, the effect of autapse on the collec-
tive behaviors of neurons in ring network is also investigated. 

2  Model and Scheme 

The dynamic equations of Hindmarsh-Rose are often de-
scribed by [20] 
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where x describes the membrane, y denotes the recovery 
variable and z is selected as adaption slow current, Iext is the 
external forcing current. Parameters in this model are 
marked as a, b, c, d, r, s, x0, and they are often selected as 
a=1.0, b=3.0, c=1.0, d=5.0, s=4.0, r=0.006, x0=1.56. The 
electric activity of this model shows chaotic state under 
appropriate external forcing current [56]. Iaut denotes the 
transmembrane current induced by autapse, whose sche-
matic diagram is shown in Figure 1.  

2.1  Electric autapse 

According to the schematic diagram for the autapse in Fig-
ure 1, electric autapse often inputs current across the mem-
brane with time-delay ( ) and certain gain (g). Positive and 
negative feedback with time delay can be switched to each 
other in realistic neurons, and the dynamics on membrane 
potential can be detected by introducing additive forcing 
current in the neuron circuit Iaut, whose flow direction of the 
forcing current is associated with the sign selection of feed-
back gain in eq. (2) below, 

 aut ( ( ) ( )),  I g x t x t  (2) 

 

Figure 1  Schematic diagram for the autapse [51]. 
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where g, and  represent the feedback gain and time delay in 
the course of feedback, respectively. Generally, negative 
feedback begins to act on the membrane with positive gain 
g being used and the electric activity used to be close to 
stable state. Positive feedback on the membrane potential is 
generated when negative gain coefficient is used, and neu-
ron can be activated or the electric activities are enhanced.  

2.2  Chemical autapse 

In the case of chemical synapse coupling, the adjustment of 
membrane potential and feedback effect depends on the 
releasing of chemical neurotransmitter, and the effect on 
membrane potentials of neuron is quantificationally detect-
ed as follows: 

 aut syn( ) ( ( ) ) ( ),  I t g x t V S t  (3) 

 ( ) 1 {1 exp[ ( ( ) )]},        S t x t  (4) 

where g is the intensity of chemical coupling, Vsyn is rever-
sal potential in synapse. It denotes excitable synapse for 
Vsyn=2 and inhibitory synapse for Vsyn=2. Within a ring 
network of Hindmarsh-Rose neuron, the dynamics equa-
tions are often given with 
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the subscript i represents the position of neuron in the net-
work, D is the coupling intensity between adjacent neurons, 
1 describes the time delay when signal is transmitted from 
a neuron to an adjacent one. Firstly, the dynamics of single 
neuron under autapse is investigated. Then the collective 
behaviors of neurons in the network will be studied by im-

posing the autapse on all the neurons. 

3  Numerical results and discussion 

In this section for numerical studies, the fourth Runnge- 
Kutta algorithm is used to calculate the nonlinear equations 
with time delay, and time step is selected as h=0.01, initial 
values for the variables are selected as (3.0, 0.3, 0.1), whose 
neuron keeps quiescent state and the external forcing cur-
rent is under threshold for excitable state. In realistic neu-
ronal systems, a large number of neurons are of-ten con-
nected directly (neighbour neurons) or indirectly. For the 
sake of simplicity, it is applicable to detect the collective 
behaviors in a round-about way based on a ring network. 
The node number of the network is fixed at N=100, and it 
makes i+1=1 at i+1>N, and i－1=N at i1<1 in numerical 
way.  

3.1  Electric autapse on electric activity of neuron 

It is found that the neuron begins to discharge in rhythm 
with increasing the external forcing current to certain 
threshold (about Iext~1.1) even without autapse being con-
sidered. To show the distinct effect of electric autapse, the 
external forcing current Iext is less than the threshold, for 
simplicity, Iext=1.0 is used. Then the feedback gain and time 
delay are changed carefully to detect control parameter re-
gion for transition of electric activity by analyzing the time 
series for membrane potentials. In a quantitative way, the 
distribution for discharge frequency in certain period about 
1000 time units is recorded in the two-parameter space g, 
and Iext=1.0, 1.37 is investigated, respectively. 

