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With the integration of renewable energy generations and other related changes, the smart grid, or the future electric power 
system, is confronted with new challenges and opportunities. Therefore, it is a promising subject in electrical engineering and 
much work has been done on it. This paper reviews the recent advances on the technologies of smart grid and renewable ener-
gy integration, from the aspects of modeling, simulation, protection and control, stability, operation, and planning. 

smart grid, renewable energy integration, modeling, simulation, protection and control, stability, operation, planning 

 

Citation:  Mei S W, Chen L J. Recent advances on smart grid technology and renewable energy integration. Sci China Tech Sci, 2013, 56: 30403048, doi: 
10.1007/s11431-013-5414-z 

 

 
 
Fossile energy crisis and pollution are two major challenges 
to modern electric industry. The gravity of the situation has 
triggered the worldwide academic discussions and engi-
neering practices of the next-generation of power grid. It is 
widely accepted that the smart grid is a feasible and power-
ful choice to meet future challenges [1]. 

Compared with traditional power grid, the smart grid has 
the following salient features: high proportion of renewable 
energy generation on the source sides, smart and robust op-
erations and control strategies on the electric networks, and 
diversification of demands on the load sides. 

Large-scale renewable energy integration has injected 
vitality into the research and application of the smart grid 
[2]. The non-deterministic and low dispatchable characteris-
tics of renewable energies force system operators to draw 
up more flexible and robust operating decisions. To some 
extent, eco-friendly and distributed characteristics of re-
newable energies may meet the demands of diverse loads. 

And surely, renewable energy integration has expanded the 
components of power sources, therefore, the development 
technologies of smart grid and renewable energy integration 
are strongly connected, and the breakthrough of one would 
promote the improvement of the other. 

In the last few years, a great number of valuable results 
on various aspects of smart gird technology and renewable 
energy integration have been achieved, such as system 
modeling, simulation, protection and control, stability, tran-
sient stability, operation and planning [3].  

As a result, this paper reviews the typical research fo-
cuses on smart grid technology and renewable energy inte-
gration, based on an extensive and comprehensive survey 
over the most authoritative journals in electrical engineering, 
such as IEEE Transactions on Power Systems, IEEE Trans-
actions on Sustainable Energy, IEEE Transactions on Smart 
Grid, Science China Technological Sciences, etc. Original 
ideas, innovative mathematical formulations, effective solu-
tion methodologies, and prospective engineering practices 
are introduced and discussed in this review. 
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1  Modeling 

System modeling is one of the most fundamental problems 
of smart grid and renewable energy integration. In this sec-
tion, modeling advances at system level, equipment level, 
and resource level are reviewed respectively. 

1.1  System level 

The power system consists of many subsystems such as 
generation system, transmission system, substation system, 
and consumption system. Many researchers have done in-
teresting modeling work at the system level. 

Generally speaking, electromagnetic transient simulation 
on large-scale power system is time-consuming. A new 
frequency-dependent equivalence method was proposed in 
ref. [4]. A high-efficient algorithm was developed to trans-
fer the port admittance determinant of mixing matrix into 
admittance rational function directly. Numerical results 
showed that the computation time varied nearly linearly 
with the scale of the test system. A matrix method was pro-
vided in ref. [5] to analyze the life cycle inventory of the 
power system. This method focuses on power-generating 
ability and environmental performances of the power sys-
tem. Results indicated that the method needs less time to 
analyze the system compared with traditional methods. 
State estimation is the foundation and core of modern ener-
gy management systems. Traditionally, the reliability of 
parameter estimation is usually neglected and the measure-
ment redundancy is not fully considered. Therefore, accu-
racy and reliability of the estimation were improved in ref. 
[6] by a proposed assessment framework for branch param-
eter estimation. Computational experiments showed the 
correctness and effectiveness of the proposed assessment 
framework. 

At the subsystem level, the existing load equivalent 
methods usually neglect the dynamic features of loads such 
as induction motors, and deal with static load models only. 
A new dynamic equivalent method considering motor dy-
namics was presented in ref. [7]. The dynamic equivalent 
method perfectly held the original dynamic performance of 
induction motors and the test results proved its efficiency. 
Analysis of power transmission loss is a hot topic in the 
field of system operation. A calculation model of power 
transmission loss for cable-in-conduit conductor (CICC) 
based on strain was discussed in ref. [8]. Results showed 
that by adopting this method, the calculation relative error 
was less than 40%. A wind farm model using probabilistic 
clustering was proposed in ref. [9]. Numerical tests showed 
better dynamic responses than the full wind farm model. 

