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A random medium model is developed to describe damage and failure of concrete. In the first place, to simulate the evolving 
cracks in a mesoscale, the concrete is randomly discretized as irregular finite elements. Moreover, the cohesive elements are 
inserted into the adjacency of finite elements as the possible cracking paths. The spatial variation of the material properties is 
considered using a 2-D random field, and the stochastic harmonic function method is adopted to simulate the sample of the 
fracture energy random field in the analysis. Then, the simulations of concrete specimens are given to describe the different 
failure modes of concrete under tension. Finally, based on the simulating results, the probability density distributions of the 
stress-strain curves are solved by the probability density evolution methods. Thus, the accuracy and efficiency of the proposed 
model are verified in both the sample level and collection level. 
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1  Introduction 

Concrete, as the most widely used construction material for 
infrastructures, is featured by its stochastic nonlinearities 
due to the random distribution of the multiple phases and 
defects [1]. After years of investigations, two groups of 
models, i.e., the continuum models based on the continuum 
damage models and the fracture simulation based discon-
tinuous models, have been proposed to characterize the non-
linear behaviors of concrete. 

Within the framework of the continuum damage me-
chanics, the continuum models [2–5] incline to consider 
the degeneration of mechanical behaviors by using the 
continuum damage variable. Based on the definition of the 
generalized damage variable (avoiding the explicit simula-
tion of cracks and voids), the continuum damage mechan-
ics has its intrinsic advantage to drive the physical mecha-

nisms into the irreversible thermodynamics principles to 
model a wide range of softening materials, especially the 
concrete. However, the irreversible thermodynamics only 
provides a framework for the damage evolution. That is to 
say, the thermo dynamical inequalities could not define the 
specified forms of the damage evolution functions, which 
also play a very important role in continuum damage me-
chanics. Hence, several empirical expressions of damage 
evolution were proposed based on the curve fitting of ex-
perimental results. In this case, the forms of damage evo-
lution and the corresponding parameters are often lack of 
physical meanings. What’s more, the generalized damage 
variable cannot describe the detailed crack propagation 
and interaction, which are critical to the strength and the 
failure modes of concrete.  

Meanwhile, some researchers turned to the discontinuous 
models, which tend to simulate the propagation and coales-
cence of micro-voids and cracks in a direct way. As for a 
single crack, lying within the infinite homogenous solid, the 
closed-form solution [6] can be derived based on the classical 
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linear elastic fracture mechanics (LEFM) for several stress 
conditions. Referring to the interaction of the cracks, many 
analytical techniques were also developed, such as differen-
tial method, Mori-Tanaka method and so on [7]. However, 
most of these methods are restricted to the weak interaction 
of cracks. When it comes to the complex coalescence, bi-
furcation even the intersection of cracks, it is still extraor-
dinarily challenging to obtain the analytical solution nowa-
days. Some other researchers tried the numerical approaches 
that explicitly model the cracking process, e.g., the extended 
finite element method [8] (X-FEM) and the interface finite 
element method. In the X-FEM, the additional discontinu-
ous enrichments are introduced to model the presence of 
cracks, voids or heterogeneities within the finite element, 
which is the geometric domain. In the interface finite ele-
ment method, the variational equations are built with the 
terms representing the matrix and the interfaces separately. 
Then, a solid matrix is modeled as elastic media and the 
interface is described by the cohesive law. The cohesive law 
was firstly proposed by Dugdale [9] to describe the crack 
growth in metal. Later, Barenblatt [10] gave the mathemat-
ical explanation of the cohesive models. Hillerborg [11] 

investigated the applied formulations of several materials, 
such as the metal and concrete. Xu and Needleman [12] 
attained the convincible simulations of the fracture in solid, 
which was based on the combination of the finite element 
and cohesive element method. 

When taking a close observation at the concrete, it is 
naturally to find out that its mechanical properties, ranging 
from the strength to the Young’s modulus, are endowed 
with stochastic features due to the random distribution of the 
aggregates and the micro-defects (cracks and voids). 
Thereby, to deem the concrete as a kind of random medium 
will be more reasonable, as compared to the homogeneous 
description [1]. The random nature within the domain of 
concrete can be defined by the random medium. As for the 
simulation of concrete fracture and failure process, the ran-
dom medium is modeled by a 2-D random field in this paper.  