The results in Figure 2 show that a quiescent neuron be-
gins to discharge and becomes excitable with increasing the 
time delay under stronger negative feedback on the mem-
brane. In the case for excitable case, the electric activity of 
neuron is also enhanced due to the autapse effect. To meas-
ure the dependence of electric activity on the time delay and  

 

Figure 2  Distribution for discharge frequency under electric autapse shown in eq. (2) in certain period about 1000 time units. (a) For Iext=1.0; (b) for 
Iext=1.37. 
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feedback gain, two groups of parameters are selected from 
Figure 2 to observe the evolution of membrane potential of 
single neuron. For example, Iext=1.0, g=0.5 (positive feed-
back), and the time delay  is selected by 13, 15, 17, 19, 
respectively. The numerical results confirm that quiescent 
neuron is activated and waked up with increasing the time 
delay due to positive feedback, and the results are inde-
pendent of the time when the electric autapse begins to 
work on the neuron. It just indicates that appropriate time 
delay plays an active role in waking up or exciting the qui-
escent neurons. Furthermore, the effect of feedback gains 
(g=0.6, 0.8, 1.0, 1.2) under the fixed time delay (= 9) 
are also checked under Iext=1.0, respectively. The numerical 
results confirm that quiescent neuron is activated under ap-
propriate positive feedback (negative feedback gain) at cer-
tain time delay. That is to say, the transition of electric ac-
tivity of neuron is much dependent on the autapse, and these 
results are consistent with the ones as shown in Figure 2(a). 
It indicates that appropriate electric autapse is active in 
waking up quiescent neurons. More interestingly, it is im-
portant to detect the transition of electric activity from 
spiking to bursting and chaotic state due to the effect of 
electric autapse. In this case, Iext=1.37 is selected for gener-
ating spiking state, then two groups of time delay, feedback 
gain are selected to observe the transition of electric activity 
from spiking to bursting state. We investigated the case for 
g=1.5, 2.5, 3.0, 4.5 at the fixed time delay =12, Iext= 
1.37; and the case for =20, 40, 60, 80 at the fixed feedback 
gain g=1.5, Iext=1.37. The numerical results confirm that 
transition from spiking to bursting could be observed under 
appropriate time delay or feedback gain, these results just 

show that autapse plays an important role in regulating the 
electric activity of neurons. Furthermore, the bifurcation 
diagram of interval interspike vs. time delay in the electric 
autapse is also calculated to discuss the effect of autapse on 
the membrane potential of neurons. In the numerical studies, 
the case for Iext=1.37, 2.23,  [0–60] is plotted in Figures  
3, 4, respectively. 

The results in Figures 3, 4 confirm that electric activity 
of neuron goes through spiking, multi-period and chaotic 
states with increasing the time delay in the electric au-
tapse.The critical time delay for transition is decreased un-
der positive feedback (g>0) with bigger gain being used. 
Then the distribution of the largest Lyapunov exponents in 
the two-parameter region is calculated in Figure 5.  

The results in Figure 5 show that positive Lyapunov ex-
ponents are found for chaotic state under appropriate time 
delay and feedback gain in electric autapse, these results 
agree with the bifurcation analysis in Figures 3 and 4. 

3.2  Chemical autapse on electric activity of neuron 

The dynamics of neuron is also dependent on the chemical 
synapse, and it is interesting to investigate the effect of 
chemical autapse on the membrane potential. With the 
chemical autapse current shown in eq. (3), here, =10, 
=0.25 [52]. In a statistical way, the discharge frequency 
with certain transient period about 1000 time units is calcu-
lated in the two-parameter space g at the fixed external 
forcing current Iext=1.0, and the case for Vsyn=2, Vsyn=2, is 
calculated, respectively. The results are plotted in Figure 6. 

The results in Figure 6 show that quiescent neurons are  

 

Figure 3  Bifurcation diagram vs. time delay in electric autapse, at Iext=1.37, (a) g=−0.4, (b) g=−0.75, (c) g=−0.8(positive feedback). 

 

Figure 4  Bifurcation diagram vs. time delay in electric autapse, at Iext=2.23, (a) g=−0.2, (b) g=−0.4, (c) g=−0.7(positive feedback). 
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Figure 5  Distribution of the largest Lyapunov exponents in the parameter space  vs. g, for (a) Iext =1.37, (b) Iext =2.23. 