1.2  Equipment level 

Modeling at the equipment level is essential, when we focus 

on the problems of local parts of power system, such as an-
gle stability, local control, and efficiency analysis. 

Hydraulic power has the highest proportion of energy 
consuming among all kinds of renewable energy. However, 
there is still around 20% energy loss in the hydro turbines. 
A comprehensive analysis of composition of energy loss 
occurring in the hydro turbine was presented in ref. [10]. 
Simulation results matched perfectly with measurements 
and indicated that the presented model could represent the 
inner energy loss features of the hydro turbine. Inner energy 
loss is also the bottleneck of the efficiency of thermal tur-
bine. A model of metal hot-electron power generation based 
on hot electron emission theory was built in ref. [11] and it 
was helpful to enhance efficiency of thermal turbine. The 
experiments showed the effectiveness of the proposed mod-
el. In the actual power system, transmission line shows dif-
ferent features under different levels of currents. An opti-
mized transmission line model under lighting currents was 
presented in ref. [12]. Then a detailed discussion on the ef-
fective lengths of horizontal grounding electrode was pro-
vided. The modeling of wind turbines are key points to the 
accommodation of wind power. An approximate wind tur-
bine control system model for wind farm power control was 
presented in ref. [13]. The results suggested that the pro-
posed model could be applied to real wind farm control. A 
wind turbine power curve can show the dynamic perfor-
mance of the related wind turbine. An advanced algorithm 
for wind turbine power curve modeling was presented in ref. 
[14]. The computational results indicated the algorithm was 
much more efficient than other existing algorithms. 

1.3  Resource level 

In modeling and analyzing electric equipment, energy re-
sources are treated as input variables. However, the detailed 
modeling of resources are needed when we deal with prob-
lems related to resource assessment.  

Studies on numerical site calibration over complex ter-
rain for wind turbines were presented in ref. [15]. The re-
sults showed better generating performance by using the 
wind speed on the meteorological mast. A novel prediction 
methodology composed of chaotic operators to predict the 
wind speed series was presented in ref. [16]. The proposed 
methodology was based on Kalman filter. Experiments 
showed great improvement of wind speed prediction and 
proved the effectiveness of the methodology. An extensive 
investigation on the spatiotemporal complementarity of 
wind energy resources in China was provided in ref. [17]. 
An assessment model for a hybrid energy conversion sys-
tem with wind and solar resources was presented in ref. [18]. 
The proposed model could be applied to many aspects such 
as assessment of resource benefits including capacity fac-
tors and reserve requirements. 
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2  Simulation 

Complexity is a typical characteristic of large-scale modern 
power system, which increases the challenges to simulation 
instruments. Even the latest simulator, RTDS, has some 
drawbacks, and cannot perfectly meet all the needs in power 
system. Therefore, new simulation algorithms need to be 
put forward. At the same time, simulation tools also need to 
be renewed. In this part, some novel simulation algorithms 
are introduced and some tools are depicted, which may en-
hance the ability of time-domain dynamic simulation on 
modern power system. 

2.1  New algorithms 

With the fast development of power system，the system 
topology is getting more complex and the numbers of com-
ponents increases fast. These bring in difficulties in analysis 
and simulation of the smart grid. Fast and real-time simula-
tion can be hardly achieved by conventional simulation al-
gorithm, therefore there is urgent need in new and advanced 
simulation algorithms. In this part, some new algorithms are 
presented to deal with electro-magnetic transient program 
(EMTP) in power system. 

To solve the linear equations arising in the time-domain 
simulation, new type of preconditioners was proposed in 
iterations [19]. The results showed that the multifrontal 
preconditioned iterative methods could improve computa-
tional efficiency. In ref. [20], a time-domain transformation 
was proposed, which accelerated the EMTP in dynamics 
and made EMTP more convenient to implement. Time- 
domain simulation is also important in power system stabil-
ity. When updating preconditioner strategy is used, the iter-
ation decreases dramatically [21]. In ref. [22], tradition Ja-
cobian matrixes was abandoned and Newton-GMRES(m) 
method was proposed to solve dynamic power system sim-
ulation, which had strong parallelizability and enhanced 
efficiency. Component level parallelization and the mul-
ti-area thevenin equivalent (MATE) method was proposed 
in ref. [23], and a higher efficiency was achieved. The 
shifted-frequency-analysis theory was proposed in ref. [24], 
which made it easier to get time-domain simulation results. 
In summary, time-domain simulation is very important in 
modern power system, and many methods have been pro-
posed. 

