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The focus of this paper is the ill-conditioned problems in the dam safety monitoring model. The reasons to give rise to the 
ill-conditioned problems in statistical models, deterministic models and hybrid models are analyzed in detail, and the criterions 
for ill-conditioned models are investigated. It is shown that safety monitoring models are not easy to be ill-conditioned if the 
number of influence factors is less than seven. Moreover, the models have a high accuracy and can meet the engineering re-
quirements. Another frequently encountered problem in establishing a safety monitoring model is the existence of inflection 
points, which are often present in the mathematical model for the hydraulic components in deterministic models and hybrid 
models. The conditions for inflection points are studied and their treatments are suggested. Numerical example indicates that 
the treatments proposed in this paper are effective in removing the ill-conditioned problems. 
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1  Introduction 

Dam safety monitoring models are generally established to 
monitor the dam behaviors using prototype observations. 
The different components in the monitoring models can be 
physically interpreted and used to monitor the working state 
of the dams. At present, dam safety monitoring models can 
be classified into two kinds as follows [1]. 

The first kind of monitoring models is the so-called sta-
tistical model, which can be mathematically expressed as 
follows: 

 ,H T        (1) 

where  is one of the monitored response variables, such as 
displacement, stress, uplift pressure, and seepage quantity. 
H is the hydraulic component and is often expressed as a 
polynomial function of the hydraulic head H (the difference 
between the upstream level and the downstream level), i.e., 
the influence factors are denoted as H, H2,  , Hn (n de-
notes the highest order). T is the thermal component and 
can be expressed as a linear function of the variations of 
corresponding variables. If the thermal field achieves a 
quasi-stationary state, the influence factors in T can be ex-
pressed by periodic terms (e.g. the sine and cosine functions 
of accumulative days).  is the time effect component, 
which can reflect the mechanical behaviors of dam body, 
foundation and the geological structure of bedrock compre-
hensively. Generally, the time effect component changes 
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rapidly during the initial stage, and it tends to be stable 
gradually during the later stage in normal operation. There-
fore,  is often composed of a linear part and a logarithmic 
part, both of which are functions of time. 

Based on the foregoing analysis, it can be concluded that 
there are many influence factors related to the same re-
sponse variable in the statistical model. For instance, the 
number of influence factors in engineering practice is usu-
ally greater than seven. 

The second kind of models for dam safety monitoring is 
the so-called deterministic model and the hybrid model, 
both of which are established with the aid of finite element 
calculations and data fitting procedures. The expressions 
can be presented as follows: 

Deterministic model:   

 ( ) ( ) ,H T Xf H Yf T            (2) 

Hybrid model: 

 ( ) ,H T TXf H             (3) 

where f(H) is the hydraulic component obtained from finite 
element calculations with a certain number of model pa-
rameters, e.g., the elastic modulus and the Poisson ratio of 
dam materials and foundation materials. f(T) is the thermal 
component, which is also obtained from FEM calculations 
with thermal parameters such as the linear expansion coef-
ficients of the dam materials and foundation materials. X 
and Y are the weighting parameters of f(H) and f(T), respec-
tively. 

It is shown from eq. (2) that the response variables in 
deterministic model are affected only by f(H), f(T) and the 
influence factors in . Therefore, the number of influence 
factors in deterministic models is generally less than that in 
a statistical model. For most of dam engineering models, the 
total number of influence factors in a deterministic model is 
less than seven. Differently, for a hybrid model only the 
influence factors of the hydraulic component are calculated 
and the other influence factors are the same as those in a 
statistical model. Therefore, the total number of influence 
factors in a hybrid model is generally greater than seven. 

It can be seen that different dam safety monitoring mod-
els have different numbers of influence factors. Therefore, 
the dam safety monitoring models established with the 
same observations are usually different. It is a common 
experience that the accuracy of dam safety monitoring 
models is influenced by many factors, among which the 
number of influence factors and the incomplete information 
are the dominant ones. A poorly established model is prone 
to suffer the problem of ill condition and often has an 
unacceptable accuracy. In this study, the ill-conditioned 
problems in the statistical, deterministic and hybrid models 
are studied in depth. The criterions for the judgment of ill 
condition are proposed and the corresponding treatments are 
suggested. 

