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Direct numerical simulation (DNS) was performed for the first time to study the flow over a backward-facing step at a high 
Reynolds number on a coarse grid. The flow over backward-facing step is the typical turbulent flow controlled by large eddy, 
in which the effect of small eddy could be negligible as an approximation. The grid dimension could easily satisfy the resolu-
tion requirement to describe the characteristics of a large eddy flow. Therefore, direct numerical simulation of N-S equations to 
obtain the turbulent flow field on the coarse grid could be realized. Numerical simulation of a two-dimensional flow over a 
backward-facing step at a Reynolds number Re=44000 was conducted using Euler-Lagrange finite element scheme based on 
the efficient operator-splitting method (OSFEM). The flow field was descretized by triangle meshes with 16669 nodes. The 
overall computational time only took 150 min on a PC. Both the characteristics of time-averaged and instantaneous turbulent 
flow were simultaneously obtained. The analysis showed that the calculated results were in good agreement with the test data. 
Hence, the DNS approach could become the reality to solve the complex turbulent flow with high Reynolds numbers in prac-
tical engineering. 
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1  Problems introduction 

Turbulent flow is one of the common phenomena in fluid 
movement in engineering practice, its numerical simulation 
has been one of the most difficult problems in fluid me-
chanics for a long time. At present, there exist three solution 
techniques. The first one is using time-averaged N-S equa-
tions with the aid of a semi-empirical approach modeling 
the turbulent effect, and is called RANS method, of which 
k- model is a widely used method in engineering. However, 
this method could only produce time-averaged flow field. 
The second solution technique is based on partial space- 

averaged N-S equation, called LES method, which can 
produce instantaneous flow field, but still needs a semi- 
empirical approach for modeling the turbulent effect. The 
third one is a direct simulation of turbulent flow by solving 
N-S equations, called DNS method, which can directly sim-
ulate complicated instantaneous turbulent flow phenomena 
without using any other model to simulate turbulent effect, 
and is generally recognized as the most ideal approach. 

The study of DNS method was started in early 1970s. 
Orszag SA and Patterson GS initiated the computation of 
3D isotropic turbulent flow. With the development of nu-
merical simulation and computer technology, some progress 
has been made in DNS studies, from simple isotropic tur-
bulent flow in early days to anisotropic boundary flow, and 
from incompressible flow to compressible flow [1–6]. Only 
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a few research results have been found in the study of com-
plex turbulent flow with boundary separation commonly 
encountered in practical engineering, and all with Reynolds 
number below 5000. In 1998, based on time-splitting 
method, Hung et al. [7] simulated 3D incompressible turbu-
lent flow over backward-facing step using finite difference 
method and stagger-grid mesh of about 108 nodes. In 2008, 
Sengupta et al. [8] reported the results of simulation of 3D 
compressible turbulent flow over backward-facing step us-
ing spectrum method.  

Although DNS method is the best in simulating turbulent 
flow, why cannot it be used to solve practical engineering 
problems? The reason is that first of all, discrete mesh di-
mension must satisfy the Kolmogorov micro dimension 
requirement. It is held that there exist eddies of all dimen-
sions in the turbulent flow, hence, in order to satisfy the 
resolution requirement of small eddies, mesh dimension 
should satisfy the micro dimension requirement. For the 3D 
problems the number of mesh nodes must be up to 109–1011, 

with the increase of Reynolds number, the mesh dimension 
is required to be smaller and time step becomes smaller ac-
cordingly; thus the computation effort is enormous, which 
can not be realized even by modern super computers. Cur-
rently, DNS method is generally used as a research tool to 
study turbulence mechanism, to conduct numerical tests on 
artificially schematized turbulent flow, and to obtain the 
results of turbulence mechanism, not obtainable from phys-
ical tests, so as to finally provide a basis for turbulent flow 
model studies [9]. 

If DNS is directly used to simulate turbulent flow at a 
high Reynolds number on coarser grids without considering 
the micro dimension requirement of Kolmogorov, what 
would happen? Is the numerical solution totally distorted? 
Or the computer would overflow and can not continue in the 
process of numerical calculation? There is no such relevant 
report up to now, which urges the authors’ to make attempts 
on this issue. 

