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Based on constructal theory, the constructs of three “volume-point” heat conduction models with three-dimensional cylindrical 
element and rectangular and triangular elements on microscale and nanoscale are optimized by taking minimum entransy dis-
sipation rate as optimization objective. The optimal constructs of the three “volume-point” heat conduction models with mini-
mum dimensionless equivalent thermal resistance are obtained. The results show that the optimal constructs of the three- di-
mensional cylindrical assembly based on the minimizations of dimensionless equivalent thermal resistance and dimensionless 
maximum thermal resistance are different, which is obviously different from the comparison between those of the correspond-
ing two-dimensional rectangular assembly based on the minimizations of these two objectives. The optimal constructs based 
on rectangular and triangular elements on microscale and nanoscale when the size effect takes effect are obviously different 
from those when the size effect does not take effect. Because the thermal current density in the high conductivity channel of 
the rectangular and triangular second order assemblies are not linear with the length, the optimal constructs of these assemblies 
based on the minimization of entransy dissipation rate are different from those based on the minimization of maximum tem-
perature difference. The dimensionless equivalent thermal resistance defined based on entransy dissipation rate reflects the av-
erage heat transfer performance of the construct. The studies on “volume-point” heat conduction constructal problems at 
three-dimensional conditions and microscale and nanoscale by taking minimum entransy dissipation rate as optimization ob-
jective extend the application range of the entransy dissipation extremum principle. 
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1  Introduction 

“Volume-point” heat conduction problem is a class of 
common problem in constructal theory [1–6]. Many schol-
ars have carried out constructal optimization on this prob-

lem through simplifying the three-dimensional “volume- 
point” heat conduction problem into the two-dimensional 
heat conduction problem [7–18]. Bejan obtained the optimal 
constructs of a “volume-point” heat conduction model 
based on rectangular element through assembling and by 
taking maximum temperature difference minimization as 
optimization objective [7]. Thenceforth, some scholars fur-
ther reduced the heat residences of the constructs by opti-
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mizing the width of the high conductivity channel of the 
rectangular element [8], getting rid of the perpendicular 
condition of the high and low conductivity channel [8], and 
adopting nonuniform arrangements of high conductivity 
materials [9]. Ghodoossi and Egrican [10] compared the 
exact and approximate solutions in ref. [7] by assumption 
that the thermal current in the high conductivity channel 
increased discontinuously, and found that the deviation be-
tween the two solutions was led by the simplification that 
the thermal current in the high conductivity channel in-
creased continuously. Wu et al. [11] deeply analyzed the 
deviation, proved that this was not caused by the simplifica-
tion of the thermal current distribution but by the inequiva-
lent of the thermal conductivity coefficients based on en-
ergy conservation argument, and found that the conclusion 
derived by effective thermal conductivity based on the 
equivalent of maximum temperature difference agreed with 
the exact solution. On the basis of these work, some schol-
ars tried to reduce maximum thermal resistances of the con-
structs by releasing the assumption that the new-order as-
sembly should be assembled by the optimized last-order 
assembly [12], improving the shape of the elemental vol-
ume [13], and optimizing discrete variable cross-section 
high conductivity channel [14], variable cross-section high 
conductivity channels [15–17] as well as variable elemental 
shapes [16, 17]. Moreover, Karakas [18] adopted a different 
method to calculate the width of elemental volume, re-car- 
ried out constructal optimization of the model in ref. [7] by 
using Lagrange multiplier method, and obtained the new 
optimization results of the “volume-point” heat conduction 
problem.  

In the “volume-point” heat conduction models above, 
simplification is made at the thermal current direction per-
pendicular to the surface of the control volume. However, 
these “volume-point” heat conduction models are immature 
due to this simplification. On consideration that the “vol-
ume-point” heat conduction problems actually should be 
three-dimensional ones, Ledezma and Bejan [19] built a 
three-dimensional “volume-point” heat conduction model 
with cylindrical high conductivity channel and cylindrical 
element, and obtained the optimal constructs of the three- 
dimensional cylindrical model by taking the minimization 
of maximum temperature difference as optimization objec-
tive. Neagu and Bejan [20] built a three-dimensional and 
finger-shaped “volume-point” heat conduction model with 
variable cross-section high conductivity channel and vari-
able element, and obtained the optimal constructs of the 
high conductivity channel and variable element based on 
maximum temperature difference minimization. Alebrahim 
and Bejan [21] considered a three-dimensional “volume- 
point” heat conduction model with circular high conductivity 
channel and cylindrical element, and obtained the optimal 
constructs of the three-dimensional cylindrical model based 
on finite element method and by taking maximum tempera- 
ture difference minimization as optimization objective.  

The heat conduction problems above are carried out on 
conventional scale. However, when the size reduces to mi-
croscale and nanoscale, some new phenomena and laws will 
present in the microscale heat transfer processes [22–24], 
and some scholars have made plentiful work in this field 
[25–30]. In the analyses of the “volume-point” heat conduc-
tion constructal optimization problems, considering that the 
size effect will present in high conductivity material on  
microscale and nanoscale, Gosselin and Bejan [31] re-op- 
timized Bejan’s “volume-point” heat conduction model [7] 
by taking the minimization of maximum temperature dif- 
ference as objective on microscale and nanoscale. The new 
optimal construct of the “volume-point” heat conduction 
model on unconventional scale was obtained, and the per-
formance comparisons of the two optimal constructs on 
nanoscale and conventional scale were carried out.  