In ref. [25], the aging trend of component was considered 
in power system reliability evaluation, and a new aging 
model was built, which was significant in reliability com-
putation especially in planning.  

2.2  Novel tools 

Since some new simulation algorithms have been proposed, 
certain tools are needed. Therefore, tools for power system 

simulation are also important, which determine the accuracy 
and efficiency of simulation algorithms. 

To solve power system dynamic simulation effectively, 
some new tools are studied. In ref. [26], a fast cycle-accu- 
rate instruction set simulator (CA-ISS) was developed, 
which makes simulation faster than convention tools. The 
CA-ISS also has good performance even using a personal 
computer. The phasor tool for real-time transient stability 
simulation introduced in ref. [27] can improve the contin-
gency studies in large-scale power systems. The accuracy is 
better compared with other non-real-time transient stability 
simulation tools. In ref. [28], a Matlab-based toolbox was 
exploited, which allows user to define model independently. 
The toolbox has a wide range of integration routines and is 
easy to use, which makes it a bright future. Sometimes, re-
sult is not very accurate and convincing using only one 
simulation tool, therefore, co-simulation was developed. In 
ref. [29], a framework for co-simulation with more than one 
tool was present, and the result was better than that using 
only one. 

There are many other simulation tools in power system 
simulation as introduced in ref. [30]. Simulation results are 
related with simulator closely, so more attention should be 
paid to simulation tools. 

3  Protection and control 

Modern power system is becoming much more complex and 
nonlinear, thus it calls for sophisticated protection and con-
trol strategies to guarantee that the system works well. 

The power system has two trends of development: large 
scale power system and distributed generation systems, such 
as microgrids. Since they have different features, different 
protection and control techniques are needed, respectively.  

3.1  WAMS and advanced PSS  

Few advanced devices are used in traditional power system 
to monitor the operation state, which has little information 
for protection and control. However, in a modern large scale 
power system, with the help of wide area monitoring system 
(WAMS), it is possible to acquire much more important 
information to improve the protection and control abilities. 

A novel wide-area nonlinear excitation control strategy 
for multi-machine power systems was presented in ref. [31]. 
The proposed method not only considers time delays of 
remote signals, but also avoids the impact of wide-area in-
formation’s incompleteness since not all generators are in-
stalled with phase measurement unit (PMU). 

In ref. [32], a stability assessment solution based on 
phasor measurement data was described, which gave insight 
into experiences gained from actual WAMS. The paper also 
concluded that WAMS allowed the stepwise upgrading 
from monitoring to protection and control functionality.  
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Ref. [33] proposed new technologies for communication 
in power system to create new opportunities for developing 
wide area system monitoring, protection and control, called 
virtual protection system (VPS). The VPS is a system that 
can be realized in control center to detect any system ab-
normalities in a virtual environment. Through using PMUs 
data from the whole system area, the control system can use 
the VPS to detect system states and apply it to self-healing 
of power systems. 

With the widely use of WAMS, it is helpful to design 
advanced PSS, which can solve the low frequency oscilla-
tion problem and improve the stabilities. 

In ref. [34], it was proved that the classical PSS design 
principles based on synchronous torque as well as the 
damping torque were not theoretically sound. Then the pa-
per discussed the linear optimal controller design method 
and analyzed its relations with the conventional PID design. 
The paper revealed the real mechanism of the PSS and pro-
posed to use more systematic and advanced monitoring 
system to enhance the performance of PSS. 

Another advanced PSS, called global power system sta-
bilizer (GPSS) based on WAMS, was presented in ref. [35]. 
It aimed to damp inter-area modes and to protect the whole 
power systems. 

3.2  Power electronics interfaced devices(PEIDs) 

The distributed generations (DGs) are normally controlled 
and connected to the grid through PEIDs, such as converters, 
PWM rectifiers and MMC, therefore proper protection and 
control strategies are needed. 

Reliable operation of a DGs-based microgrid requires 
advanced power flow control and local voltage control. 
Moreover, system protection mostly should coordinate with 
each DG to ensure reliable operation. 

