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In this paper, we discuss the influences of channel blocks on the spiking regularity in a clustered neuronal network by applying 
stochastic Hodgkin-Huxley neuronal models as the building blocks. With the aid of simulation results, we reveal that the spik-
ing regularity of the clustered neuronal network could be resonantly enhanced via fine-tuning of the non-blocked potassium 
channel fraction xK. While the non-blocked sodium channel fraction xNa can enhance the spiking regularity of the clustered 
neuronal network in most cases. These results indicate that not only sodium channel blocks but also potassium channel blocks 
could have great influences on the regularity of spike timings in the clustered neuronal networks. Considering the importance 
of spike timings in neuronal information transforming processes, our results may give some implications for understanding the 
nonnegligible role of randomness in ion channels in neuronal systems. 
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1  Introduction 

As we know, brain cortex contains about 1011 neurons with 
a single neuron connecting to more than 104 postsynaptic 
neurons through electrical or chemical synapses. Then, 
brain cortex becomes a very complex network [1]. The 
complex brain network is revealed to exhibit hierarchical 
and clustered (or modular) structures [2]. For a clustered 
network, it contains several small subnetworks with dense 
connections inside subnetwork and sparse connections be-
tween them. Compared to single neuron and single neuronal 
network, clustered neuronal network is at a mesoscopic lev-
el. In the past years, researchers mainly focus on investigat-
ing neuronal dynamics in single neuronal models or single 
neuronal networks. However, as we stated, brain cortex has 
complex network structures. In order to better understand 

the brain, it is not enough for just considering neuronal dy-
namics at a microscopic level (i.e., single neuron or single 
neuronal network). Thus, further studies of neuronal dy-
namics at a mesoscopic level becomes necessary. 

In biological systems, noise is an unavoidable factor [3,4] 
and has been found to be related to some cognitive behav-
iors [5]. Understanding the influences of random fluctua-
tions in neuronal systems is a central challenge in computa-
tional neuroscience. In neuronal systems, according to the 
originating sources of randomness, noise can be classified 
as synaptic noise and channel noise. For synaptic noise, it 
originates from neurotransmitters’ quasi-random releasing 
by the synapses or presynaptic neurons’ random inputs. For 
channel noise, it arises from the stochastic opening of ion 
channels. Researchers usually neglect channel noise [6–15]. 
However, it should be noted that channel noise could also 
have great effects on neuronal system when the membrane 
patch size is small [16]. Namely, channel noise could not be 
neglected when the membrane patch size is small. 
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In recent years, the stochastic activity in ion channels has 
garnered increasing attentions as reviewed in ref. [17]. The 
importance of channel noise has been considered in several 
neuronal systems. For example, random fluctuations in ion 
channels have been included in establishing stochastic 
mathematical model of the auditory nerve for electrical 
stimulation [18]. And randomness from sodium ion chan-
nels has been found to be responsible for the theta rhythm 
observed in the entorhinal cortex [19]. Meanwhile, channel 
noise is also studied in the hippocampal CA1 pyramidal 
neurons [20]. In theoretical and simulating studies, it has 
been found that channel noise could have great influences 
on stochastic resonance [21], firing rhythms [22,23], phase 
synchronization [24], spiking regularity [25–27] and other 
neuronal dynamics [28–30]. 

Spike trains contain neuronal information and have been 
coded with different coding schemes [31–33]. Neuronal 
coding is divided into rate coding and temporal coding. For 
rate coding, neuronal information is just included in the 
neurons’ firing rate sequences. While for temporal coding, 
relevant information is related to the timing of the spikes. 
Spiking regularity measures the regularity of spike timings. 
Thus, the variability of spiking regularity could have im-
portant effects on neuronal information transmission. 

In neuronal dynamical studies, it has been found that 
channel noise could have great effects on the regularity of 
spontaneous spiking activities of neuronal systems [25–27, 
34,35]. Numerical simulation results of these works showed 
that, potassium and sodium channel noises give different 
influences on spiking regularity of a single neuron[34,35] or 
array-coupled [25], Newman-Watts [26] and scale-free 
networks [27]. Potassium channel noise could enhance 
spiking regularity of a single neuron or a neuronal popula-
tion, while sodium channel noise reduces it. 