However, the minimization of maximum temperature dif-
ference only reflects the heat transfer performance of a local 
one, not the global one of the models. Guo et al. [32, 33] put 
forward a new physical quantity, “entransy” (ever inter-
preted as heat transfer potential capacity in ref. [34]) and the 
extremum principle of entransy dissipation, and defined an 
equivalent thermal resistance for multi-dimensional heat 
conduction problems based on the entransy dissipation rate. 
The physical meaning of entransy was further expounded 
from the angles of heat conduction physical mechanism and 
electro-thermal simulation experiment, etc. [35–37]. On the 
basis of these work, some scholars further carried out a 
series of heat transfer optimizations by taking entransy 
dissipation rate minimization as optimization objective 
[38–52]. Wei et al. [53] firstly applied the extremum 
principle of entransy dissipation to the “volume- point” heat 
conduction constructal optimization problem, and found that 
the minimization of entransy dissipation rate was superior in 
reducing the average thermal resistance of the control 
volume to the minimization of maximum temperature 
difference. Furthermore, some scholars carried out 
constructal optimization of “volume-point” heat conduction 
models based on rectangular [54, 55], triangular [56] and 
variable shape [17] elements with different constraints as 
well as heat transfer models of electromagnet [57], geome-
tries of cavity [58, 59], disc [60, 61], fins [62, 63], cooling 
channels [64], round tube heat exchanger [65] and steam 
generator [66]. The advantages of minimization of entransy 
dissipation rate for heat transfer optimizations are further 
illustrated.  

On the basis of refs. [13, 21, 31], the “volume-point” 
heat conduction models with circular high conductivity 
channel and cylindrical element on convectional scale as 
well as rectangular and triangular elements on microscale 
and nanoscale will be re-optimized by taking entransy dis-
sipation rate minimization as optimization objective, and the 
optimal constructs of the “volume-point” heat conduction 
models will be obtained. The work done in this paper will 
extend the application range of the entransy dissipation ex-
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tremum principle.  

2  Definition of entransy dissipation rate [32] 

Entransy, which is a new physical quantity reflecting heat 
transfer ability of an object, was defined in ref. [32] as 

 
1 1

,
2 2vh vh h vhE Q U Q T   (1) 

where vh vQ Mc T  is thermal capacity of an object with 

constant volume, Uh or T represents the thermal potential. 
The entransy dissipation function, which represents the en-
transy dissipation per unit time and per unit volume, is de-
duced as [32] 

 2( ) ,hE q T k T        (2) 

where q  is thermal current density vector, and T  is the 

temperature gradient. In steady-state heat conduction, hE 
  

can be calculated as the difference between the entransy 
input and the entransy output of the object, i.e., 

 ,in ,out .h h hE E E    (3) 

The entransy dissipation rate of the whole volume in the 
“volume-to-point” conduction is  

 2d ( ) d .vh h

v v

E E v k T v       (4) 

The equivalent thermal resistance for multi-dimensional 
heat conduction problems with specified heat flux boundary 
condition is given as follows [32]: 

 2 ,h vh hR E Q   (5) 

where hQ  is the thermal current.  

3  “Volume-point” heat conduction models 

3.1  “Volume-point” heat conduction model with three- 
dimensional cylindrical element 

A cylindrical element generates heat volumetrically (heat 
generation rate per unit volume is q′′′, and it is considered as 
a uniform internal heat source in the cylindrical element) as 
shown in Figure 1 [21]. The elemental volume V0 (diameter 
H1, length H0, and 2

0 1 0/4)V H H   is fixed, but the ratio 

H0/H1 is free to vary. The heat generated in the cylindrical 
element of k0 material (isotropy) is collected by a disk- 
shaped insert of high thermal conductivity (kp, D0, H1), and 
then flow to the heat sink located at point M0 along the cy-
lindrical high conductivity channel (kp, D1, H0). The disk- 
shaped kp material lies in middle section of the cylindrical  

 

Figure 1  Cylindrical element [21]. 

high conductivity channel. The boundary of the cylindrical 
element is adiabatic except for the heat sink point M0. It is 

assumed that 0 0/ 1D H  , 0 1/ 1H H   and 0/ 1pk k k  . 

With these assumptions, the heat transfer direction in the k0 
material is approximately perpendicular to the surface of the 
disk-shaped high thermal conductivity material; the high 
thermal conductivity material is of isotropy, and the heat 
transfer direction in the disk-shaped pk  material radially 

points to the center of the disk. The volume Vp,0 of kp mate-
rial ( 2 2

,0 1 0 0 1 0[ ( ) ]/4)pV D H D H D    , i.e., the fraction of 

high thermal conductivity material 0 ,0 0/pV V  , is fixed, 

but the ratio D1/D0 is free to vary. The thermal current in the 
cylindrical element is continuous, and the peak temperature 
locates at the ring of diameter H1 (point P0), which is situ-
ated the farthest from the heat sink (M0).  