In the present paper, the randomly distributed finite ele-
ments and cohesive elements are developed in the first step 
to introduce the possible cracking paths. Then, the concrete 
is considered as a random medium. In this case, we use the 2-D 
random field, which is generated by the newly developed 
stochastic harmonic function method to model the spatial 
variation of fracture energy. It turns out that the numerical 
results of the tensile tests not only agree well with the ex-
perimental results in the mean and standard deviation curves, 
but also offer the probability density distributions of the stress- 
strain curves against the histograms of the experimental data.  

2  Cohesive model based simulation 

2.1  Cohesive crack method 

Consider a solid , which contains a series of zero-thick-      

ness cracks or shear bands. And let S be the interface within 
the solid (Figure 1(a)). As it depicts, S cuts  into two parts. 
Herein, we denote the two sides of interface S by S+ and S, 
and the two parts of solid  by + and .  

To establish the weak form equation of the solid in both 
parts, we have 

 d d d( ) : ( )
S 

  
  

 


     tσ u ε ν ν T ν , (1) 
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 


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where T+,T indicate the stress at the interfaces of the solid 
and T=T+=T. Combining eq. (1) and eq. (2), we have 

 d d d( ) : ( ) + ( )
S 

   


     σ u ε ν T ν ν t ν . (3) 

To solve the interfacial stress T in eq. (3), a nonlinear 
zone is introduced between the real crack and the non- 
cracking elastic area. Thanks to the nonlinear zone, the 
stress at the tip of the crack is reasonable, rather than the 
analytical infinity by the LEFM. Generally, the stress at the 
crack-tip is named as cohesive stress. Hillerborg proposed 
that the crack would propagate when the cohesive stress 
reached the strength of concrete, and the cohesive stress 
reduced along the opening of the crack. To apply the cohe-
sive stress as the external tractions applying on the crack 
surfaces, the cohesive crack model is established (Figure 2) 
[10, 11].  

As for the tensile fracture (Model-Ⅰfracture), the cohesive  

 
 

Figure 1  Solid analysis. (a) Solid with an interface; (b) split the solid 
along the interface.  

 

Figure 2  Cohesive crack model. 
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stress can be deemed as the function of COD (crack opening 
displacement) as follows 

 [ ( )]T T w u . (4) 

In this paper, the following stress-COD relationship dis-
tribution (Figure 3(a)) of the cohesive model is adopted, 
among various expressions [11],   

 tf f kw  , (5) 

Where f =T·n denotes the normal cohesive stress, w =w·n 
denotes the crack width, n is the normal unit vector, and k is 
the strength intensity factor. 

Introduce the fracture energy as an intrinsic property of 
concrete, and specify its formulation as 

 d
1

0

w

cG f w  , (6) 

where w1 is the maximum width of cracks.  
Apparently, for the f w diagram shown in Figure 3 (a), 

Gc can be expressed as 

 d
1

1
0

2
w

tf w f w  . (7) 

Hillerborg suggests that the stress-strain relationship of 
the cohesive element should be linear before the stress 
reaches the tensile strength. The ascending line is also linear 
which is determined by Gc after the tensile peak stress (Fig-
ure 3 (b)).  

As for the shear fracture (Model-II fracture), the cohesive 
stress can be expressed as a function of CSD (crack shear 
displacement). Then the shear fracture energy Gs is intro-
duced for Model-II fracture and the cohesive stress can be 
obtained as the Model-I fracture [13]. Although in this pa-
per, the tensile fracture is critical to the failure of the con-
crete, the shear fracture is considered for the integrity of the 
model.  

Substituting eq. (4) into eq. (3), we obtain the functional 
equation as 
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Figure 3  The stress diagram of cohesive model. (a) Stress-crack width 
relationship; (b) stress-strain relationship of cohesive model. 

