
SCIENCE CHINA 
Technological Sciences 

© Science China Press and Springer-Verlag Berlin Heidelberg 2011  tech.scichina.com  www.springerlink.com 

                           
*Corresponding author (email: hding@sjtu.edu.cn) 

• RESEARCH  PAPER • December 2011  Vol.54  No.12: 3130–3136 

 doi: 10.1007/s11431-011-4611-x  

Milling stability analysis using the spectral method 

DING Ye1, ZHU LiMin1, ZHANG XiaoJian2 & DING Han1* 

1 State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China; 
2 State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology,  

Wuhan 430074, China 

Received August 24, 2011; accepted September 13, 2011; published online November 5, 2011 

 

This paper focuses on the development of an efficient semi-analytical solution of chatter stability in milling based on the spec-
tral method for integral equations. The time-periodic dynamics of the milling process taking the regenerative effect into ac-
count is formulated as a delayed differential equation with time-periodic coefficients, and then reformulated as a form of inte-
gral equation. On the basis of one tooth period being divided into a series of subintervals, the barycentric Lagrange 
interpolation polynomials are employed to approximate the state term and the delay term in the integral equation, respectively, 
while the Gaussian quadrature method is utilized to approximate the integral term. Thereafter, the Floquet transition matrix 
within the tooth period is constructed to predict the chatter stability according to Floquet theory. Experimental-validated 
one-degree-of-freedom and two-degree-of-freedom milling examples are used to verify the proposed algorithm, and compared 
with existing algorithms, it has the advantages of high rate of convergence and high computational efficiency. 
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1  Introduction 

High-speed milling is one of the most important basic tech-
nologies for machining high precision complex surfaces 
widely utilized in key industries, e.g., aerospace, automotive, 
shipping, die and mold. It has some well-known advantages, 
such as obtaining a large material removal rate, keeping 
relatively low cutting forces and maintaining a high quality 
level. However, chatter is one of the most severe limitations 
for surface quality and productivity in milling operations 
due to choosing improper machining parameters. To 
achieve the aim of high performance milling [1–3], a great 
deal of effort have been dedicated to improvment of pro-
duction efficiency and part quality in milling through mod-
eling the dynamic milling processes and avoiding chatter by  

selecting optimal cutting parameters. In general, there are 
four kinds of chatter mechanisms [4] in metal cutting, i.e., 
frictional chatter, regenerative chatter, mode-coupling chat-
ter and thermo-mechanical chatter. In milling operations, 
the regenerative chatter is the most common form of self- 
excited and unstable vibrations. The dynamic milling proc-
ess taking the regenerative effect into account is generally 
formulated as a delayed differential equation (DDE) with 
time-periodic coefficients [5–7]. 

Based on the DDE, stability analysis for dynamic milling 
processes with different machining parameters is one of the 
most important prerequisites for the high speed milling 
technology. The time-domain simulation methods [8–11] 
can provide powerful predictions of stability limits simulta-
neously considering some non-linearities such as the loss of 
contact effect and radial immersion varying due to deflec-
tion, however, the computational burden is undesirably high.  
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To reduce the computational burden yet hold with reason-
able numerical accuracy, many semi-analytical methods 
have been investigated for the last two decades. Altintas et 
al. proposed the single frequency method [12] and the multi 
frequency solution [13, 14], which can work in the cases of 
three dimensional milling [15], plunge milling [16], circular 
milling [17], five-axis ball-end milling [18], etc. Bayly and 
his colleagues developed the temporal finite element analy-
sis (TFEA) method [19], which can be generalized to the 
non-linear TFEA formulation [20] and prediction of the 
surface location error in milling [21, 22]. Insperger and 
Stépán explored the semi-discretization method (SDM) [23, 
24], and the first-order SDM [25], which are widely used in 
many cases, such as stability analysis for up-milling and 
down-milling [26, 27], stability prediction for milling proc-
esses with variable time delays [28], in consideration of the 
loss-of-contact and feed-rate effects [29], milling with vari-
able pitch and variable helix milling tools [30], milling with 
spindle speed variation [31], etc. Wan et al. [32] recently 
proposed an improved semi-discretization method for pre-
dicting the chatter stability of milling processes considering 
multiple delays, i.e., the effects of runout and variable pitch 
of tools. Olgac and Sipahi [33] suggested the method of 
cluster treatment of characteristic roots (CTCR). Butcher 
and his co-workers [34] presented the Chebyshev polyno-
mial based method and the Chebyshev collocation method 
[35]. We introduced the full-discretization method (FDM) 
[36] based on the direct integration scheme, which can be 
used for simultaneous prediction of the surface location 
error in milling [37]. Insperger [38] then gave another for-
mulation of the FDM from the viewpoint of differential 
equations. 