One way to assemble a number of (n) cylindrical ele-
ments to form the first order assembly is shown in Figure 2 
[21]. The thermal current from the centre of the disk-shaped 
kp material is collected by the cylindrical high conductivity 
channel (diameter D1, length L1, and thermal conductivity 
coefficient kp) of the first order assembly. Finally, the ther-
mal current flows to the heat sink located at point M1. The 
boundary of the first order assembly is adiabatic except for 
the heat sink point M1. The volume of the first order assem-
bly V1 (diameter H1, length L1, 1 0V nV 2

1 1 / 4H L  ) is 

fixed, but the ratios D1/D0, H0/H1 and the number of the 
cylindrical elements n are free to vary. The volume of high 
thermal conductivity material Vp,1 (

2 2
,1 1 0 1/4pV n H D n D     

0 0( ) / 4H D  ), i.e., the fraction of high thermal conductiv-

ity material 1 ,1 1/pV V  , is fixed.  

3.2  Heat conduction model with rectangular element 
on microscale and nanoscale 

A rectangular element (H0×L0×1) generates heat volumetri-
cally (heat generation rate per unit volume is q′′′, and it is 
considered as a uniform internal heat source in the rectan- 
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Figure 2  Cylindrical first order assembly [21]. 

gular element) as shown in Figure 3. The elemental area 
size A0 is constant, but the ratio H0/L0 is free to vary. The 
heat generated in the k0 material is first collected by a high 
conductivity channel (width D0, thermal conductivity coef-
ficient kx, kx k0) located on the longer axes of the rectan-
gular element, and then flows to the heat sink located at 
point M0 along the high conductivity channel. The boundary 
of the rectangular elemental area is adiabatic except for the 
heat sink point M0. It is assumed that the area occupied by 
high conductive material is much smaller than that occupied 
by low conductivity material ( 0 0 0/ 1D H   ), and the 

rectangular element is slender enough (H0 L0). With these 
assumptions, the heat transfer direction is approximately 
parallel to y-direction in the low conductivity material, and 
is parallel to x-direction in the high conductivity material.  

When the width D0 of the high conductivity channel re-
duces to microscale and nanoscale, the thermal conductivity 
coefficient of the high conductivity channel will change, 
which is caused by size effect. The model shown by eq. (6) in 
ref. [31] reflects the change of the thermal conductivity coef-
ficient of the high conductivity channel due to size effect.  

 
( ),

1 ( ),

x

b

D
Dk

k
D






  
 

 (6) 

where  is the dimension bound (10–100 nm), at which the 
size effect becomes significant in the high conductivity 
channel. When the width D is sufficiently large, the thermal 
conductivity coefficient of the high conductivity channel 
does not depend on D with a constant value kb; when the  

 

 

Figure 3  Rectangular element [31]. 

width D is not bigger than , the size effect will take effect, 
and kx is relative to the width D.  

A large number n1 of optimized rectangular elements are 
assembled into the first order assembly (A1=H1×L1) as it is 
shown in Figure 4 [31]. The rectangular elements (n1) 
shown in Figure 3 are distributed on the both sides of the 
new high conductivity channel (width D1, thermal conduc-
tivity kx) shown in Figure 4. The elemental heat currents 
from the nodes 

111 12 1, / 2, , , nM M M  are collected by the 

new high conductivity channel, and the outer boundary of 
A1 is adiabatic except for the D1 patch over the origin M1, 
through which the collected heat current is led to the outside. 
The shape of the first order assembly H1/L1 or the number of 
rectangular elements n1 is free to vary. Similarly, a large 
number n2 of optimized rectangular first order assemblies 
are assembled into the second order assembly (A2=H2×L2) 
as it is shown in Figure 5 [31]. The rectangular first order  

 

 

Figure 4  Rectangular first order assembly [31]. 

 
Figure 5  Rectangular second order assembly [31]. 
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assemblies (n2) shown in Figure 4 are distributed on the 
both sides of the new high conductivity channel (width D2, 
thermal conductivity kx shown in Figure 5. The shape of the 
second order assembly H2/L2 or the number of the rectan-
gular first order assemblies n2 is free to vary.  

3.3  Heat conduction model with triangular element on 
microscale and nanoscale 

A triangular element (H0×L0×1/2) generates heat volumet-
rically (heat generation rate per unit volume is q′′′, and it is 
considered as a uniform internal heat source in the triangu-
lar element) and is shown in Figure 6 [13]. The elemental 
area size A0 is constant, but the ratio H0/L0 is free to vary. 
The first order and second order assemblies are obtained by 
assembling the triangular elements as done in Section 3.2. 
The effect of size effect on the heat transfer performance of 
the triangular construct when the width of the high conduc-
tivity channel reduces to microscale and nanoscale is 
considered.  

4  Constructal optimization of the three-dimen- 
sional cylindrical assembly 

4.1  Optimization of the cylindrical element  

As it is shown in Figure 1, according to the heat conduction 
differential equation of the cylindrical element, the tem-
perature difference distribution in the low conductivity ma-
terial and disc-shaped high conductivity channel is  
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For the case 0 0/ 2 ,H x H   the temperature difference 

can be obtained by replacing x with (H0x) in eq. (7).  
From eqs. (4) and (7), the entransy dissipation rate in the  

 

 

Figure 6  Triangular element [13]. 

low conductivity material and disc-shaped high conductivity 
channel is  
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The temperature difference distribution in the cylindrical 
high conductivity channel is 
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From eqs. (4) and (9), the entransy dissipation rate in the 
cylindrical high conductivity channel is 

 
0 22

0

2 2
0

1
0

12 3
2 2

0

2
.