In order to improve the performance of PEIDs, many 
control strategies have been proposed. Ref. [36] put forward 
a direct power control for three-level PWM rectifier based 
on hysteresis strategy, which could balance the neutral-point 
voltage, realize the unity power factor operation and stabi-
lize the DC bus voltage.  

DC faults ride-through capability of full-fridge modular 
multilevel converter (MMC) was analyzed in ref. [37]. In 
this work, the protection performance of MMC was signifi-
cantly improved. 

As many PEIDs have been integrated with microgrids, its 
protection and control are not only about the devices but 
also related to the system. In ref. [38], considering customer 
comfort feeling and combining family-friendly controllable 
refrigerators, a novel decentralized demand control strategy 
was proposed to regulate the frequency of microgrid work-
ing with the energy storage system. Some new control 
methods were presented for the sake of seamless transfer 
between two modes of microgrid [39–42]. For example, ref. 
[39] proposed a control strategy based on master-slave con-

trol, which could achieve smooth transition between 
stand-alone operation mode and grid-connected operation 
mode. Furthermore, a seamless control method considering 
response time of different mode transitions under abnormal 
conditions such as grid faults was presented in ref. [42]. 

Moreover, some vital techniques were posed to protect 
and control the PEIDs or microgrid [43, 44]. The protection 
and control scheme for microgrid systems was designed in 
ref. [43]. And ref. [44] discussed control and protection of 
power electronics interfaced distributed generation systems 
in a customer-driven microgrid. They all provide some use-
ful thoughts to solve the problems in the field of protection 
and control. 

4  Stability 

Stability analysis is a traditional but important aspect in 
power system. As the technologies of the smart grid and 
renewable energy develops fast, new problems come up on 
the subjects of small signal stability, transient stability, 
voltage stability, secure assessment, etc. 

4.1  Small signal stability 

Small signal stability is of great importance to power sys-
tem stability. With the methods and tools in small signal 
analysis, people can find something about the damping 
characters of the system.  

In order to provide more flexibility and reliability, new 
voltage source converters (VSCs) are injected to grid, such 
as STATCOM (static synchronous compensator), fuel cell, 
photovoltaic generation, etc. In ref. [45], the effects of those 
VSCs on power system damping oscillation were investi-
gated. The main conclusion drawn from the research was 
that both dynamics and DC voltage control can provide ei-
ther positive or negative damping torque depending on the 
load level. Hence, a point existed at which the added damp-
ing torque was zero. In other words, VSCs had no impact on 
power system damping oscillation. 

The classical method to analyze the randomness’ effects 
on power system stability is using deterministic differential 
theory. However, when considering outside excitations, 
which might be caused by renewable energy source, the 
traditional theory doesn’t act well. The stochastic differen-
tial equation in ref. [46] was introduced to solve this prob-
lem. By Euler-Maruyama numerical method, the author 
proved that small Gauss type random excitation would not 
produce new stability problem. 

With PMU/WAMS gradually set in smart grid, some 
problems were well solved. In ref. [47], a revised stochastic 
subspace method, based on measurement, was proposed to 
estimate the electromechanical characteristics of low fre-
quency oscillation. This method could obtain the mode 
shapes and mode together in less computation without sac-
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rificing accuracy. The on-line application was approaching. 
As for microgrids and wind-farms, new researches have 

been reported. Sensitivity of eigen-solutions is critical to 
microgrid studies for its great contribution to control varia-
bles, etc. The matrix perturbation theory introduced in ref. 
[48] was an efficient computing method for variations re-
sponse characteristic in microgrids. In ref. [49], an ‘analyti-
cal’ method to investigate the stochastic uncertainties of 
wind farms for power grid small signal analysis was pro-
posed. This work showed that high penetration of wind 
power would bring risk to a stable power system operation. 

4.2  Transient stability 

Estimation of a nonlinear system’s transient stability region 
is critical, thus it always attracts much attention. New theo-
ries and methods have appeared in recent years.  

Fast and easy calculation of unstable equilibrium point 
(UEP) with accurate load models is an interesting object. 
Considering induction motor’s high proportion in power 
system and great effects of transient stability, a novel 
method continuation-based was proposed in ref. [50] which 
could obtain multiple UEPs when tracing the T-s curve 
from the stable equilibrium point. 

In ref. [51], a numerical algorithm, based on a quadratic 
form local input-to-state stability (LISS)-Lyapunov function, 
was presented for estimation of LISS properties. Given lin-
ear matrix inequality’s development, this algorithm was 
easily implemented and powerful. In ref. [52], the flow map 
was used for the expansion of estimated stability region. 
And the enlargement or compression could be directly ob-
tained from the diffeomorphism. 