More recently, we proposed the numerical integration 
method [39] for prediction of milling stability by using the 
numerical techniques of integral equations. In ref. [39], the 
original DDE is firstly represented as an integral equation 
with time delays, and then the classical numerical integra-
tion method (Nystroem method) for Volterra equations of 
the second kind (without time delays) are generalized to 
establish the Floquet transition matrix over one tooth pass-
ing period. The rate of convergence of the numerical inte-
gration method is limited [39] since only two (or three) dis-
cretized state and time-delay terms are employed for inter-
polation over each subinterval of one time period during the 
procedure of constructing the Floquet transition matrix,. In 
this paper, to improve the rate of convergence and the nu-
merical performance of our preliminary work [40] only ap-
plicable to the case of low radial immersion milling, a spec-
tral method suitable for cases of high radial immersion 
milling and low radial immersion milling is presented to 
establish the approximate Floquet transition matrix for pre-
diction of chatter stability, motivated by the spectral method 
[41, 42] for Volterra integral equations of the second kind. 
The remarkable property of the spectral method is that the 
spectral accuracy (or the exponential rate of convergence) 

can be obtained. When revising this paper, we were aware 
of the work of Khasawneh and Mann [43] which also pro-
posed the spectral method for stability of DDEs. However, 
the basic principles are different. In ref. [43] the spectral 
method was presented in the framework of the method of 
weighted residuals, while in this paper the algorithm is con-
structed on the basis of the spectral method [41, 42] for 
Volterra integral equations. 

The remainder of this paper is organized as follows. In 
Section 2, the formulation of the dynamic milling process 
taking the regenerative effect into account is briefly intro-
duced. In Section 3, the spectral method for milling stability 
analysis is presented. In Section 4, two kinds of general mill- 
ing models, i.e., one-degree-of-freedom and two-degree- 
of-freedom milling examples which have been experimen-
tally validated, are used to verify the proposed algorithm. 
Conclusions are drawn in Section 5. 

2  Mathematical model 

Without loss of generality, the dynamic milling process 
taking the regenerative effect into account is generally 
modeled as a m-dimensional time-periodic system with a 
single discrete time delay in the following state-space form: 

  ( ) ( ) ( ) ( ) ( ) ,pt t a t t t T   x Ax B x x  (1) 

where ap denotes the axial depth of cut, A is a constant ma-
trix representing the time-invariant nature of the system, B(t) 
is a periodic-coefficient matrix due to the time-variant cut-
ting forces, i.e., ( ) ( ),t t T B B  and T is the time delay 

which is equal to the time period. 
For more detailed descriptions of the dynamic milling 

process, the readers can refer to refs. [5, 6]. 