In the natural turbulent flow, eddies of all dimensions, 
large or small, do not play the same role, hence it is not 
necessary to simulate the turbulent flow fields for all eddy 
dimensions. For a gradually varying boundary-flow, when 
the flow has no boundary separation, there obviously exist 
small eddies only, which play the main role in the flow field; 
for a suddenly varying complex turbulent flow leading to 
the boundary separation due to suddenly boundary change, 
the resultant eddies of large dimensions play the dominant 
role in the flow field, while eddies of small dimensions play 
the secondary role. The turbulent flow over a back-
ward-facing step often occuring in practical engineering is a 
typical flow controlled by large eddies, which can be de-
scribed by using coarse grids to satisfy the resolution re-
quirement for large eddies. This approach can be used as an 
approximate engineering method regardless of Kolmogo-
rov’s micro dimension requirement. 

Another important factor constraining the development 

of DNS is the difficulty in the numerical solution of N-S 
equations at a high Reynolds number, for which many solu-
tion methods for N-S equations at a low Reynolds number 
become unusable. As the convection term in the equation is 
a nonlinear term, which is the source generating turbulent 
flow, with the increase of Reynolds number, the effect of 
nonlinearity increases, which needs a high-accuracy discrete 
method to adapt to the high nonlinearity. At present, the 
DNS numerical method for turbulent flow is mainly a finite 
difference method, which focuses on high accuracy in time 
and space. Practice shows that the accuracy of finite differ-
ence scheme affects grid dimension largely. The grid di-
mension of a fourth-order accuracy scheme is four times 
greater than a second-order accuracy scheme [10]. The ide-
alness of a compact finite difference scheme higher than 
fourth-order accuracy can compare to that of the spectrum 
method [11]. The spectrum method with approximate solu-
tion function of very high smoothness, and with application 
of fast Fourier transformation, is a high efficient method for 
DNS method to simulate turbulent flow, but is not applica-
ble to complex geometrical boundary. The finite element 
method, though applicable to complex boundary, is seldom 
used to solve N-S equations of flow with a high Reynolds 
number. Although the upwind finite element scheme is used 
for solution of convection operator, it is only applicable to 
flow at a lower Reynolds number. Whatever method is used 
at present, the treatment of nonlinear convection term re-
mains difficult and vital in computation. In 2006, a smooth 
particle hydrodynamic method (SPH method) was reported 
to compute the 2D incompressible turbulent flow over 
backward-facing step by adopting pure Lagrangian method 
to directly solve N-S equations under Lagrangian coordinate, 
which avoided the difficulty in solving the nonlinear con-
vection term [12]. 

The authors, in using k-model to simulate turbulent 
flow over backward-facing step, developed a kind of SEL 
method [13], which is a finite element method combining 
the Euler-Lagrange approach based on the operator-splitting 
method (time-splitting method). The method takes the ad-
vantages of Lagrange method to avoid the difficulty in the 
treatment of nonlinear term, and maintains the conventional 
simplicity of Euler method. It is hoped that this method can 
fit DNS method to simulate turbulent flow at a high Reyn-
olds number. The method has therefore been used to direct-
ly solve N-S equations on normal grid mesh so as to simu-
late complex turbulent flow at a high Reynolds number 
controlled by large eddies. This method is called SEL-DNS 
method in this paper. 

2  Basic equations and problems to be sloved 

As reported in ref. [14], on the Conference on Complex 
Turbulent Flow in 1980 in Stanford, USA, it was suggested 
that the test conditions of turbulent flow over backward- 
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facing step in ref. [15] should be taken as the verification 
object of the numerical modeling study of complex turbu-
lent flow. The test was conducted in a rectangular wind 
tunnel with a width of W=96 cm and a step height H=3.81 
cm, extending from bell-shape transitional part to the flat 
and straight channel. The Reynolds number is about 44000 
based on inflow velocity U0 =18.2 m/s and step height H. 
The channel height upstream of the step H1=2H and that 
downstream of the step H2 =3H, and the expansion ratio 
H2/H1=1.5, and channel width W=16H, based on which the 
flow can be basically regarded as a 2D flow. In this paper, 
the above conditions are taken as the study object. As 
shown in Figure 1, the inflow boundary is placed at 4H up-
stream the step and the outflow cross section at 2H down-
stream the step.  