Photovoltaic (PV) system’s impact on transient stability 
in transmission network was proposed in ref. [53]. This 
work examined that PV system could reduce inertial of 
power system on transient stability. Simulation also verified 
both beneficial and detrimental impacts of PV system. The 
relationship between wind generation and the rotor angle 
stability of conventional synchronous machine was explored 
in ref. [54]. Proper control strategies of a wind farm’s volt-
age and reactive power could minimize angular separation, 
or even provide extra support for synchronous machines. 

4.3  Voltage stability 

High penetration of renewable energy requires much reac-
tive power, which may lead to voltage instability. Nowa-
days, voltage stability may be one of the most threatening 
factors in promoting wind penetration level.  

The unpredictable wind speed and random power fluctu-
ation of wind farms result in high risk for power system. 
On-line security monitoring is of great need. In ref. [55], an 
approach was developed to determine the local boundaries 
of voltage stability region with uncertainty from wind farms. 
Parallel calculation was also implemented to improve the 

efficiency. 
Finding voltage stability margin (VSM) on-line is a hot 

topic. In ref. [56], statistical multi-linear regression models 
were utilized to investigate the relationship between reac-
tive power reserves (RPR) and VSM. Hence, the VSM 
played as an indicator to estimate VSM in online environ-
ment. A method in ref. [57] provided a comprehensive solu-
tion to identify system weakness at different wind penetra-
tion levels, and increased the voltage stability of power gird 
by placing SVCs at weakest buses instead of wind genera-
tion buses.  

4.4  Security assessment 

With complexity of the inter-connection of growing power 
grids and uncertainties from high penetration of renewable 
energies, traditional security assessment cannot meet re-
quirements in new circumstance. Obviously, a scientific and 
effective assessment will help operators take proper preven-
tive control. 

To deal with new random factors, such as wind power 
and load demands, probabilistic steady-state and dynamic 
security assessment models were set up in ref. [58]. Time to 
insecurity, here as a security index, could be obtained and 
helpful for preventive operation. 

As power grid changes its form, subsynchronous oscilla-
tion (SSO) with low amplitude may occur more frequently. 
Research work in ref. [59] indicated that time-domains sim-
ulation could be used to assess different equipment’ effects 
and FACTS had a stronger ability to mitigate SSO by sup-
plying more damping torque. 

High integration of wind power makes security assess-
ment with stochastic variable in great need. A probabilistic 
framework for designing an ‘N-1’ secure day-ahead dis-
patch was achieved for power systems with wind power 
[60].  

5  Operation 

Large scale integration of renewable energy imposes great 
challenges on many aspects of smart grid operation. The 
challenges are due to the uncertainty characteristics of re-
newable generations. Mach work has been focusing on this 
issue in recent years. 

5.1  Unit commitment 

Many innovative methods of day-ahead unit commitment 
have been proposed in recent years to ensure the power 
systems’ capability to balance load in real-time operation. 
An adaptive robust security-constrained unit commitment 
model considering wind power uncertainty was proposed in 
ref. [61]. The solution could be immune to any realization 
of wind power generation in given uncertainty set and a 
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practical methodology combing Benders decomposition and 
outer approximation method were developed to solve this 
problem. Considering other energy storage devices in robust 
dispatch, a robust unit commitment model in a wind-ther- 
mal-pumped hydro storage power system was proposed in 
ref. [62] with the objective to minimize the maximum cost 
increment caused by wind power fluctuations. As the worst 
case was considered previously and pumped hydro storage 
was included, the risk and cost of power system operation 
were effectively decreased. With more flexibilities incorpo-
rated, demand response and wind power in a two-stage unit 
commitment model to both hedge wind power uncertainty 
and reduce operation cost was integrated in ref. [63]. The 
robust optimization method to security-constrained unit 
commitment to guarantee the reliability of power system 
operation in case of N-k contingency was extended in ref. 
[64]. 

Unit commitment also comprises scheduling of wind 
farms. An optimal short-term dispatch strategy of a single 
wind farm was presented in ref. [65], where a fuzzy clus-
tering algorithm was developed to divide different wind 
groups after obtaining the characteristic vectors of wind 
units and characteristic matrix of the wind farm.  