As mentioned above, it is necessary to further investigate 
channel noise’s significance at a mesoscopic level. Up to 
now, the great influence of channel noise on the spiking 
regularity of a clustered neuronal network has not been 
studied yet. Therefore, here we devote ourselves to investi-
gating how channel blocks affect the spiking regularity of a 
clustered neuronal network, with each subnetwork being 
regular and each neuron locally modeled by a stochastic 
hodgkin-huxley (HH) neuronal model. Our results could 
help us to make deeper understanding of the effects of 
channel noise on spiking regularity. 

In the following section, we introduce a mathematical 
model of the system. Then, we present our numerical results 
to reveal the effects of channel blocks on the spiking regular-
ity of the clustered neuronal network. Finally, we give a con-
clusion of our work and some discussions about our results. 

2  Neuronal network model 

In this paper, we consider a clustered neuronal network with 

M subnetworks arranged on a ring. And for each subnet-
work, it has equal number of nodes, which are also arranged 
on a ring. For each node in a subnetwork, it connects to its 
2k (k=2) nearest neighbors. Interaconnections between dif-
ferent subnetworks exist with the probability p. Therefore, 
the parameter p represents the fraction of total links in the 
network devoting to the connections between different sub-
networks, and it is set as 0.05 in the whole paper. Mean-
while, M is taken as 2 if not declared specifically and N is 
taken as 120 in this paper.  

We use a stochastic HH neuronal model as the local 
model. This stochastic HH neuronal model is extended from 
the traditional one [36] by considering sodium and potas-
sium channel noises [37,38]. The mathematical equations of 
the studied system are expressed as follows: 
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In eqs. (1)–(4), the subscript pairs (I, i) represent the i-th 
neuron of the I-th subnetwork. AI =(AI (i, j)) and BI, J =(BI, J  

(i, j)) (I  J ) are two coupling matrixes. The former one is 
the coupling matrix for neurons of the I-th subnetwork. In 
the I-th subnetwork, if there is a connection between neuron 
(I, i) and neuron (I, j), then AI (i, j)=1, otherwise, AI (i, j)=0. 
The other matrix BI,J =(BI,J (i, j)) (IJ) represents the 
connections of neurons which belong to different 
subnetworks. BI, J (i, j)=1 if there is a link between neuron  
(I, i) and neuron (J, j), otherwise BI, J (i, j)=0. 

Here, we let the size of each subnetwork be n and the 
number of clusters in the considered network be M. In eq. 
(1), int ra and int er are the coupling strength of neurons 
inside a subnetwork and neurons between two nearest 
subnetworks, respectively.  

In eqs. (1)–(4), VI,i is the membrane potential and mI,i, hI,i, 
nI,i are the gating variables. mI,i and hI,i 

represents the 
fractions of active and inactive sodium channel, respectively; 
and nI,i indicates the fraction of active potassium channel. In 
eqs.(2)–(4), 

, ,( )
I in I iV

 
and 

, ,( )
I in I iV  (yI,i = mI,i, hI,i, nI,i) 

are the transition rates which are dependent on voltage and 
expressed as [36]  
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are the channel noises. 

They are assumed to be independent Gaussian white noise 
with the zero first-order moment. And their noise 
correlations are 
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Where NNa=Na S and NK =K S are the total number of 

sodium and potassium ion channels on a fixed excitable 
membrane patch. Na= 60 m2, K =18 m2 are the ion 
channel densities of sodium and potassium ion channels. 
And S is the size of the membrane patch and taken as S =6 
m2

 in this paper. Some toxins like tetraethylammonium 
(TEA) and tetrodotoxin (TTX) could block some sodium or 
potassium ion channels [35]. If it happens, the numbers of 
working sodium and potassium ion channels will be reduced. 
Here, we induce two parameters xNa and xK (0 xNa, xK 1) to 
express the fractions of working, i.e. non-blocked ion 
channels, to the total number of sodium and potassium ion 
channels [37]. Then, the numbers of working sodium and 
potassium ion channels take values of xNa NNa and xK NK. 

In eq. (1), C=1 F cm2 is the capacity of the cell 
membrane, and VNa=50.0 mV, VK =-77.0 mV and VL= 

-54.4 mV are the reversal potentials for the sodium, 
potassium and leakage currents, respectively. While the 
leakage conductance is set as gL=0.3 mS cm2, the 
potassium and sodium conductances are presented as 

follows:  

 max 3 max 4
, , , , , ,( , ) , ( )Na I i I i Na Na I i I i K I i K K I iG m h g x m h G n g x n   (9) 

where max 2120 Nag mS cm  and 
max 236 Kg mS cm  denote 

the maximal conductance (when all the channels are at 
working state).  