It is assumed that characteristic length is step height H 
and characteristic velocity is free flow velocity at entrance 
cross section U0. The following dimensionless quantities are 
introduced: 
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where pressure P is represented by pressure head. For the 
sake of convenience, in the following, the curved dash on 
the dimensionless quantity is omitted. The dimensionless 
2D incompressible N-S equations are derived as 
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Unless specially pointed out, the parameters without 
curved dash in the paper are regarded as dimensionless pa-
rameters. 

Giving solution conditions for quasi-linear partial differ-
ential equation is a difficult problem. By now, the well- 
posedness of solution of mixed operator equation of non-
linear term is not mathematically verified, but only verified 
empirically through numerical tests. To well-pose the 
boundary and initial conditions of N-S equations is almost  

 

 

Figure 1  Schematic diagram of computation domain and boundary. 

impossible, especially the determination of inflow boundary 
conditions. In simulating turbulent flow, DNS method is 
required to give the stochastic pulsation process of flow 
velocity at the entrance to trigger pulsation in the flow field, 
which can hardly be satisfied. Various methods are tried to 
give an approximate value. In fact, the instability of flow at 
a high Reynolds number is the inherent characteristic of 
N-S equations, by which the computational results of flow 
field pulsation can be obtained even without the inflow sto-
chastic velocity pulsation. In this paper, the inflow bounda-
ry adopts steady velocity distribution without stochastic 
pulsation momentum: 

 0 (1 exp( )),iU U my    (4) 

where m is a constant and is chosen as 35 here. 
As the upper and lower ends of the inflow boundary are 

both non-slip boundaries, the velocity distribution at the 
central line of the inflow boundary is symmetrical. Figure 2 
is the distribution obtained from eq. (4). The inflow bound-
ary pressure satisfies natural boundary conditions, the upper 
and lower boundaries are solid wall boundaries, velocity is 
treated as non-slip boundary, and pressure is still taken as 
natural boundary. At the exit, velocity is treated according 
to non-reflection boundary conditions, pressure is a bound-
ary condition, and P=0. The initial condition is stationary 
flow field and all the flow parameters are zero. 

3  Numerical solution technique of SEL-DNS 

In the SEL method developed by the authors in ref. [14], the 
momentum transport equation containing complex operators 
is split according to the characteristics of operators to adapt 
to suitable numerical methods: Lagrange method is used to 
solve nonlinear convection operator and Euler method is 
applied to solve linear diffusion operator, the way of which 
can be called a mixed Euler-Lagrange approach. This ap-
proach was successfully applied to the numerical solution of 
2D and 3D flows in wide and shallow rivers [16, 17]. 

To adapt to DNS method, an adjusting factor is intro-
duced in splitting of operators, and the momentum equation  
 

 

Figure 2  Velocity distribution at entrance cross section. 
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is then solved by three steps: convection step (eq. (5)), 
propagation step (eq. (6)) and diffusion step (eq. (7)): 
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where α is a adjusting factor. When α=0, which is the split-
ting scheme in SEL method in ref. [13], α=0.025 is chosen 
in this paper. 

It is found in the numerical test by the authors that when 
DNS is used to solve the turbulent flow at a high Reynolds 
number, the solution is very sensitive to some detail of the 
computation method, leading to unstable or unrealistic solu-
tions. When the adjusting factor is introduced, the solution 
of DNS may be well controlled. 

In one time step, time advancement can be completed by 
above three steps. The pressure at lower time step, a known 
value, is used for the pressure term at the right side of the 
convection step (eq. (5)). When Lagrange approach is used 
for solution, eq. (5) can be written as follows: 
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Taking point i in Figure 3 as an example, in the elements 
surrounding the point, one should try to find its convection 
element M and corresponding convection point D. The par-
ticle path line equations of point D are 
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The value at any point (x, y) in the Mth element sur-
rounding i is represented by linear interpolation: 
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If U and V in the element also use linear interpolation, it 
is easy to get area coordinates L1, L2 and L3 at point D. If the  

 

Figure 3  Flow particle convection at convection element D. 

three area coordinates are greater than 0 and less than 1, this 
shows point D is within the element under investigation, 
which can be taken as convection element M, and its corre-
sponding point D is the convection point. Velocity at point 
D can be calculated by  
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The flow particle at point D at time n arrives at point I 
after t . From eq. (8), one can obtain the value of point i 
after convection at time 1nt    
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It can be seen that as the Lagrange approach is used in 
the convection step, the difficulty in treating nonlinearity is 
thus avoided, and the computational stability and accuracy 
are effectively increased. Therefore, the approach is suitable 
for the solution of N-S equations at high Reynolds numbers. 