4

d
d

d

H

vh p
p

T q
E k x

x

V HD

k D



   

   (10) 

From eqs. (8) and (10), the entransy dissipation rate in 
the cylindrical element becomes 
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The dimensionless variables are defined as follows:  
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The volume constraints of the first order assembly and high 
thermal conductivity material can be nondimensionalized 
as 
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According to eqs. (5), (11) and (13), the dimensionless 
equivalent thermal resistance of the cylindrical element is  
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where 0D  is determined by eq. (14). The function 0hR   

has two degrees of freedom for the fixed k  and 0, and 
one can use H0/H1 and D1/D0 as two degrees of freedom to 
carry out constructal optimization for the cylindrical ele-
ment.  

Figure 7 shows the dimensionless equivalent thermal re-

sistance 0hR  versus H0/H1 characteristic with 300k  , 

0=0.1 and different D1/D0. From Figure 7, there exists an 

optimal H0/H1 ((H0/H1)opt) which leads to minimum 0hR  

( 0,m


hR ); with the increase in D1/D0, 0,m


hR  decreases first, 

and then increases.  

Figure 8 shows 0,m


hR  and (H0/H1)opt versus D1/D0 char-

acteristics with 300k   and 0=0.1. From Figure 8, 
(H0/H1)opt decreases with the increase in D1/D0; there exist 
optimal D1/D0 ((D1/D0)opt) and (H0/H1)opt ((H0/H1)oo) which  

 

 

Figure 7  0hR  versus H0/H1 characteristic with different D1/D0. 

 

Figure 8  0,m


hR  and (H0/H1)opt versus D1/D0 characteristics. 

lead to double minimum 0hR  ( 0,mm


hR ).  

4.2  Optimization of the cylindrical first order assembly  

As shown in Figure 2, according to the method of calculat-
ing entransy dissipation rate in ref. [53], the entransy dissi-
pation rate along D1 channel is calculated by the sum of 
entransy dissipation rates of all intervals M1, M11, M12, 

1, nM  on the D1 channel, and is given as follows:  
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According to eqs. (8) and (16), the entransy dissipation 
rate of the cylindrical first order assembly is  
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The dimensionless variables are defined as follows: 
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The volume constraints of the cylindrical first order assem-
bly and high thermal conductivity material can be nondi-
mensionalized as  
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According to eqs. (5), (17) and (19), the dimensionless 
equivalent thermal resistance of the cylindrical first order 
assembly is  
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where 0D  is determined by eq. (20). The function 1hR  

has two degrees of freedom for the fixed k , 1 and n, and 
one can use H0/H1 and D1/D0 as two degrees of freedom to 
carry out constructal optimization for the cylindrical first 
order assembly.  

Figures 9–11 show the effects of the cylindrical elemen-
tal number n on heat transfer performance and optimal con-

struct of the first order assembly with different k  and 1. 

From Figure 9, 1,mm


hR  decreases with the increase in k  

and 1 for the fixed n; when n>5, the decrement of 1,mm


hR  

becomes small, and the improvement of the heat transfer 
performance of the cylindrical first order assembly is not 
obvious. From Figures 10 and 11, with the increase in n, 
(D1/D0)opt increases, (H0/H1)oo decreases, and the D1 channel 
becomes smaller, the disc-shaped high thermal conductivity 
material becomes thinner, and the first order assembly be-
comes slenderer; the effects of the cylindrical elemental 
number n on the internal aspect ratio (D1/D0)opt and external 
aspect ratio (L1/H1)oo 0 1 oo( ( / ) )n H H  are more sensitive 

than those of k  and 1. 

 

Figure 9  Effect of n on 1,mm


hR  with different k  and 1. 

 

Figure 10  Effect of n on (D1/D0)opt with different k  and 1. 

 

Figure 11  Effect of n on (H0/H1)oo with different k  and 1. 

Table 1 lists the optimal constructs of the cylindrical 
first order assembly based on the minimizations of dimen-
sionless equivalent thermal resistance and dimensionless 

maximum thermal resistance ( 2 / 3
1 1 1 0/( / )t P VT q kR  ) with 

1=0.01, 300k   and different n. Table 1 shows that the 
optimal constructs of the cylindrical first order assemblies  
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Table 1  Optimal constructs of the cylindrical first order assembly based on the minimizations of dimensionless equivalent thermal resistance and dimen-
sionless maximum thermal resistance 

Element number Minimum dimensionless equivalent thermal resistance Minimum dimensionless maximum thermal resistance 

n 1,mm


hR  (D1/D0)opt (H0/H1)opt 1,mm


tR  (D1/D0)opt (H0/H1)opt 

1 0.0362 21.7 0.1599 0.0468 19.8 0.1477 

2 0.0269 30.4 0.1294 0.0356 29.9 0.1170 

4 0.0230 51.3 0.0851 0.0309 52.3 0.0762 

8 0.0217 96.9 0.0473 0.0294 99.9 0.0422 

16 0.0214 190.6 0.0244 0.0290 197.3 0.0217 

32 0.0213 379.6 0.0123 0.0288 393.8 0.0109 

 
based on the minimizations of dimensionless equivalent 
thermal resistance and dimensionless maximum thermal 
resistance are different. The (H0/H1)opt based on dimen-
sionless equivalent thermal resistance minimization is al-
ways larger than that based on dimensionless maximum 
thermal resistance minimization, that is, the construct of the 
three-dimensional cylindrical first order assembly based on 
the dimensionless equivalent thermal resistance minimiza-
tion is slenderer than that based on the dimensionless 
maximum thermal resistance minimization. The minimiza-
tion of maximum thermal resistance chases for the mini-
mum maximum temperature difference of the construct, and 
can effectively reduce its maximum temperature limitation; 
the minimization of dimensionless equivalent thermal resis-
tance chases for the temperature gradient homogenization of 
the construct, and can improve its global heat transfer per-
formance, which are the main reason for the difference of 
the optimal constructs based on the minimizations of these 
two objectives.  