3  Algorithm of calculation 

Denoting by t0 and tf the time the cutting tool leaves the 
workpiece and the duration of the free vibration, the forced 
vibration duration tc=(Ttf). The forced vibration duration is 
then discretized as n subintervals, and we denote the discre-
tized time points in cutting by ti, i

 = 1,…, n+1, where t1=t0+tf 
and tn+1=t0+T. In this paper, the set of (n+1) Chebyshev 
points of the second kind [44] is employed to space the time 
nodes ti, i = 1,…, n+1 in the forced vibration duration, i.e., 
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2 2
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Eq. (1) can be represented as the following integral equa-
tion: 

 
  

0

0

( )
0

( )

( ) e ( )

e ( ) ( ) ( ) d ,

t t

t
t

p
t

t t

a T    







  

A

A

x x

B x x
 

(3)
 



3132 Ding Y, et al.   Sci China Tech Sci   December (2011) Vol.54 No.12 

where x(t0) denotes the state value at t=t0. 
At the end of the free vibration duration, the response of 

the system at t1 can be deduced from eq. (3) as 

 1 0 0( ) ( ) e ( ).ft

ft t t t   Ax x x  (4) 

As for 1t t , the response is 
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At the discretized time nodes ti, i = 2,…, n+1, the corre-
sponding responses can be obtained from eq. (5) as 
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Following ref. [41], a linear transformation is introduced 
for the definite integral term in eq. (6), i.e., 
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Then, eq. (6) is re-expressed as 
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Using the (n+1)-point Gauss-Legendre formula [45], eq. (8) 
can be reduced to 
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where k’s are the grid points of the (n+1)-point Gauss- 
Legendre formula on the interval [1, 1], and wk’s are the 
corresponding weights. 

To approximate eq. (9), the key point is to calculate  
the state term  ( , )i kt x  and the time delay term 

 ( , )i kt T  x . The barycentric Lagrange interpolation 

method [46] is employed here to interpolate them by using 

 ( ), 1, , 1it i n  x  and  ( ), 1, , 1 ,it T i n   x  respec- 

tively. The discretized time points ti,  1, , 1i n   and 

,it T  1, , 1i n   are actually two sets of nodal coor-

dinates in one dimension. For the sake of clarity, the bary-
centric Lagrange interpolation method is cited in the  
Appendix. The state term x(t) for 1 1nt t t    can be 

interpolated as 
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where ( ), 1, , 1t n       are the shape functions due to 

the barycentric Lagrange interpolation. Thereafter, 

 ( , )i kt x  in eq. (9) is approximated as  ( , ) .i kt x  

Similarly, the delay term ( )t Tx  for 1 1nt t t    can 

be approximated by ( ), 1, , 1it T i n   x  via the fol-

lowing approximants: 
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Then,  ( , )i kt T  x  can be approximately obtained 

as  ( , )i kt T  x . Note that the evaluations of the shape 

functions at different integration points are dependent on the 
relative locations of the integration points with respect to 
the background nodal coordinates. Hence, we have 

( ) ( )t t T     for 1, , 1n    and 1 1nt t t   . 

Substituting  ( , )i kt x  and  ( , )i kt T  x  into eq. (9), 

we can obtain x(ti) for (i = 2,…, n+1) as 
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Combining eqs. (4) and (12), the transition map between 
( ), 1, , 1it i n  x  and ( ), 1, , 1it T i n   x  can be es-

tablished as 
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and [ ], iDD  ( 1, , 1i n  , 1, , 1)n   , where iD   

is block matrix with the following structures: 
1) for 1i  , 1, , 1,n    ,iD  0  

2) for 2, , 1i n  , 1, , 1n   ,  
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From eq. (13), the approximate Floquet transition matrix 
is constructed as 

    1
.p pa a


    Ψ I F D D E  (14) 

At last, the Floquet theory [47] can be used to determine 
the stability of the system according to eq. (14). The stabil-
ity of the system can be determined by using all the 
eigenvalues of the transition matrix  in modulus, i.e., 
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4  Verification and numerical results 

The computer programs of the proposed algorithm are all im-
plemented in MATLAB 7.X and run on a personal computer 
[Intel Core (TM) 2 Duo Processor, 2.1 GHz, 1 GB]. The ex-
perimental-validated one-degree-of-freedom [20, 26, 27] and 
two-degree-of-freedom [21] milling examples are used to 
verify the proposed algorithm. 