For the solution of the pressure propagation step, an ex-
plicit finite element method is used. The following equa-
tions are derived from eq. (6): 
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where ( , , , )pc cpU U V V represent the corresponding physi-

cal values after convection and pressure propagation, re-
spectively. To obtain the pressure at higher time step, x, y 
are derived respectively from the above equations so as to 
satisfy the continuity equation after pressure propagation. 
Thus we get 
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The right side of the above is known as a typical pressure 
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Poisson equation, which can be easily solved by the implicit 
finite element method. The Galerkin weighted-residual 
method and pressure Poisson equation (eq. (14)) are equiv-
alent to solving the following integral equation: 
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Using shape function L as weighted function N, the linear 
positive definite symmetric sparse coefficient matrices can 
be derived, and it can be solved by use of L-R method easi-
ly. After the pressure at higher time step is solved, velocity 
at higher time step ( ( 1) ( 1),n n

i iU V  ) can be easily obtained 

from eq. (13) after the effect of propagation of the pressure . 
Diffusion step can be solved by using implicit finite ele-

ment method. From eq. (7), one can obtain 
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The Galerkin method can be used to solve the following 
integral equations: 

( 1) ( 1)
( 1)

( 1)
( 1)

( 1) ( 1)
( 1)

( 1)
( 1)

( )

,

( )

.

d d

d d

d d

d d

n n
n

A
A

n
n

p S

A
n n

n

A
A

n
n

p S

A

t N U N U
NU

Re x x y y
t U

NU N s
Re n
t N V N V

NV
Re x x y y

t V
NV N s

Re n

 



 



 





 





    
  

   
 




    
  

   
 




 

 

 

 

(17) 

4  Numerical test results of SEL-DNS 

The computational parameters of 2D flow over a back-
ward-facing step are determined according to the test pa-
rameters in ref. [10]. Reynolds number Re based on flow 
velocity at entrance U0 and step height H is 44000. The flow 
field is discretized by triangular element in the computation. 
To simplify the treatment of computational results, a uni-
form rectangular mesh is adopted at first, then the rectangu-
lar mesh is split into a triangular mesh afterwards. To avoid 
accumulation of system errors, alternate splitting triangle 
mesh is used as shown in Figure 4. Two kinds of meshes are 
compared. In Mesh 1, 0.167x H  , 0.1y H  , number 

of nodes is 4255, and number of elements is 8160; in Mesh 
2, which is a double finer mesh, 0.0833x H  , y     

 

Figure 4  Grid splitting (partial) in computation domain.  

0.05H , number of nodes is 16669, and number of elements 
is 32640. The numerical test shows that the computational 
results of the two meshes are close to each other, but Mesh 
2, due to its higher resolution, is smoother. Unless otherwise 
stated, the computational results described below are from 
the test of Mesh 2. Time step t  is 0.025H/U0. The test 
starts from stationary flow field and the total time of the test 
Te is 300H/U0. The trial test shows that after T0 =150H/U0, 
each parameter of the flow field starts to approach a steady 
trantient process. Therefore, for time averaged statistics, 
5000 instantaneous values are adopted in the time period 
150H/U0 from T0 to Te as statistic samples for analysis. 

4.1  Point pressure behind the step and velocity fluctu-
ation characteristics with time 

Although the boundary conditions are given according to 
steady flow conditions, the parameters of the flow field be-
hind the step pulsate obviously. The pressure and velocity 
pulsation at the node of x=5.33H and y=1/3H downstream 
the step in Figure 5 shows that both velocity and pressure 
pulsate with time, with their main frequencies being com-
paratively consistent. 