It could be noted in eq. (8) that the presence of a cohe-
sive surface results in the addition of a new term to the 
functional equation of the finite element [12]. Thus, the 
finite elements and the cohesive elements are compatible in 
a unified model.  

2.2  Random cohesive model 

As discussed in section 2.1, the cohesive elements may give 
the potential crack paths when connecting the finite ele-
ments. As we know, the cracks in concrete are highly irreg-
ular and randomly oriented. Herein, the irregular elements 
are developed to model the random initial micro cracks in 
the concrete. The irregular cohesive model [14] is estab-
lished as follows. 

1) Define the boundary of the 2D domain. 
2) Generate the set of random points in the domain and 

boundary. 
3) Decompose the domain by the Delaunay triangulation 

scheme. 
4) Contract the triangles to gain the cohesive elements 

that connect the adjacent finite elements. 

 

Figure 4  Generation of the irregular cohesive elements. (a) Random point 
set; (b) delauney triangulation; (c) finite elements and cohesive elements.  
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3  Stochastic harmonic function and random field 

When it comes to the classic fracture mechanics, the frac-
ture energy is considered as the intrinsic property of the 
material. Admittedly, the deterministic description, which 
relies on the mean value of the fracture energy, simplifies 
the model as well as the simulation. However, the hetero-
geneity and the randomness that are induced by the ran-
domly distributed micro-cracks cannot be taken into ac-
count in the deterministic simulation. What’s more, the 
various cracking branches and the unpredictable failure 
modes cannot be well tackled either. Therefore, to define 
the concrete as a kind of random media would represent the 
essential randomness of the concrete [1]. In order to capture 
the random propagation of cracks and the failure modes, the 
fracture energy is described as a 2-D random field in the 
present work. 

Chen and Li [15] originally developed the stochastic 
harmonic function for the simulation of random process, 
such as the time histories of strong ground motion and the 
wind. Based on the development of the stochastic harmonic 
function for spectrum representation, Liang et al. [16] ex-
tended it into the multi-dimensional random fields. The 
stochastic harmonic function method is introduced to char-
acterizing the random field of fracture energy in the present 
paper. Without loss of generality, the 2-D, homogeneous 
Gaussian random field f0(x,y) with =0 and =1 can be 
represented as follows 

 
 

 

1 2

1 2 1 2 1 2

1 2

1 2 1 2 1 2

(1)
1 2

1 1

(2)
1 2

( , ) 2 cos

cos ,

N N

n n n n n n
n n

n n n n n n

f x y A K x K y

A K x K y





 

  

   

 
  (9)

 

where f (x,y) is the random field generated by the stochastic 

harmonic function;
 1 2n nA and

1 2n nA denote the amplitudes of 

the n1-th and n2-th harmonic components; 
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indicate respectively the wave numbers.
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1 2n nA and
1 2n nA  are determined by the following equations  

  
1 2 0 0 1 2 1 21 2 1 22 ,n n f f n n n nA S K K K K   , (11) 

  
1 2 0 0 1 2 1 21 2 1 22 ,n n f f n n n nA S K K K K    , (12) 

where 
0 0f fS  is the target spectrum density function. From 

eqs. (11) and (12), it can be clearly observed that the ran-
dom field could be fully determined by the target spectrum 
density function. It can be also proved that the power spec-
tral density function of the stochastic harmonic function 
based random filed is equal to the target one. What’s more, 
it has been proved that the stochastic harmonic random field 
asymptotically approaches the normal distribution.  

According to eqs. (5) and (8), the fracture energy will not 
only affect the tensile strength of the concrete but also in-
fluence the descending branch of the stress-strain relation-
ship of the concrete. Therefore, the mean value, fluctuation 
and the correlation of fracture energy should be determined. 

The correlation function [17] is chosen as 
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 (13) 

where 1 2 1x x    indicates the distance of x direction in 

cartesian coordinates; 2 2 1y y   indicates the distance of 

y direction; b1 and b2 are the correlation length of x and y 
directions, respectively. 

Using the Fourier transform, the corresponding power 
spectrum density function can be obtained as follows: 

 0 0
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( , ) exp ,
4 2 2
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Substituting eq. (14) into eqs. (11) and (12), the random 
field of the fracture energy can be established by eq. (9).  