For the fixed thermal current ((q′′′V1)) of the cylindrical 
first order assembly, the average temperature difference of 
the cylindrical first order assembly is proportional to its 
equivalent thermal resistance. Numerical calculations show 
that comparing the dimensionless equivalent thermal resis-
tance (the average temperature difference) based on mini-
mum entransy dissipation rate with that based on minimum 
maximum temperature difference, the decrement of the di-

mensionless equivalent thermal resistance is relevant to k , 

1 and n. When 1000,k   1=0.25 and n=2, the dimen-

sionless equivalent thermal resistance based on minimum 
entransy dissipation rate decreases by 2.01% compared with 
that based on minimum maximum temperature difference. 
However, according to the comparison results of the two- 
dimensional rectangular first order assemblies based on the 
minimizations of equivalent thermal resistance and maxi-
mum thermal resistance, the optimal constructs assembling 
by the optimal rectangular elements in refs. [10, 53] as well 
as those assembling by the unconfined rectangular elements 
in refs. [12, 54] are the same. At this point, by comparing 
the equivalent thermal resistance based on minimum en-
transy dissipation rate with that based on minimum maxi-
mum temperature difference, the equivalent thermal resis-

tance is not reduced any more, which is obviously different 
from the comparison between the constructs of the three- 
dimensional cylindrical first order assembly based on the 
minimizations of these two objectives.  

5  Constructal optimization of the rectangular 
assembly on microscale and nanoscale 

5.1  Optimization of the rectangular element on micro-
scale and nanoscale  

In the rectangular element as shown in Figure 3, when the 
width of the high conductivity channel reduces to micro-
scale and nanoscale and considering the case D0, the 
thermal conductivity coefficient of the high conductivity 
channel D0 under the size effect becomes 0/x bk k D  . For 

the case y>0, according to ref. [31], the temperature differ-
ence distribution of the rectangular element in Figure 3 can 
be described as  
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where 1/ 2
0/ .A   For the case y<0, the temperature 

difference can be obtained by replacing H0 with H0 in eq. 
(22).  

According to eqs. (4) and (5), the entransy dissipation 
rate and dimensionless equivalent thermal resistance of the 
rectangular element are, respectively, given by 
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where 0/bk k k . 0hR  is minimized with respect to the 

aspect ratio H0/L0 of the rectangular element, and the corre-
sponding optimization results are 
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where the superscript “n” indicates that these results are 
obtained when the size effect takes effect in the high con-
ductivity channel.  

When 
0 ,D   i.e. ,0c   ( 1/ 2

,0 0 0 0( / )c H L  ), eqs. (25) 

and (26) are valid. To evaluate the value of ,0c , substi-

tuting eq. (25) into the expression of ,0c  and replacing 

  by ,0c , the magnitude order of ,0c  becomes [31] 
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Eq. (27) indicates the order of magnitude of ,0c .  

When D0>, the size effect is not present in the high 
conductivity channel with a constant thermal conductivity 
coefficient kb. The optimal shape and the corresponding 
minimum dimensionless equivalent thermal resistance of 
the rectangular element are, respectively, given by [53] 
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where the superscript “b” indicates that these results are 
obtained when the size effect is not present in the high con-
ductivity channel when D0/. 

Figures 12 and 13 show the effects 0 on the characteris-

tics of 0,m


hR  and (H0/L0)opt versus  , respectively. When 

,0c   , eqs. (25) and (26) are the optimal constructs of the 

rectangular element based on dimensionless equivalent 
thermal resistance minimization, i.e., the lines marked “n” 

shown in Figures 12 and 13; when ,0c   , eqs. (28) and 

(29) are the optimal construct of the rectangular element 
based on dimensionless equivalent thermal resistance mini-
mization, i.e., the lines marked “b” shown in Figures 12 and 
13. From Figures 12 and 13, because of the effect of the size 
effect on the high conductivity channel, the minimum di-
mensionless equivalent thermal resistance of the rectangular 

element 0,m


hR  increases with the increase in  , and the 

optimal shape of the rectangular element becomes tubbier.  

 

Figure 12  Effect 0 on the characteristic of 0,m


hR  versus  . 

 

Figure 13  Effect 0  on the characteristic of (H0/L0)opt versus  . 

5.2  Optimization of the rectangular first order assem-
bly on microscale and nanoscale  

As it is shown in Figure 4, when the volume fraction of high 
conductivity material in the first order assembly 1 1(   

1 0 0 1 1 1( ) / )n L D D L A  is fixed, one has D1=H1  1 0   . 