4.2  Instantaneous and time-averaged characteristics of 
velocity in flow field 

The computational results show that the velocity at any 
point in the computational domain in 20H behind the step 
fluctuates with time, and that quite a few large-scale eddies 
occur in a relatively large area behind the step, but in 8H 
behind the step the fluctuation becomes even more intensive 
and large eddies occur at a higher frequency. With the in-
crease of the distance from the step, large eddies occur at a 
lower frequency, and few eddies are found adjacent to the 
upper and lower solid walls of the step and soon disappear. 
Figure 6 gives nine instantaneous velocity vector fields in 
the region 8H behind the step, showing that at least few 
eddies deform, expand, contract, re-occur and disappear 
with time, thus showing a coherent structure nature. After 
time-averaging the instantaneous velocity, the time-    
averaged flow pattern is totally different from instantaneous 
flow field, showing a good order. Figure 7 gives the time 
averaged flow field behind the step, showing there is only 
one large-eddy area. The location of its end point is the re-
attachment point, and its distance from the step is the reat-
tachment length, which is generally regarded as the recircu- 
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Figure 5  Pulsation process of the pressure at center and velocity in eddy 
area behind the step. 

lation length. Closely behind the step there still exists a 
small and weak eddy in the corner, whose existence is con-
firmed in the test. Figure 8 gives the horizontally time-  
averaged velocity distribution along the step side, showing 
that the horizontal time-averaged velocity is 0 when Xr 
equals 6.9H, which is the computed recirculation length. 
The test in ref. [15] shows Xr varies between 6H and 8H; 
the computational results in this paper are relatively close to 
the averaged test value of 7.0H. 

Figure 9 gives the computational results of horizontally 
time-averaged velocity distribution at two cross sections 
behind the step, which are quite close to the test results. 
Figures 10 and 11 give the contour of main velocity distri-
bution in the instantaneous and time-averaged flow fields, 
respectively, which can further explain the difference be-
tween the instantaneous and time-averaged characteristics 
of the overall flow field.   

4.3  Instantaneous and time-averaged characteristics of 
flow field pressure 

In engineering practice, the flow field pressure distribution  

 
Figure 6  Instantaneous flow field behind the step. (a) T=180H/U0; (b) 
T=195H/U0; (c) T=210H/U0; (d) T=225H/U0; (e) T=240H/U0; (f) 
T=255H/U0; (g) T=270H/U0; (h) T=285H/U0; (i) T=300H/U0.  

 

Figure 7  Time-averaged flow field behind the step. 

 

Figure 8  Horizontal velocity distribution along the step side. 
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Figure 9  Horizontal time-averaged velocity distribution at the cross 
section behind the step. (a) x/H=5.33; (b) x/H=8.0.  

 

Figure 10  Contour of main velocity distribution of instantaneous flow 
field. (a) T=180H/U0; (b) T=195H/U0; (c) T=210H/U0; (d) T=225H/U0; (e) 
T=240H/U0; (f) T=255H/U0; (g) T=270H/U0; (h) T=285H/U0; (i) T= 
300H/U0.  

of the turbulent flow over backward-facing step at a high 
Reynolds number is of practical significance. Dimension-
less pressure difference between probing point and refer-
ence point at the entrance, generally defined as pressure 
coefficient Cp, is adopted to denote pressure distribution 
characteristics. Computational results show that the pressure 
within the flow field fluctuates with time which is similar to 
the velocity fluctuation. Figure 12 gives the instantaneous 
pressure distribution when T equals 300H/U0, indicating 
that the distribution is quite uneven and that in the flow 
field the peak and bottom values of some pressures appear 
at the same time. Figure 13 gives the time-averaged pres-
sure distribution, indicating some regularity of the pressure 
distribution. In general, the pressure increases along the 
channel, inevitably leading to the separation between flow 
and boundary, which in turn may lead to the formation of a 
large eddy, around the center of which there is an obvious 
low-pressure area. Figure 14 gives the time-averaged pres-
sure distribution close to the step, which is compared with 
the test results, showing that the two results closely behind 
the step are in good agreement, but the two results far away  
 

 

Figure 11  Contour of main velocity distribution of time-averaged flow 
field. 

 

Figure 12  Instantaneous pressure field when T=300H/U0. 

 

Figure 13  Time-averaged pressure field. 

 

Figure 14  Pressure coefficient distribution at step side. 
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from the step, though the tendencies of both are similar, 
differ from each other to some extent. 