3  Simulation results 

In this paper, we pay attention to the effects of channel 
blocks on spiking regularity of the clustered neuronal 
network. Measurement R is introduced to quantify it and 
expressed as follows:  
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Here, N is the size of the clustered network, Ri is the 
inverse of the coefficient of variation and it can quantify the 
regularity of spike timings in a neuron. Ri is formulated as  
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where Ti,k = ti,k+1-ti,k represents the inter-spike interval with 

ti,k denoting the k-th spiking time of the i-th neuron; i,kT  

and 2
,i kT  represent the mean and the mean squared 

inter-spike intervals, respectively. Spiking times are 
identified as the moment at which the membrane potential V 
passes  a certain value Vth upwarding (here Vth is taken as 
-20 mV).  Vth can take values in a wide interval without 
altering the results. 

  Larger R means better spiking regularity of the whole 
neuronal network. In the followings, we take xNa and xK as 
control parameters to study the effects of sodium and 
potassium channel blocks on the spiking regularity of a  
clustered neuronal network. Without special statement, the 
inter-coupling and intra-coupling strength int ra, int er are set 
equally as 0.1. 

3.1  Effects of sodium channel blocks on the spiking 
regularity 

At first, we investigate how R changes with the non-blocked 
sodium fraction xNa for various xK . The obtained results are 
presented in Figure 1.  

The membrane potential of a neuron could reach a 
threshold value when Na+ channels open and let enough Na+ 
flow inward the neuron, i.e., generation of action potential 
needs enough Na+ across the neuronal membrane. Smaller 
xNa means fewer sodium channels at the working state, 
which leads to fewer Na+ flowing inward. Then, membrane  
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Figure 1  Variation of R as a function of xNa for various xK with M=2. 

potential can not reach the threshold potential and neurons 
can not generate action potentials (or spikes). Thus, no 
matter what values xK takes, R equals to zero when xNa is 
small, as shown in Figure 1. 

When xNa becomes larger (e.g., when xNa is larger than 
0.6 for xK =1.0, refer to Figure 1), R increases with xNa for 
different values of xK. Namely, spiking regularity of the 
neuronal network increases when xNa becomes larger. In 
order to make it clear, we exhibit some spatiotemporal 
patterns at different values of xNa by keeping xK equal to one, 
shown in Figure 2. In this figure, each thick black line 
indicates that each neuron inside the neuronal network 
generates a spike (please refer to Figure 2(e), which shows 
the time series of a randomly chosen neuron corresponding 
to Figure 2(d). Figure 2(e) makes us better understand 
spatiotemporal patterns exhibited in Figure 2). Thus, the 
width between two thick black lines indicates the inter-spike 
intervals of each neuron. From Figure 2, we can see that 
changes of the inter-spike intervals for each neuron inside 
the neuronal network become more and more regular with 
xNa increasing. Thus, the average spiking regularity of the  

 

 

Figure 2  Spatiotemporal plots of membrane potentials of all neurons for 
various values of xNa by fixing xK = 1.0. xNa is taken as 0.7,0.8,0.9,1.0 from 
(a) to (d). Time series of the membrane potential V of a randomly chosen 
neuron is shown in (e), which is corresponding to (d). 

whole neuronal network could be enhanced by increasing 
the working sodium channel fraction xNa. In other words, 
blocking sodium channels will reduce the spiking regularity 
of the neuronal network. Moreover, it is worth noting that 
the increasing of xNa means the decreasing of sodium 
channel noise level. With the simulation results shown in 
Figures 1 and 2, we have found that when potassium 
channel noise level is fixed, reduction of sodium channel 
noise level could increase the spiking regularity of the 
clustered neuronal network. 

3.2  Effects of potassium channel blocks on the spiking 
regularity 

In the above subsection, we have found that sodium channel 
blocks could affect the spiking regularity of the clustered 
neuronal network. In what follows, we move to study the 
effects of potassium channel blocks accordingly. Similarly 
as above, we give the dependence of R on xK for various xNa  

(here xNa is taken to be larger than 0.8 to ensure that the 
neurons could generate spikes), as shown in Figure 3. 