When the width D1 of the high conductivity channel reduces 
to microscale and nanoscale, and considering the case 

1D  , the thermal conductivity coefficient of the high 

conductivity channel D1 under the size effect becomes 

1 /x bk k D  . According to the different widths of the high 

conductivity channels D0 and D1, there are three conduction 
regimes in the first order assembly due to the size effects on 
the high conductivity channels [31]: when 0D   and 

1D  , the notation “nn” indicates that the size effect takes 

effect both in channels D0 and D1; when 0D   and D1>, 

the notation “nb” indicates that the size effect takes effect 
only in channel D0, and does not in channel D1; when D0> 
and D1>, the notation “bb” indicates that the size effect 
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does not takes effect in both channels D0 and D1.  
When 0D   and 1D  , the entransy dissipation 

rate along D1 channel is calculated by the sum of entransy 
dissipation rates of all intervals 1 11 12 1, , , , nM M M M  on 

the D1 channel. When n1 1, it is reasonable to assume that 
the distribution of the thermal current density along D1 is 
linear. According to eq. (3) and ref. [53], the entransy dis-
sipation rate along D1 channel is  
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where n1 is an even.  
The entransy dissipation rate of the first order assembly 

is the sum of the entransy dissipation rate in each element 
and D1 channel. From eqs. (26) and (30), the dimensionless 
equivalent thermal resistance of the first order assembly is  
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Similarly, for the cases of “nb” and “bb”, 1hR  also can 

be derived. Furthermore, 1hR  can be optimized with re-

spect to the number of elements n1 and the volume fraction 
of high conductivity material in the rectangular element 0, 
and the corresponding optimal constructs of the first order 
assembly are listed in Table 2.  

When the distribution of the thermal current density 
along high conductivity channel is linear with the length, 
the optimal constructs of the rectangular first order assem-
blies based on the minimizations of entransy dissipation rate 
(listed in Table 2) and maximum temperature difference in 
ref. [31] are the same.  

When ,1c   ( 1/ 2 nn
0 1,opt~ A Dc,1 ), from the optimization 

result of nn
1 ,hR 1/ 5nn 7 1/ 2

1,opt
3 / 5 1

0
/ 5

1 / /( )) ( ,2 3D Ak     one has [31]  
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Eq. (32) indicates the order of magnitude of ,1c .  

Figure 14 shows the effects 1 on the minimum dimen-
sionless equivalent thermal resistance of the first order as-

sembly 
1,mm


hR  versus   characteristic. When ,1c   , 

1,mm


hR  is represented by the lines marked “nn” shown in 

Figure 14; when ,0 ,1c c      , 1,mm


hR  is represented by 

the lines marked “nb” shown in Figure 14; when ,0c   , 

1,mm


hR  is represented by the lines marked “bb” shown in 

Figure 14. From Figure 14, because of the effect of the size 

effect on channels D0 and D1, with the increase in  , 

1,mm


hR  increases.  

Suppose the volume of each assembly and the volume 
fraction of high conductivity material in each assembly are 

the same, that is, 0=1= and A0=A1=A. Comparing n
0,m


hR  

and nn
1,mm


hR , when 2 / 15.8165k    , the minimum dimen-

sionless equivalent thermal resistance of the elemental de-
sign (the structure form is n) is smaller than that of the first 
order design (the structure form is nn), and the elemental 

design should be adopted; while when 2 /k   >15.8165, 

the conclusion is reversed. Comparing n
0,m


hR  and nb
1,mm


hR , 

when k <13.5691 the minimum dimensionless equivalent 

thermal resistance of the elemental design (the structure 
form is n) is smaller than that of the first order design (the 
structure form is nb), and the elemental design should be 

adopted; while when k >13.5691, the conclusion is re-

versed.  

Table 2  Optimal constructs of the rectangular first order assembly with three structure forms based on entransy dissipation rate minimization 
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Figure 14  Effect 1 on the characteristic of 1,mm


hR  versus  . 

5.3  Optimization of the rectangular second order as-
sembly on microscale and nanoscale 

As it is shown in Figure 5, when the volume fraction of high 
conductivity material in the second order assembly 2 

2 1 1 1 2 2 2( ( )/ )n A D L A    is fixed, one has D2=H2 2 1( ).    

According to the different widths of high conductivity 
channels D0, D1 and D2, there are four conduction regimes 
in the second order assembly due to the size effects on the 
high conductivity channels: nnn, nnb, nbb and bbb [31]. 
When 0D  , 1D   and 2D  , the notation “nnn” 

indicates that the size effect takes effect in channels D0, D1 
and D2; when 0D  , 1D   and D2>, the notation 

“nnb” indicates that the size effect takes effect in both 
channels D0 and D1, and but does not in channel D2; when 

0D  , D1> and D2>, the notation “nbb” indicates that 

the size effect takes effect in channel D0, and does not in 
channels D1 and D2; when D0>, D1> and D2>, the nota-
tion “bbb” indicates that the size effect does not take effect 
in channels D0, D1 and D2. Similar to the optimization 
method of the first order assembly, the dimensionless  

equivalent thermal resistance of the rectangular second or-
der assembly can be optimized, and the corresponding op-
timal constructs of the second order assemblies are listed in 
Table 3.  
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Table 3  Optimal constructs of the rectangular second order assembly with four structure forms based on entransy dissipation rate minimization 
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Figure 15 shows the effect 2 on the minimum dimen-
sionless equivalent thermal resistance of the second order 

assembly 2,mm


hR  versus   characteristic. When ,2c   , 

2,mm


hR  is represented by the lines marked “nnn” shown in 

Figure 15; when ,0 ,1c c      , 2,mm


hR  is represented by 

the lines marked “nnb” shown in Figure 15; when ,0c   , 

2,mm


hR  is represented by the lines marked “bbb” shown in 

Figure 15. From Figure 15, because of the effect of the size 

effect on channels D0, D1 and D2, 2,mm


hR  increases with 

the increase in  .  
To compare the optimal constructs of the rectangular 

second order assembly based on the minimizations of en-
transy dissipation rate and maximum temperature difference 
[31], the structure form nbb of the rectangular second order 
assembly is taken as an example in the analysis. When 