The random field 1( , )f x y with 
cG and 

cG  could be 

expressed as follows 

 2
1( , ) ( , )

c cG Gf x y f x y   . (15) 

4  Tensile failure simulation of concrete 

4.1  Numerical model 

The simulations for the tensile failure of concrete were car-
ried out based on the proposed methods in the former sec-
tions. The geometric dimensions of the numerical speci-
mens were b=150 mm and h=150 mm. According to the test 
results obtained by Ren et al. [18], the material parameters 
were taken to be E=37559 MPa and v=0.2. The mean value 
of the tensile strength of the concrete applied to both the 
finite elements and the cohesive elements was ft=3.28 MPa. 
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The random field of fracture energy was introduced based 
on the methods proposed in section 3. Due to the strong 
nonlinearities induced by the cracking process, we chose the 
explicit solution to get the temporal integration of the crack 
process. The numerical specimen was developed by the 
finite element package ABAQUS Explicit. Based on the 
previous irregular discretization method, more than 20000 
finite elements and 30000 cohesive elements were generat-
ed. The numerical specimen and its boundary conditions are 
given in Figure 5. 

4.2  Random field model 

Bazant and Pfeiffer [19] compared the notched and non- 
notched beams to localize the heterogeneities of concrete. 
With the test results, the correlation length could be consid-
ered as the fracture influenced length governed by the het-
erogeneous of material. Thus in the present work, the corre-
lation lengths in eq. (13) were specified as b1=b2=3dmax=  
24 mm, where dmax is the maximum aggregate size. 

Carpinteri and Chiaia [20, 21] introduced the multifractal 
scaling law for fracture energy based on a series of compact 
tests and three-point bending tests. As for the cohesive 
crack model, the fracture energy is  

 
1/2

1 ch
c c

l
G G

b


    
 

, (16) 

 maxchl d , (17) 

where cG
 is the nominal asymptotic fracture energy valid 

within the limit of infinite structure size ( b  ), b is the 
size of the structure and is 150 mm in the simulation, lch is 
the characteristic length in determining the size dependent 
Gc along with the direction of the fracture process, and  is 
the non-dimensional parameter. The material parameters 

adopted in the present paper are N m160 cG   and 

=30. 
Based on eqs. (16) and (17) as well as the parameters, the 

mean value of the fracture energy was calculated as 
cG = 

100 N/m, and the standard deviation of the fracture energy 
was N m0.1 10 .

c cG G    Thus, the fracture energy 

random field could be modeled by eq. (15). 

 

Figure 5  The numerical model and the stress-strain relationship of cohe-
sive elements. 

The target power spectrum density function and the 
power spectrum density function based on the stochastic 
harmonic function are plotted in Figures 6 and 7, respec-
tively. In addition, the comparison between these two PSDs 
is depicted in Figure 8 at given wave numbers. The samples 
of the random field are shown in Figure 9. 

 

Figure 6  Target power spectral density function. 

 

Figure 7  Power spectral density function by stochastic harmonic function. 

 

Figure 8  Power spectral density function. (a) K2=0; (b) K1=0. 



1278 Liang S X, et al.   Sci China Tech Sci   May (2013) Vol.56 No.5 

 

Figure 9  Samples by stochastic harmonic function for fracture energy. (a) 
Sample 1; (b) sample 2.  

4.3  Failure simulation  

As is shown in Figures 10 and 11, the overall procedure of 
the nonlinearity and the cracks can be observed as follows: 
At the very beginning, the stress and strain both increase 
linearly; when the loading increases, there are micro-cracks 
uniformly distributed in the whole specimen; then, with fur-
ther increasing of the loading, the micro cracks concentrate 
on a certain area and the stress concentration happens on the 
tips of the cracks; at the final stage, a severe strain concen-
tration occurs on the cracking zones and a main crack which 
is perpendicular to the tensile loading cuts through the 
specimen of the concrete. Figure 10 indicates the compari-
son between the numerical experiment and the test result of 
the end-crack failure of the concrete under tensile test, and 
Figure 11 indicates the non-end-crack failure as well.  