 

Figure 6  Distribution for discharge frequency under chemical autapse shown in eq. (3) in certain period about 1000 time units, Iext=1.0. (a) For Vsyn= –2; (b) 
for Vsyn=2. 

waked up by selecting appropriate feedback gain and time 
delay in chemical autapse. In the case of excitable synapse 
(Vsyn=2), neuron presents rapid discharge rhythm in bigger 
area indicating that neuron is much easier to be excitated 
than the case for inhibitory synapse being considered. For a 
clear view of the time delay effect in chemical autapse on 
electric activity, the feedback gain is fixed at g=0.5, Iext=1.0, 
Vsyn=2, time series for membrane potentials under different 
time delays (=30, 50, 80, 100) are calculated, and the nu-
merical results show that electric activity of neuron could be 
changed only when a bigger time delay is used while the 
neuron is not much sensitive to the chemical autapse. The 
case for inhibitory autapse as g=0.5, Iext=1.0, Vsyn=2 is also 
investigated, but it has found that quiescent neuron fails to 
be activated under smaller feedback gain even if the time 
delay is increased to a value about 400 time units. Surely, 
we have to detect the effect of feedback gain in the chemi-
cal autapse, for example, Iext=1.0, =10, Vsyn=–2, then dif-
ferent feedback gains (g=1, 10, 15, 20) are tested to find the 
dependence of chemical autapse. The numerical results 
show that quiescent neurons could also be excited by chem-
ical inhibitory autapse when bigger feedback gain is used. 
The potential mechanism could be that stronger feedback 
imposes stronger positive feedback on the membrane and 
the inhibitory effect of synapse could be decreased greatly. 
Another case is to detect the transition from spiking to 

bursting induced by chemical autapse. For simplicity, Iext= 
1.0, =10, Vsyn=2, and different feedback gains are used to 
observe the transition of electric activity from spiking state 
to bursting state. The extensive numerical results confirm 
that distinct transition of spiking to bursting occurs by in-
creasing the feedback gain beyond certain threshold. Com-
pared with the electric and chemical autapses on the electric 
activity of neuron, it is found that neuron is more sensitive 
to the electric autapse while chemical autapse keeps dull 
only when larger feedback gain or time delay is available. 
The potential mechanism could be that they change the 
membrane potential of neuron in different ways, and elec-
tric autapse prefers a direct electric coupling, while chemi-
cal autapse turns to chemical neurotransmitter well.  

Above all, the effect of autapse on a single neuron is in-
vestigated, and it can predicate that the collective behaviors 
of neurons in network could be changed by the autapse as 
well. Therefore, it is interesting to detect the occurrence of 
electric activities of neurons and transition from spiking to 
bursting in the network of neurons according to the descrip-
tion as shown in eq. (5). As mentioned above, chemical 
autapse has distinct impact on the membrane potential only 
when larger feedback gain and/or time delay are available. 
Therefore, in the case for collective behaviors of networks 
induced by autapse, we just focus on the electric autapse on 
the network while the chemical autapse is left out. 
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3.3  Electric autapse on electric activities of network 

For simplicity, it is thought that each neuron is imposed the 
same autapse, and the feedback current due to coupling be-
tween adjacent neurons is given with  

 transm 1 1 1 1( ( ) ( ) 2 ( )).      i i iI D x t x t x t  (6) 

At first, we investigate the case that time delay in cou-
pling between adjacent neurons (1=0), N=100, =50, D=0.3, 
the first neuron is imposed external forcing current as Iext= 
1.0 while the other neurons are in absence of external forc-
ing currents, so that all the neurons keep quiescent without 
autapse being considered. Then different feedback gains as 
g= 0.5, g=1, g=2 will be used to detect the dynamics by 
analyzing the time series of membrane potentials of neurons 
(i=1, i=50, i=100) in the network, and the results confirm 
that quiescent neurons are easier to activate, and then the 
electric activities pass through periodic firing, and step into 
bursting state when bigger feedback gain is used in the 
network. In the network, the electric activity of each neuron 
is also changed by the additive current due to adjacent cou-
pling. More generally, neurons in the network become syn-
chronized when the coupling intensity exceeds certain 
threshold, and an ordered state can be reached. In fact, the 
electric activity of each neuron depends on the cooperation 
and competition between the autapse and adjacent coupling, 
the effect of autapse may dominate the change of The elec-
tric activity of each neuron when the adjacent coupling in-
tensity is weak. In a realistic neuronal system, finite time 
delay exists in the network when signal transmits from one 
neuron to other neurons in the process of mutual coupling. 
Therefore, it is important to consider the effect of time de-
lay in coupling between adjacent neurons. For simplicity, 
we test the case for 1=10, N=100, D=0.3, =50, the sam-

pled time series of three neurons (i=1, 50, 100) are calcu-
lated at the fixed feedback gain g= 0.5, g=1.0, g=2.0, 
and the results are shown in Figure 7.  