5000k  , 2=0.01 and 0.03  , From Table 3, the opti-
mal number of the optimized first order assemblies is 
n2,opt=4.77 based on minimum entransy dissipation rate. 
n2,opt should be an even number actually, and it may be 4 or 
6; according to ref. [31], the optimal number of the opti-
mized first order assemblies is n2,opt=3.90 based on mini-
mum maximum temperature difference, and it may be 2 or 4. 
Noting that the length of the D2 channel is not equal to L2 [7, 
53], the expression of width D2 varies with n2. When n2=2, 

2 2 12 2 ( );HD     when n2=4, 2 2 12 4 ( ) / 3;D H     when 

n2=6, 2 2 12 6 ( ) / 5HD    . For the fixed n2,opt, both 2hR  

and 2tR 1
2 02,max 2( ( / ) )tR T q A k     can be re-optimized 

with respect to 1, and the corresponding optimization re-
sults are listed in Table 4.  

From Table 4, the optimal number of the optimized first 
order assemblies n2,opt in rectangular second order assembly 
is small, and the distribution of the thermal current density 
along D2 channel is no long linear with the length, the  

 

 

Figure 15  Effect 2 on the characteristic of 2,mm


hR  versus  . 

Table 4  Optimal constructs of the rectangular second order assembly 
when the structure form is nbb 

Optimization 
objective 

Entransy dissipation  
rate minimization 

Maximum temperature  
difference minimizationa) 

2,optn  4 2 

2

1 opt

D

D

 
 
 

 5.5490 2.9833 

2

2 opt

 
 
 

H

L
 0.8485 1.5297 

2hR  0.002795 0.003021 

2tR  0.003965 0.003933 

a) This row is deduced by the authors according to ref. [31].  

optimal constructs of the rectangular second order assem-
blies based on the minimizations of entransy dissipation rate 
and maximum temperature difference [31] are different. 
Comparing the optimization result based on the entransy 
dissipation rate minimization with that based on the maxi-
mum temperature difference minimization, n2,opt is unequal, 
the shape of the rectangular second order assembly is slen-
derer, and the width ratio of the channels D2 and D1 is big-
ger. For the fixed thermal current ( 2( 1)q A  ) of the rec-

tangular second order assembly, the average temperature 
difference of the rectangular second order assembly is pro-
portional to its equivalent thermal resistance. The dimen-
sionless equivalent thermal resistance (the average tem-
perature difference) based on minimum entransy dissipation 
rate decreases by 7.48% compared with that based on 
minimum maximum temperature difference; but the dimen-
sionless maximum thermal resistance (maximum tempera-
ture difference) based on minimum entransy dissipation rate 
only increases by 0.81% compared with that based on 
minimum maximum temperature difference. Thus, the op-
timal construct based on minimum entransy dissipation rate 
can more effectively reduce the average temperature differ-
ence of the rectangular assembly than that based on mini-
mum maximum temperature difference, and its heat transfer 
performance improves simultaneously.  

6  Constructal optimization of the triangular 
assembly on microscale and nanoscale 

According to ref. [13], the temperature difference distribu-
tion of the triangular element (y>0) in Figure 6 can be given 
as follows: 
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where 1/ 2
0/ A  . For the case y<0, the temperature dif- 

ference can be obtained by replacing H0 with H0 in eq. (39).  
According to eqs. (4), (5) and (39), the entransy dissi-

pation rate and dimensionless equivalent thermal resistance 
of the triangular element are, respectively, given by 
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Similar to the optimization method in Section 5, the di-
mensionless equivalent thermal resistance of the triangular 
element as well as first order and second order assemblies 
can be optimized, and the corresponding optimal constructs 
of each assembly are listed in Tables 5–7.  
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Table 5  Optimal constructs of the triangular element based on entransy 
dissipation rate minimization 

Structure form 
0

0 opt

 
 
 

H

L
 

0,m


hR  

n 

2/5
4 /5

2/5 2
0

2 3

5 k




 
 
 


  

2/5
3/5

1/5 2
0

5

6 3 k




 
 

  


  

b 
0

6
2

5k
 

0

2

15k
 

Table 6  Optimal constructs of the triangular first order assembly based 
on entransy dissipation rate minimization 

Structure form nn nb bb 
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Table 7  Optimal constructs of the triangular second order assembly based on entransy dissipation rate minimization 
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From Tables 5–7, the optimal constructs of the triangular 
element as well as the first order and second order assem-
blies based on minimization of dimensionless equivalent 
thermal resistance on microscale, nanoscale and convec-
tional scale are obviously different. Because of the effect of 
the size effect on the thermal conductivity coefficient of the 

channel, with the increase in  , the minimum dimen-
sionless equivalent thermal resistance for each design 
method of each assembly increases.  