Compared with Figure 1, we can clearly see that 
potassium channel blocks have different effects on the 
neuronal network’s spiking regularity. The difference from 
the effects of sodium channel blocks is that there exists 
some intermediate working fraction of potassium channels 
xK at which the spiking regularity of the neuronal network 
could reach a higher level. For xNa = 1.0, the corresponding 
spatiotemporal patterns for various xK are exhibited in 
Figure 4.  

From this figure, we can see that the inter-spike intervals 
for each neuron inside the neuronal network for xK = 0.4 are 
more regular than other cases. Thus, potassium non-blocked 
channel fraction xK could induce coherence resonance 
behavior against spiking regularity in the clustered neuronal 
network, as shown by Figures 3 and 4. 

4  Conclusions 

In order to conclude the study, we further extend our results  
 

 

Figure 3  Variation of R as a function of xK for various xNa with M=2. 
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Figure 4  Spatiotemporal plots of membrane potentials of all neurons for 
different values of xK by fixing xNa = 1.0. xK is taken as 0.1, 0.4, 0.7, 1.0 
from (a) to (d). 

 

Figure 5  Contour plot of R as functions of non-blocked sodium channel 
fraction xNa and non-blocked potassium channel fraction xK for M=2. 
(colored online). 

by simulating variations of R with respect to xNa and xK in a 
plan-plane for M = 2, as exhibited in Figure 5. 

When we fixed the value of xNa (xNa >0.2), R increases 
and reaches to some maximum value and then decreases 
with xK. Then, there exist some optimal values of xK, at 
which the neuronal network exhibits higher spiking 
regularity (or R takes larger values) for various values of xNa, 
as shown in Figure 5. Meanwhile, for most values of xK  (xK 

is larger than 0.2, above the dashed line in Figure 5), the 
color changes from blue to red with increasing of xNa, as 
exhibited in Figure 5. This indicates that the spiking 
regularity measurement R increases with xNa. Then, we can 
draw the conclusion that non-blocked sodium channel 
fraction xNa could enhance the spiking regularity when xK  

is larger than 0.2. While for xK < 0.2, there exists some 
optimal value of xNa, where the spiking regularity of the 
neuronal network is relatively high. This means that, to 
some extent the effects of sodium channel blocks on spiking 
regularity are dependent on the number of blocking 
potassium channel blocks. With the further extension of the 
above obtained results to the multi-clustered neuronal 
network, we can observe the similar results as obtained 

when the neuronal network just has two clusters, as 
expressed in Figure 6. 

In the former work, Schmid et al. [34,35] studied the 
spiking regularity of a stochastic HH model at a single neu-
ron level, and showed that xNa could enhance the regularity 
of spontaneous spike trains and xK decrease it. After that, 
Gong et al. [25], Ozer et al. [26] and Yilmaz et al. [27] ex-
tended Schmid’s work by discussing the effects of channel 
blocks on the regularity of spiking activities at a single 
neuronal network level, such as array-coupled, Newman- 
Watts and scale-free networks, respectively. They found 
that, similar as in single neuronal model, non-blocked so-
dium and potassium factions xNa and xK could increase or 
decrease the regularity of single neuronal networks. In our 
work, we further extended the former work to the clustered 
neuronal networks. With the obtained results, we can give a 
conclusion that the phenomenon-sodium and potassium 
channel blocks could increase or decrease the spiking 
regularity-can begenerally observed in neuronal systems. 

In sum, the spiking regularity of the clustered neuronal 
network could be resonantly enhanced via fine-tuning of the 
non-blocked potassium channel fraction xK. For the 
non-blocked sodium channel fraction xNa, it could also 
enhance the spiking regularity resonantly when xK takes 
smaller values (xK <2.0 as shown in Figures 5 and 6). While 
in most cases, the non-blocked sodium channel fraction xNa 

enhances the spiking regularity of the clustered neuronal 
network. Moreover, temporal coding as one of the coding 
rules is correlated with the spike timings. Thus, regularity of 
spike timings has close relationship with neuronal infor-
mation coding. As reported in ref. [39], spiking regularity 
may also relate to transduction of information processing 
for neuronal activity. Therefore, the regularity of spike 
timings in a neuronal network may play an important role 
not only in information coding process but also in 
transmission process. Because ion channel blocks could 
affect the strength of ion channel noises, we hope that our 
results could give some implications for understanding the 
role of randomness in neuronal systems. 

 

 

Figure 6  Contour plot of R as functions of non-blocked sodium channel 
fraction xNa and non-blocked potassium channel fraction xK for M=5. 
(colored online). 
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