5.2  Economic dispatch 

5.2.1  Active power regulation  

Balancing system loads while accounting intermittency of 
renewables in real-time operation is another huge challenge. 
An affinely adjustable robust OPF (AAROPF) to accom-
modate the uncertainty of renewables was proposed in ref. 
[66]. The non-adjustable base-point thermal generation was 
determined before realization of renewables and the genera-
tion changes according to the realizations of renewable 
generation linearly. The results showed a modest cost in-
crement with uncertainty in reasonable levels and better 
performance compared to methodology via uncertainty 
scenarios. To incorporate the flexibilities of adjustable load,  
a new strategy to tracing renewables’ fluctuations via de-
mand response while satisfying the customers’ comforta-
bleness was proposed in ref. [67]. Fast spinning reserve 
could also be provided through this method in contingency.  

Distributed optimization with nonlinear constrains in dis-
tributed power networks are more complicated than the 
current central optimization problem with linear constrains. 
New methodologies such as game theory or convex optimi-
zation may be used to analytically handle this problem in-
corporating renewable resources [68]. 

In the research of smart grid operation, a new method of 
reserve scheduling was presented in ref. [69] as reserve de-
termined by existing methods may be unreachable. The op-
timization dispatching was then modeled as a continu-
ous-time optimal control problem. The computation burden 
to solve this problem was greatly reduced by reformulating 
it to a nonlinear programming problem. 

5.2.2  Voltage regulation 

The voltage regulation is an important technique to guaran-
tee the power quality of a smart grid. However, traditional 
regional-based control methodology may impose un-negl- 
ected impacts onto its adjacent areas. A multi-level multi- 
area hybrid automatic voltage control (MLMA-HAVC) 
system that could effectively solve this problem through the 
coordination of different control areas was proposed in ref. 
[70]. Application of MLMA-HAVC in Northeast China 
Grid validated the effectiveness of this method. 

When accounting renewables, significant voltage rise in 
the feeder may be incurred by active power injection from 
photovoltaic (PV) generation. Thus, frequent operation of 
tap changers or voltage regulators may be resulted in. To 
hedge this problem, a strategy to minimize the mechanical 
operation of controllable devices while satisfying typical 
security constrains and incorporating the voltage support 
capability of PV generation was proposed in ref. [71]. 

5.3  Topology optimization 

Distributed feeder configuration (DFR) is a practical way to 
reduce power loss in operation. However, the DFR problem 
is of highly complexity and is hard to solve. An innovative 
method combing self-adaptive particle swarm optimization 
(SAPSO) and frog-leaping algorithm (SFLA) was presented 
in ref. [72], which had stable solutions and effectively im-
proved the computation performance. The dual formulation 
of OPF problem had a natural decomposition of system load 
and the topology of power networks was investigated in ref. 
[73], which could be used to search DFR solutions with a 
higher efficiency.   

6  Planning 

Planning is the first and indispensable stage in the life span 
of a practical electric power project, and it attracts more 
attention in scientific research. What’ s more, with the de-
velopment of related technologies mentioned in the above 
sections, the planning of smart grids is confronted with new 
opportunities and challenges. 

6.1  Transmission network expansion planning 

Transmission network expansion planning (TNEP) is a rela-
tively complex problem under the subject of electric power 
system planning. It is usually an optimization problem that 
aims at finding an economic planning scheme to meet the 
demands during a certain planning period [74,75]. It is said 
to be a nonlinear and non-convex problem [76], which is 
hard to solve directly, thus approximations are traditionally 
used. For instance, conic programming relaxation was ap-
plied in ref. [75] to deal with a TNEP problem with an AC 
network model considering power flow and voltage limits. 
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Having a convex relaxation, this mixed-integer optimization 
problem could be solved by a branch-and-cut algorithm. 
Though approximation was used, it was still more valid than 
general DC network planning models. Besides approxima-
tion of a model which makes it easier to solve, there are also 
other methods. A new idea was put forward in ref. [76], 
where a discrepancy-bounded local search (DBLS) method 
was presented, using a black box to cover and model com-
plexity of power flow. And the algorithm should be decou-
pled with the specific power flow model. Both DC power 
flow model and AC power flow model were studied, and 
results showed that they did affect the costs.  