To compare the optimal constructs of the triangular sec-
ond order assembly based on the minimizations of entransy 
dissipation rate and maximum temperature difference, the 
structure form nnb  of triangular second order assembly is 

taken as an example in the analysis. When 5000k  , 

2=0.01 and 0.12  , from Table 7, the optimal number 
of the optimized first order assemblies is n2,opt=4.68 based 
on minimum entransy dissipation rate. n2,opt should be an 
even number actually, and it may be 4 or 6; the optimal 
number of the optimized first order assemblies is n2,opt=3.30 
based on minimum maximum temperature difference, and it 
may be 2 or 4. When n2=2, D2=H2(21); when n2=4, 
D2=2H2(21)/3; when n2=6, D2=3H2(21)/5. For the 

fixed n2,opt, both 
2hR  and 2tR 2 02,max 2( /( / ))tR T q kA   can 

be re-optimized with respect to 1, and the corresponding 
optimization results are listed in Table 8.  

From Table 8, the optimal constructs of triangular second 
order assembly based on the minimizations of entransy dis-
sipation rate and maximum temperature difference are dif-
ferent. For the fixed thermal current 2(( 1))q A   of the 

triangular second order assembly, the average temperature 
difference of the triangular second order assembly is pro-
portional to its equivalent thermal resistance. The dimen-
sionless equivalent thermal resistance (the average tem-
perature difference) based on minimum entransy dissipation 
rate decreases by 11.03% compared with that based on 
minimum maximum temperature difference; but the dimen-
sionless maximum thermal resistance (maximum tempera-
ture difference) based on minimum entransy dissipation rate 
only increases by 3.49% compared with that based on  

Table 8  Optimal constructs of the triangular second order assembly when 
the structure form is nnb 

Optimization 
objective 

Entransy dissipation 
rate minimization 

Maximum temperature  
difference minimization 

2,optn  4 2 

2

1 opt

 
 
 

D

D
 2.4636 1.7806 

2

2 opt

 
 
 

H

L
 1.2117 2.2527 

2hR  0.007102 0.007983 

2tR  0.009288 0.008975 

minimum maximum temperature difference. Thus, the op-
timal construct based on minimum entransy dissipation rate 
can more effectively reduce the mean temperature differ-
ence of the triangular assembly than that based on minimum 
maximum temperature difference, and its heat transfer per-
formance improves simultaneously.  

7  Conclusions 

The three “volume-point” heat conduction models with 
three-dimensional cylindrical element and rectangular and 
triangular elements on microscale and nanoscale are studied 
respectively in this paper. The expressions of the dimen-
sionless equivalent thermal resistances defined by entransy 
dissipation rate of these models are obtained. For the fixed 
volumes of each construct and high thermal conductivity 
material, the constructs of the three models are optimized by 
taking minimum entransy dissipation rate as optimization 
objective, and the optimal constructs of these models are 
obtained. The optimal results obtained by researching the 
model with three-dimensional cylindrical element show that 
the heat transfer performance of the cylindrical construct 

improves with the increase of k , 1 and n; however, when 
elemental number is big, the improvement of its heat trans-
fer performance is not obvious. The effects of the elemental 
number on the internal aspect ratio (D1/D0)opt and external 

aspect ratio (L1/H1)oo are more sensitive than those of k  
and 1. The constructs of three-dimensional cylindrical first 
order assembly based on the minimizations of dimen-
sionless maximum thermal resistance and the dimensionless 
equivalent thermal resistance are different, which is obvi-
ously different from the comparison between the constructs 
of two-dimensional rectangular first order assembly based 
on the minimizations of these two objectives. The results 
obtained by researching the models with rectangular and 
triangular elements on microscale and nanoscale show that 
the optimal construct on microscale and nanoscale when the 
size effect takes effect is obviously different from that when 

the size effect does not take effect. With the increase in ,  

the minimum dimensionless equivalent thermal resistance 
for each design method of each assembly increases. With 
the increase of the internal complexity of the construct, the 
dimensionless equivalent thermal resistance of the construct 
does not always decrease, and the different optimal internal 
design structures should be adopted according to different 
parameters. When the thermal current densities in the high 
conductivity channel are linear with the length, the optimal 
constructs of the element and first order assemblies based 
on the entransy dissipation rate minimization are the same 
as those based on the maximum temperature difference 
minimization in ref [31]; when the thermal current densities 
in the high conductivity channel are not linear ones, the 
optimal constructs of the second order assembly based on 
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the minimizations of these two objectives are different.  
The entransy dissipation rate, associated with the en-

transy dissipation extremum principle, can provide a new 
objective for the optimization of heat transfer system, and 
can describe the global heat transfer ability of the system. 
The equivalent thermal resistance based on entransy dissi-
pation rate minimization can reflect the average heat trans-
fer performance of multi-dimensional heat conduction sys-
tem, i.e., the smaller the equivalent thermal resistance, the 
lower the mean temperature difference of the construct, as 
well as the better heat transfer performance and the higher 
heat transfer efficiency of the construct. The constructal 
optimization work in this paper can provide an optimal al-
ternative scheme from the point of view of heat transfer 
optimization for “volume-point” heat conduction models 
with three-dimensional cylindrical element and rectangular 
and triangular elements on microscale and nanoscale. The 
results obtained have enriched the constructal theory, and 
extended the application range of the entransy dissipation 
extremum principle. 
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