4.4  Energy characteristics 

The flow over backward-facing step belongs to the flow at 
sudden expansion, whose energy transport is the character-
istic of sudden change. For example, the hole-plug type 
energy dissipater is designed based on the energy dissipa-
tion mechanism of sudden-expansion structures. Therefore, 
to have a better understanding of the energy transport dis-
tribution of the flow over the step is practically significant. 
The energy of unit volume instantaneously passing through 
the cross section, i.e. energy head, can be obtained in a di-
mensionless form by the following equation: 

 2 21
( )d .

u

d

y

j j j j j
y

E U P U V y
q

     (18) 

By use of the above equation the time-averaged energy 
head jE  at all cross sections can be obtained. The 

time-averaged dimensionless head loss difference between 
check section and inflow cross section, 1e jC E E  , means 

relative friction head loss, which can easily prove that the 
negative value of Ce is the head loss coefficient j  in 

Bernoulli equation. It should be pointed out that the velocity 
and the pressure in the conventional computation of energy 
head are time-averaged values irrespective of turbulence 
influence. To make a comparison of the two methods, the 
results of the two are plotted in Figure 15, from which it can 
be seen that because of the effects of the large eddy behind 
the step, energy loss is concentrated within the region of 
10H long behind the step, both showing a step-shaped dis-
tribution. But there is an obvious difference between the 
two; with the increase of the distance from the step, the 
turbulence intensity in flow field decreases gradually and 
the curves of the two become closer. All this shows that in 
the study of flow behind the step at a high Reynolds number, 
turbulence effect should not be neglected. 

Currently, there are no test data to directly verify friction 
head loss distribution. But by the following analysis one can  
 

 

Figure 15  Relative friction head distributions. 

obtain indirect verification. It is well known to all that the 
local energy loss coefficient at sudden expansion derived by 
use of one-dimension momentum conservation theory is 
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by which the local energy loss coefficient in this paper is 
calculated to be 0.11. From Figure 15 one can see that when 
x is about 10H,

 j =0.1, revealing that the computational 

results in this paper are believable. 

4.5  Statistical characteristics of velocity and pressure 
fluctuations in flow field 

The following equations can be used to define the mean 
square error and turbulence shear stress in fluctuation statis-
tics: 

 '''''''' ,,, vuppvvuu xypvu   . (20) 

Figures 16, 17 and18 give respectively the computational 
results of the mean square errors of horizontal velocity 
fluctuation and vertical velocity fluctuation, and turbulence 
shear stress distribution in the flow field. It can be seen that 
the horizontal velocity fluctuation intensity and turbulence 
shear stress are comparatively large near the solid wall, 
similar to the distribution characteristics of pipes; the peak 
value of the vertical velocity fluctuation intensity is com-
paratively far away from the solid wall. Figure 19 gives the 
computational results of the max. turbulence shear stress 
distribution at cross section, showing that near x=3H, there  
 

 

Figure 16  Computational results of mean square deviations of horizontal 
velocity fluctuation u. 

 

Figure 17  Computational results of mean square errors of vertical veloc-
ity fluctuation v. 

 

Figure 18  Turbulence shear stress distribution xy. 
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is obviously a peak value of 0.015 and after x=6H, the value 
rapidly decreases. Compared with the test results in the fig-
ure, although the distribution tendency is similar, there is 
still a big difference. In the test, the peak value of 0.10 oc-
curred near x = 7H. The cause of such difference should be 
further identified. 

Figure 20 gives the computational results of the distribu-
tion of mean square deviation of pressure fluctuation in the 
flow field, showing that near the eddy center behind the step, 
the intensity of the pressure fluctuation is the largest. Figure 
21 gives the computational results of the distribution of 
mean square deviation of pressure fluctuation along the step 
side, showing that the turbulence intensity near x=4.5H is 
the largest, reaching 0.24. Pressure fluctuation-induced dy-
namic loading plays an important role in engineering safety, 
and is directly related to the cavitation problems for struc-
tures under the action of high-velocity flow. The computa-
tional results of pressure fluctuation statistics in this paper 
should be further verified.  

 

 

Figure 19  Computational results of the max. turbulence shear distribu-
tion at cross section. 

 

Figure 20  Computational results of the distribution of mean square error 
of pressure fluctuation in flow field. 