5  Probability density analysis of the stress- 
strain relationship 

When taking a close look at the concrete based on the random 

medium model, the most accurate way to describe the ran-
dom stress-strain relationship is the probability density 
function. Thus, the probability density evolution method [22] 
can be applied. Without loss of generality, the monotonic 
stress-strain relationship is governed by the following equa-
tion: 

 ( , )f   , (18) 

where 1 2( , , , )n     is the random parameter vector, 

whose joint probability density function is ( )p  . When it 

comes to the fracture energy random field by eq. (9),  is 
composed of the random wave numbers 

11nK and 
22nK and 

the random phase angles 
1 2

(1)
n n and 

1 2

(2)
n n .  

To replace the generalized time parameter t by  , the 
probability density evolution equation [23] is 

 
( , , ) ( , , )

( , ) 0
p p      

  
 

 
 

 
 , (19) 

Where   denotes the first-order derivative of the stress. 
Eq. (19) can be solved by combining the initial condi-

tions, the simulations and the finite-difference method. The 
solving procedures are as follows. 

1) Select the representative points of the random wave 

numbers 
11nK , 

22nK and the random phase angles 
1 2

(1)
n n , 

1 2

(2)
n n . The selected points are ( 1,2, , )q selq N   , where 

selN  is the total number of the selected points. 

2) Simulation based on the proposed cohesive model is 
done for each representative point. 

3) The finite-difference computation method [24] is used 
to get the joint probability density function. 

4) Take numerical integration with respect to q to ac-
quire the numerical PDF. 

In this paper, the quasi-symmetric method [25] was cho-
sen in selecting the representative points and the number of 
random variables was 32. The total number of the repre-
sentative points was 300. As is illustrated in Figure 12, the 
comparison between the simulating results and the test re-
sults suggests the validation of the model. Figure 13 depicts 
the probability density function of the stress-strain relation-
ship of the concrete. Figure 14 illustrates the comparison 
between the experimental results and the theoretical results 
of the stress probability density function at certain strain. 

It can be noted from eq. (19) that the probability density 
evolution of the stress will transfer in the whole loading 
process and will be affected by the random parameters and 
the complexity of the model. To the best knowledge of the 
authors, the probability flow of the stress in the numerical 
model will lead to the further random cracks and the failure 
modes. As for the simulation in this paper, there were 187 
end-crack failures and 113 non-end-crack failures of the 
numerical samples. It can be observed in Figures 13 and 14  
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Figure 10  Simulation and test result of end-crack failure (u ultimate tensile strain). (a) =0.2u; (b) =0.7u; (c) =u; (d) test result. 

 

Figure 11  Simulation and test result of non-end-crack failure (u ultimate tensile strain). (a) =0.2u; (b) =0.7u; (c) =u; (d) test result. 
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Figure 12  Mean and standard deviation curves for stress. 

 

Figure13  Probability density functions of stress-strain curve 

 
Figure14  Comparison of the probability density functions for the ex-
perimental and theoretical results. (a) =0.0001; (b) =0.0003.  

that the probability density of the stress changed from one 
peak to two peaks with the increasing of strain due to the 
random failure modes. Thus, the probability density of the 
stress-strain relationship can represent the stochastic fea-
tures of concrete and reveal the essential transfer of proba-
bility density.  

6  Conclusion 

In this paper, the failure simulation of the concrete based on 
the random medium model is presented. The randomness of 
concrete is considered in two aspects. On the one hand, the 
random micro cracks are introduced by the irregular finite 
elements and cohesive elements. On the other hand, the 
stochastic harmonic function is adopted to model the 2-D 
random field of fracture energy. Then, simulations of the 
cracking process and the failure modes are given to testify 
the proposed model in the sample level. In addition, the 
probability distribution evolution method is introduced to 
clarify the probability density distributions of the stress- 
strain relationship in the collection level. With the efforts of 
the present work, a new random medium based model for 
the accurate simulation of concrete is developed. 

This work was supported by the National Natural Science Foundation of 
China (Grant Nos. 90715033, 51261120374, 51208374). 
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