Many uncertainties have been brought to electric power 
systems since integration of renewable energy generations. 
Therefore, we need new or improved models and methods 
to solve the related planning problems. Robust transmission 
network expansion planning (RTNEP) is one of them, and a 
general static TNEP model is a mixed integer nonlinear 
optimization problem. Usually, renewable generations and 
loads are considered as uncertainties, such as in refs. [74] 
and [77], which are described by simple uncertainty sets and 
do not need information of related probability distributions. 
Taguchi’s orthogonal array testing (TOAT) method, which 
is a traditional approach in robust optimization and is very 
popular in the field of quality engineering (QE), was used in 
ref. [74] to select testing scenarios in the RTNEP problem. 
In ref. [77], with the use of Benders decomposition (BD), 
the model turned to iterate between a master problem and a 
slave problem. What’s more, both problems could be solved 
by existing optimization software, since they were mixed- 
integer linear programs. Nevertheless, RTNEP is not the 
only method. Modifications on previous modeling and ap-
proaches can also adapt the uncertainties brought by re-
newable energies. For example, the authors in ref. [78] em-
ployed an improved Monte Carlo simulation method to 
evaluate flexibility of the studied system, which was related 
to uncertainties, and flexibility was one of the objectives in 
the presented multi-objective optimization model for TNEP. 
In ref. [79], more attention was paid to the assessment of 
security, in which the costs of preventive control, emergen-
cy control and social losses were related to the uncertainties 
of load and wind power. In such a case, both steady and 
dynamic aspects were considered in the TNEP optimization 
model. 

6.2  Distribution network expansion planning 

Distribution network expansion planning (DNEP) aims at 
finding or determining the minimum cost for expansion plan, 
which guarantees enough capacities of substations and lines 
for forecasted load demands during the planning horizon 
[80]. It was found that a general DENP optimization prob-
lem could be modeled as a disjunctive conic program pre-
cisely with equivalent formulations in ref. [80]. What’s 
more, with the help of tight polyhedral approximations, 

these two formulations could be solved by specific software 
dealing with mixed-integer linear programming (MILP). 
Multistage DNEP can be considered as a special or an ad-
vanced DNEP problem, which also attracts researchers’ 
attention, and various novel or modified algorithms can be 
employed. A novel balanced genetic algorithm (BGA), 
which is a modified genetic algorithm (GA) was used to 
ensure diversity of strategies, and a modified data envelop-
ment analysis method (MDEA) was adopted to guarantee 
flexible and objective comparisons in ref. [81] to solve a 
multistage DNEP problem. Unit commitment (UC) sched-
uling was taken into account in a multistage DNEP question 
in ref. [82], thus the method of artificial bee colony (ABC) 
was adopted. 

The integration of renewable energies with electric pow-
er system can not only be in a large-scale, but also be in a 
small-scale, known as the integration of distributed genera-
tions (DGs) to some extent. The former often causes uncer-
tainties in TNEP, as what mentioned in section 6.1, while 
the latter can cause uncertainties in DNEP, and also flexible 
operation modes in distribution network, such as grid-  
connected model and islanded mode of microgrids. A rela-
tively systemic planning model for distribution system with 
DGs was presented in ref. [83], with consideration of DG 
reactive capability limits. In this paper, probabilistic models 
were employed to describe the uncertainties of load demand, 
wind speed and solar radiation, thus the methods of TRIBE 
particle swarm optimization (TRIBE PSO) and ordinal op-
timization (OO) were presented to deal with the optimiza-
tion problem and its sub-problems. Based on a certain mi-
crogrid, an energy management method was used to con-
duct a determinist operational planning in ref. [84]. Energy 
managing of both central level and local level within a mi-
crogrid were considered and analyzed, respectively. Ref. 
[85] studied the effects of microgrids on electric distribution 
system, with the proposed methodologies concerning mi-
crogrid modeling and network planning algorithm. The cas-
es and results covered the comparison of backup philoso-
phies and the comparison of conventional distribution net-
works without microgrids and with a significant (33%) pen-
etration of microgrids. In a summary, when related with 
DGs and microgrids, there are many interesting points to 
research under the topic of DNEP. 

7  Conclusions 

The smart grid with integration of renewable energies is the 
possible future electric power system. Focusing on them, 
new ideas and new methods may come up to deal with the 
related challenges and uncertainties. This paper chooses six 
subjects to summarize the recent advanced work on smart 
grid and renewable energy integration, in order to present an 
overview of new progress in related areas and to help rela-
tive researchers find promising spots. Besides the topics 
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mentioned in this paper, there are still some other challeng-
ing and interesting problems to be solved. 
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