 

Figure 21  Computational results of mean square error of pressure fluctu-
ation along step side. 

4.6  Comparison of various computational methods 

It is generally accepted that the reattachment length is an 
important factor for verifying the computational method. To 
further prove the validity of the SEL-DNS method proposed 
in this paper, a comparison is made of various numerical 
methods for the same computational case, as shown in Ta-
ble 1. No. 1 shows the test data in ref. [15]; No. 2 gives the 
test data of the SEL-DNS method proposed by the authors; 
No. 3 shows the test data in ref. [13] using SEL-RAN(k-) 
method; No. 4 gives the test data in ref. [14] using FVM- 
RAN(k-) method, and No. 5 is the direct numerical solu-
tion of ref. [12] using pure Lagrange SPH method. It can be 
seen that the computational result of reattachment length 
using both SEL-DNS method and SEL-RANS(k-) method 
is close to the mean value of 7.0, that of FEM-RANS(k-) 
method is comparatively small, and that of SPH-DNS 
method is obviously too large. The set of computations us-
ing SEL-DNS method by PC took about 2h. As compared 
with RANS method, although the computational volume of 
SEL-DNS method increases a bit, it turns out to be in the 
same order of magnitude; if using SPH-DNS method, it 
would take 30 days by means of a super computer. 

Figure 22 gives time-averaged horizontal velocity distri-
butions at two cross sections of the eddy area behind the 
step, showing that the results of both SEL-DNS method and 
SEL-RANS method are in good agreement with those of the 
test, and that the operator-slitting finite element method 
(SEL), which is an Euler-Lagrange approach, is an efficient 
computational method. 

Finally, it should be pointed out that as the simulation of 
large eddies can produce instantaneous flow field, although 
SEL method requires the density of the mesh to be larger 
than that of RANS method, it is less than that of DNS 
method, hence SEL method is currently regarded as a po-
tentially promising method. It is a pity that the authors of 
this paper have not found the available results of the similar 
large eddy simulation for comparison. However, in this pa-
per, the mesh dimension in the same order of magnitude as 
the RANS method was used to realize the simulation of 
turbulent flow by DNS method. If the coarse-grid mesh in 
this paper was used in LES method, the results would be 
interesting and meaningful. Further results obtained by the 
authors will be published separately. 

Table 1  Comparison of reattachment lengths of various computational 
methods 

No. Model Xr/H Nodes Computational time 

1 Experiment 6–8   

2 SEL-DNS 6.9 16669 PC-2.5Hours 

3 SEL-k- 6.8 4255  

4 FVM-k- 5.3 3760  

5 SPH-DNS 16.6 360482 Super Computer-30 D 
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Figure 22  Time-averaged horizontal velocity distributions at two cross 
sections of the eddy area behind the step by various methods. (a) x/H=5.33; 
(b) x/H=8.0. 

5  Conclusions 

In this paper, direct numerical solution of N-S equation is 
made to simulate the flow over backward-facing step at a 
high Reynolds number on coarse grids, from which time- 
averaged flow field as well as the instantaneous and statis-
tical characteristics of the flow field has been obtained. This 
makes it possible that DNS method will become a practical 
method to predict the complex turbulent flow controlled by 
large eddies in actual engineering. 

The SEL-DNS method proposed by the authors of this 
paper uses different suitable approaches to fit different op-
erators in N-S method, and adopts characteristic linear 
method to solve convection operator to avoid the difficulty 
in dealing with the nonlinearity of the equation, and em-
ploys finite element method to solve diffusion operator to 
adapt to the complex-shaped boundary. The computation 
shows that the computational results are in good agreement 
with the test data. This Euler-Lagrange numerical approach 
is expected to be an effective method to solve N-S equation 
for flow at a high Reynolds number. 

The numerical test shows that the stability of the numer- 

ical simulation of flow at a high Reynolds number is far 
from satisfaction, and is quite sensitive to the numerical 
methodology and the detailed arrangement of elements. To 
further improve the accuracy of the numerical computation 
and perfect the solutions is the goal for further studies. Fur-
thermore, turbulent flow is a three-dimensional flow, hence 
further in-depth researches on three-dimensional flow at a 
high Reynolds number controlled by large eddies need to be 
carried out. 
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