The results in Figure 7 confirm that quiescent neurons in 
the network can still be activated to generate spiking, burst-
ing states under appropriate electric autapse even time delay 
in the coupling between two adjacent neurons is considered 
in the network. All the neurons in the network become ex-
citable to pass through spiking, or bursting electric activities 
with increasing the intensity of feedback gain in the electric 
autapse. That is to say, quiescent neurons in the network 
still be waked up and start to generate spiking, bursting by 
increasing the feedback gain in the electric autapse even if 
time delay in coupling between adjacent neurons is consid-
ered. More interestingly, the collective behaviors of neurons 
should be cared, and the spatiotemporal pattern measured 
by the distribution of membrane potentials of neurons in the 
spatiotemporal region is calculated, and the results for =50, 
D=0.3, g=0.5, g=1.0, g=2.0 are plotted in Figure 8. 

The results in Figure 8 show that all the neurons in the 
ring network are activated under higher feedback gain, and 
time delay (1) in coupling between adjacent neurons facili-
tates complete synchronization of network. The excitation 
of neuron is greatly dependent on the feedback gain, the 
first neuron is activated due to electric autapse and sub-
threshold forcing current (Iext=1.0), then the adjacent neu-
rons are also waked up due to mutual coupling defined in eq. 
(6) with stronger feedback gain in autapse being used. It is 
found that the subthreshold forcing current on the first neu-
ron also plays an important role in exciting the neurons in 
the network, which makes forcing in diversity, and the syn-
chronized neurons are violated by the electric signal gener-
ated from the first neuron due to mutual adjacent coupling. 
When time delay in the adjacent coupling is considered, the 

 

Figure 7  Time series of membrane potentials of single neuron (i=1, i=50, i=100) under electric autapse, only the first neuron (i=1) is imposed external 
forcing current as Iext=1.0, while no external forcing current is imposed on other nodes in the network, 1=10, =50, D=0.3. (a) g=0.5, i=1; (b) g=0.5, i=50; 
(c) g=0.5, i=100; (d) g=1.0, i=1; (e) g=1, i=50; (f) g=1, i=100 ; (g) g=2.0, i=1; (h) g=2.0, i=50; (i) g=2.0, i=100. 
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continuous electric pulse generated from the first neuron 
along the network is suppressed by mutual coupling under 
appropriate time delay 1, thus synchronization of network 
could be realized (Figure 8(f)). Then the effect of the sub-
threshold forcing current on the wave propagation along the 
ring network is also investigated by imposing subthreshold 
forcing current on all the neurons, and all the results are 
shown in Figure 9. 

The results in Figure 9 show that all the neurons can be 
waked up and neurons begin to oscillate synchronously un-
der subthreshold forcing current and electric autapse, the 
time delay 1 has slight impact on the propagation of wave 
and synchronization in the ring network because the electric 
autapse dominates the electric activity of each neuron than 
the mutual coupling stimuli. The spatiotemporal pattern in 
the ring network depends on the competition between the 
electric autapse in each neuron and the time-delayed cou-
pling between adjacent neurons. It deserves to investigate 
the case that no subthreshold forcing current is imposed on 
the network, and the results are shown in Figure 10.  

The results in Figure 10 show that no travelling wave is 
developed by electric autapse and all the neurons keep qui-

escent under smaller feedback gain (g=0.5) when no sub-
threshold forcing current is imposed on the network. The 
neurons become excitable and generate stable electric puls-
es to develop stable travelling wave in the ring network by 
increasing the intensity of feedback gain in the electric au-
tapse even no subthreshold forcing current is considered, 
and the formation, and propagation of travelling wave are 
independent of the time delay in coupling between adjacent 
neurons. It seems that the development and propagation of 
travelling wave mainly depend on the electric autapse and 
keeps certain robustness to the time delay in coupling be-
tween neurons. The potential cause could be that these re-
sults are calculated under lower coupling intensity, therefore, 
this case should be investigated by selecting other coupling 
intensities between neurons, and the results are shown in 
Figures 11 and 12.  