4.1  Example of one-degree-of-freedom milling 

The state-space form of the one-degree-of-freedom milling 
model can be represented as [20, 26, 27] 

  ( ) ( ) ( ) ( ) ( ) ,pt t a t t t T   x Ax B x x  (16) 

where  
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h(t) is the cutting force coefficient function: 
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where Kt and Kn are the tangential and the normal linearized 
cutting force coefficients, respectively, and j(t) is the an-
gular position of the jth tooth defined by 

 ( ) (2π / 60) ( 1) 2π / ,j t t j N      (19) 

where N is the number of the cutter teeth and  is the spin-
dle speed in revolutions per minute (rpm). 

The function g(j (t)) is defined as 

   st ex1 if ( ) mod 2π ,
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where st and ex are the start and exit angles of the jth cut-
ter tooth. 

To provide comparison for the computational time and 
accuracy, stability lobe diagrams are calculated by using the 
semi-discretization method (SDM) [24] and the proposed 
method. The system parameters are from refs. [20, 26, 27]: 
a single fluted cutter, the natural frequency fn=n /(2)= 
146.5 Hz, the relative damping is =0.0032, the modal 
mass is mt=2.573 kg, the cutting force coefficients are 
Kt=5.5×108 N/m2 and Kn =2.0×108 N/m2. The radial immer-
sion ratio is a/D = 0.237, where a is the radial depth of cut, 
D the diameter of the cutter. The original Matlab program 
of SDM [24] is utilized with the number of discretization 
intervals over one period as 40. The computational parame-
ter n is chosen as 5 for the proposed method. The 400×200 
sized grid of parameters of the spindle speed and depth of 
cut are both adopted for the two methods. The stability lobe 
diagrams by using the proposed method and the SDM are 
shown in Figure 1 for up-milling and down-milling, respec-
tively. It is shown that good agreement is achieved. The 
elapsed time of the proposed algorithm for each case is 
about 30 s, while about 1300 s are needed for the SDM. It 
should be noted that the original SDM program [24] is used 
here, and its computational efficiency can be improved by 
some numerical techniques [48]. 

To demonstrate the rate of convergence of the proposed 
method, the zeroth-order SDM [24], the first-order SDM 
[25] and the trapezoidal rule based numerical integration 
method (NIM) [39] are employed as the benchmark. The 
local discretization errors for the zeroth-order SDM [24], 
the first-order SDM [25] and the trapezoidal rule based 
NIM [39] are 2( ) , 3( )  and 3( ) , respectively. 

To compare the computational results more reasonably, the 
system parameters are chosen from ref. [38]: a two fluted 
cutter, the natural frequency fn=wn/(2)=922 Hz, the relative 
damping is =0.011, the modal mass is mt=0.03993 kg, the 
cutting force coefficients are Kt=6×108 N/m2 and Kn=2×108 
N/m2. Figure 2 illustrates the convergences of the eigenval-
ues with different computational parameters n for the three 
different methods, where the radial depth of cut ratio is 
fixed as the high radial immersion a/D = 1, and the spindle 
speed =5000 rpm for down-milling. The axial depth of 
cuts are chosen as ap=1.0 mm and 0.2 mm , respectively. 
For reference, the exact eigenvalue |0| is calculated by the 
proposed method with the number of discretization intervals 
over one period as 60. The result shows that the proposed 
method has a much better rate of convergence than those of  
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Figure 1  Stability lobe diagrams via the proposed method and the semi- 
discretization method (SDM): (a) Up-milling; (b) down-milling. 

the others. It should be noted that although the rate of con-
vergence of the trapezoidal rule based NIM [39] is lower 
than the proposed method, the computational efficiency of 
NIM is much better than that of the proposed method due to 
the reason that only sparse matrices are involved in the 
computational procedure. 