Comparing the results in Figure 11 with the results pre-
sented in Figure 8, we have found that the development of 
travelling wave much dependent on the intensity of gain in 
electric autapse under lower coupling intensity D=0.1, and 
the developed travelling wave induced by higher feedback 
gain (g=1.0, 2.0) wave will propagate in a slower speed,  

 

Figure 8  Time series of membrane potentials of all neurons under electric autapse, only the first neuron (i=1) is imposed external forcing current as Iext=1.0, 
while no external forcing current is imposed on other nodes in the network, =50, D=0.3. (a) 1=0, g=0.5; (b) 1=0, g=1.0; (c) 1=0, g=2.0; (d) 1=10, 
g=0.5; (e) 1=10, g=1.0; (f) 1=10, g=2.0. 

 

Figure 9  Time series of membrane potentials of all neurons under electric autapse, all the neurons (i=1, 2,···, 100) are imposed subthreshold(external) 
forcing current as Iext=1.0, =50, D=0.3. (a) 1=0, g=0.5; (b) 1=0, g=1.0; (c) 1=0, g=2.0; (d) 1=10, g=0.5; (e) 1=10, g=1.0; (f) 1=10, g=2.0. 
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Figure 10  Time series of membrane potentials of all neurons under electric autapse, no subthreshold(external) forcing current is imposed on the network, 
=50, D=0.3. (a) 1=0, g=0.5; (b) 1=0, g=1.0; (c) 1=0, g=2.0; (d) 1=10, g=0.5 ; (e) 1=10, g=1.0; (f) 1=10, g=2.0. 

 

Figure 11  Time series of membrane potentials of all neurons under electric autapse, only the first neuron (i=1) is imposed external forcing current as 
Iext=1.0, while no external forcing current is imposed on other nodes in the network, =50, D=0.1. (a) 1=0, g=0.5; (b) 1=0, g=1.0; (c) 1=0, g=2.0; (d) 
1=10, g=0.5 ; (e) 1=10, g=1.0; (f) 1=10, g=2.0. 

 

Figure 12  Time series of membrane potentials of all neurons under electric autapse, only the first neuron (i=1) is imposed external forcing current as 
Iext=1.0, while no external forcing current is imposed on other nodes in the network, =50, D=1.0. (a) 1=0, g=0.5 ; (b) 1=0, g=1.0; (c) 1=0, g=2.0; (d) 
1=10, g=0.5; (e) 1=10, g=1.0; (f) 1=10, g=2.0. 

thus the electric pulse initiated from the first neuron (im-
posed subthreshold forcing current Iext=1.0) can not reach 

the farthest neuron (i=50) within 1000 time units. The po-
tential mechanism is that the propagation speed is associat-
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ed with the coupling intensity. Comparing the results in 
Figures 11(b) and (c) with the results in Figures 11(e) and 
(f), it is also confirmed that synchronization in network is 
enhanced by considering time delay in coupling between 
adjacent neurons in the ring network. Furthermore, the case 
for coupling intensity D=1.0 is also investigated, and the 
results are shown in Figure 12. 

The results in Figure 12 confirm that the quiescent net-
work is activated due to the electric autapse and subthresh-
old forcing current on the first neuron, then the ordered 
wave is violated by the electric pulse generated from the 
first neuron, and the pulse propagates along the ring net-
work with higher speed under D=1.0. For example, com-
paring the results in Figure 12 (D=1.0) and the results in 
Figure 8 (D=0.3), we have found that the critical time to 
violate the ordered wave is decreased from 1000 time unites 
(Figure 8(f)) to 200 time units (Figure 12(c)). In the absence 
of time delay 1 in coupling between adjacent neurons, the 
network fails to keep synchronized under higher feedback 
gain when subthreshold forcing current is only imposed on 
a single neuron in the network thus diversity in forcing oc-
curs. The disorder of ring network is suppressed greatly 
when time delay 1 in coupling between adjacent neurons is 
considered, and partial synchronization is observed in the 
ring network(Figures 12(e) and (f)). Finally, the case that no 
external subthreshold forcing current is imposed on the 
network is investigated, and the results are shown in Figure 
13. 

The results in Figure 13 confirm that quiescent neurons 
are waked up and keep in synchronized with higher feed-
back gain and coupling intensity being used, and the syn-
chronization state could be violated (Figure 13(f)). In fact, 
the developed state mainly depends on the cooperation or 
competition between the electric autapse and adjacent cou-
pling in neurons in absence of external subthreshold forcing 
current.     

Above all, the electric autapse and chemical autapse on 
the electric activity of single neuron are investigated in de-

tail. It is found that quiescent neurons can be waked up and 
become excitable by selecting appropriate feedback gain 
and time delay, and the electric activity of neuron is sensi-
tive to the stimulus from electric autapse, while it responds 
to the chemical autapse dully except for larger time delay 
and feedback gain. Furthermore, neuron will pass through 
spiking, goes into bursting and steps into chaotic state with 
increasing the feedback gain and time delay. In the case of 
ring network, electric autapse still plays an active role in 
waking up the quiescent neurons, and transition from spik-
ing to bursting, spatiotemporal chaos with increasing the 
feedback gain and time delay in the electric autapse. In a 
word, the autapse plays an important role in regulating the 
electric activity of single neuron and types of bifurcation 
behaviors can be observed. For a single neuron or oscillator, 
bifurcation analysis provides a feasible but easy way to un-
derstand the dynamics of nonlinear oscillator and transition 
of behavior induced by adjusting controllable bifurcation 
parameters [57–62]. More generally, the Hindmarsh-Rose 
neuron model is often used to analyze the bifurcation in 
electric activity of neuron in analytical [59] or experimental 
way [62] when complex dynamic behaviors emerge in the 
system. Practically, the external forcing current is often 
controllable and used as a bifurcation parameter to detect 
types of bifurcation. The autapse effect is mapped by intro-
ducing a specific intrinsic forcing current in close loop with 
time-delay. This kind of self-feedback forcing current could 
induce certain bifurcation by changing the time delay or 
feedback gain carefully and its potential mechanism could 
be similar to the case of external quasi-periodic forcing 
current-induced period-adding bifurcation, while it could be 
some what different from the periodic pacing-induced bi-
furcation in a Hindmarsh-Rose neuron without autapse. In 
the case for network, time delay in mutual coupling between 
adjacent neurons can facilitate and enhance synchronization 
of network by decreasing external forcing current in diver-
sity, while it also can violate synchronization of network in 
the absence of external forcing current on the network. 

 

 

Figure 13  Time series of membrane potentials of all neurons under electric autapse, no subthreshold(external) forcing current is imposed on the network, 
=50, D=1.0. (a) 1=0, g=0.5 ; (b) 1=0, g=1.0; (c) 1=0, g=2.0; (d) 1=10, g=0.5; (e) 1=10, g=1.0; (f) 1=10, g=2.0.  
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4  Conclusion 

The effect of autapse on the neuron is described by intro-
ducing a time-delayed forcing current on the membrane 
potential with certain gain. The electric activity of neuron is 
much sensitive to the electric autapse, and it responses to 
the chemical autapse only under larger feedback gain and 
time delay. The quiescent neuron is much easier to be acti-
vated under stronger feedback gain and subthreshold forc-
ing current. The distribution of discharging frequency and 
largest Lyapunov exponent in the two-parameter space 
(feedback gain g vs. the time delay ) indicate that neuron 
can pass through spiking to bursting and chaotic electric 
activity by selecting feedback gain and time delay carefully. 
In the case of ring network, the development and propaga-
tion of travelling wave also depend on the feedback gain 
and time delay in autapse, competition between travelling 
wave occurs when one neuron is imposed on subthreshold 
forcing current (other neurons are in the absence of external 
forcing currents). The regular travelling wave can be sup-
pressed by the pulse wave from a single neuron due to sub-
threshold forcing current. The time delay in coupling be-
tween adjacent neurons often plays an important role in 
enhancing synchronization of network in the presence of 
external forcing current, while it also violates the synchro-
nization in the absence of external forcing. 

In a word, appropriate autapse is very helpful to waking 
up quiescent neurons, and driving neurons to pass through 
spiking, bursting and chaotic activities by increasing the 
feedback gain and time delay slightly.  
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