4.2  Example of two-degree-of-freedom milling 

According to ref. [21], the two-degree-of-freedom milling 
model is expressed as 

  ( ) ( ) ( ) ( ) ( ) ,pt t a t t t T   x Ax B x x  (21) 
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1 1

1 1

2
,

4 2

0 0 0 0
0 0 0 0

( ) ,( ) ( ) 0 0

( ) ( ) 0 0
xx xy

yx yy

t
h t h t

h t h t

 

 

 
    

 
 
    
 
   

M C M
A

CM C K CM

B

 

M, C, K denote the modal mass, damping and stiffness ma-
trices, respectively, hxx(t), hxy(t), hyx(t) and hyy(t) are the  

 
Figure 2  Convergences of the eigenvalues with different computational 
parameters n for the proposed method, the zeroth-order SDM [24], the 
first-order SDM [25] and the trapezoidal rule based numerical integration 
method (NIM) [39]: (a) ap=1.0 mm, |0|=1.406473528 (unstable); (b) ap= 
0.2 mm, |0|=0.8197427841 (stable). 

cutting force coefficients defined as 
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In this example, the technological parameters are from 
ref. [21]: a two fluted cutter, the cutter diameter 12.75 mm, 
5% radial immersion down-milling. The cutting coefficient 
values for the aluminum (7050-T7451) material are Kt= 
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5.36×108 N/m2 and Kn=1.87×108 N/m2. The cutter modal 
parameters are cited in Table 1. The TFEA method [21] 
which has been well validated by experiments is utilized to 
verify the proposed method. The 200×100 sized grid of pa-
rameters of the spindle speed and depth of cut are both 
adopted for the two methods, and the computational pa-
rameter are both chosen as n = 4 (for TFEA method, it is the 
number of elements in cutting). Figure 3 illustrates the 
comparative results of the two methods, and good agree-
ment is also achieved. In addition, it only takes 13.2 s for 
the proposed method, while 858.3 s are needed for the 
TFEA method due to the use of the symbolic calculations in 
MATLAB. Note that the computational burden for the 
TFEA method can be reduced if some numerical methods 
are employed. 

5  Conclusion and future work 

In this work, an efficient semi-analytical method for milling 
stability analysis in the framework of integral equations is 
introduced. Based on the proposed spectral method, the 
original DDE governing the time-periodic dynamics of the 
milling process taking the regenerative effect into account is 
approximated by a set of algebraic equations. On this basis, 
the Floquet transition matrix is constructed to predict the 
chatter stability of the system via Floquet theory. The 
benchmark examples, i.e., one-degree-of-freedom and two- 
degree-of-freedom milling models, which have been well 
experimentally validated, are utilized to verify the proposed 
method. The comparative results illustrate that high-effi-
ciency and high-accuracy are both achieved.  

Table 1  The cutter modal parameters from ref. [21] 

M (kg) C (Ns/m) K (N/m) 

0.0436 0
0 0.0478
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Figure 3  Stability lobe diagrams for the proposed method and the TFEA 
method. 

The present work focuses on the topic of milling stability 
prediction with applications to the three-axis end-milling. 
Future works are worth considering. The most important 
one is to combine the proposed method with some advanced 
tool path planning methods, such as the third-order point 
contact approach [49, 50] and the kinematics constrained tool 
path planning method [51], for five-axis milling process op-
timization. The second one is to fuse the proposed method 
with some on-line chatter detection and signal analysis tech-
niques [52, 53] for high performance machining. 

Appendix  The barycentric Lagrange interpolation [46] 

For the Chebyshev time points ti, ( 1, , 1)i n  , the state 

term x(t) for 1 1nt t t    can be interpolated as 
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where ( )t  , 1, , 1i n    is defined as follows: 
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where ci for the Chebyshev points of the second kind are 
defined by 
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