2  Ill-conditioned problems of dam safety moni-
toring models 

Based on the prototype observations, a dam safety monitor-
ing model is established by the optimization method to re-
flect the relationship between the response variable  and 
the influence quantities (e.g., the influence factors of the 
hydraulic, thermal and time effect component). The most 
important task is to define the effect coefficients of the in-
fluence quantities in the model, i.e., n-dimensional effect 
coefficients ( 1,2, , )ib i n   of influence quantities are 

determined by m-dimensional monitoring data of the re-
sponse variables ( 1,2, , )t t m    and the influence quan-

tities xti. Since the number of equations, m, is usually greater 
than the number of unknowns, n, the above equation is a 
contradictory one and is often solved by deriving the normal 
equations using the least square principle. However, two 
numerical problems are often encountered in solving the 
normal equations [2–4]. Firstly, the operation load increases 
because of the rounding errors introduced in forming the 
coefficient matrix of normal equations. Special features of 
the coefficient matrix may be destroyed in some cases. 
Secondly, the ill-conditioned degree of the coefficient ma-
trix in the normal equations is considerably exacerbated. 
The first problem is obvious while the second one is not so 
evident. Herein, a simple example is used to demonstrate 
the second problem. 

Let us suppose that the contradictory equations of a dam 
safety monitoring model are 
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Eq. (4) can be rewritten in a compacted form, i.e., 

 0, CX  (5) 

where C is an m×n matrix and its element is Cij; n is the 
rank of C; X is an n-dimensional solution vector, i.e. 

T
1 2( , , , )nx x x ;  is an m-dimensional known vector, i.e. 

T
1 2( , , , )m   . 

The ill-conditioned degree of the contradictory equation 
is defined as the change of the solution induced by a per-
turbation of the coefficient matrix or the free term. Under 
certain condition, it can be measured approximately by the 
so-called condition number f(C), which is defined as fol-
lows: 
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where T
1 max( )  C C  and Tmin( )m  C C . 

If a perturbation C and a perturbation  are made to 
the coefficient matrix C and the free term , respectively, 
the change of the solution X should satisfy the following 
inequality: 

  2 2 2
1 2

2 2 2

,f k k
   

   
 




X C
C

X C
 (7) 

where k1 and k2 are coefficients. 
As mentioned above, the ill-conditioned degree of equa-

tions can be measured by the condition number f(C) of co-
efficient matrix C. For the case of the normal eq. (5), the 
condition number of coefficient matrix C reads 

 T 2 2
1( ) ( ) ( ) ( ( )) .mP P f   C C C C  (8) 

It can be seen from eq. (8) that the condition number of 
the coefficient matrix is scaled up to the square of its origi-
nal value when eq. (5) is transferred into normal equations 
[5, 6], which means the ill-conditioned degree is greatly 
increased. For this reason, a problem that is not so ill condi-
tioned may become a seriously ill-conditioned one after the 
normal equations are derived. Generally, equation is prone 
to be ill-conditioned when its rank n is greater than or equal 
to seven. This conclusion can be proved in the following 
example. 

Suppose that 1 2 nx x x   compose a set of observa-

tions of independent variables and 1 2, , , n    are the 

related observations of response variables. The dam safety 
monitoring model established by them can be expressed as  

 0
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and based on the least square principle, one has 
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Thus, 1 2, , , nx x x  fit the linear normal equation as fol-

lows: 
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where cij and gi are the elements of the coefficient matrix and 
the load matrix in normal eq. (5), respectively. Among  

them,
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If 1 2, , , mx x x  are equidistant nodes in the interval of 

[0,1] , namely 1 0, ,x   ( 1) ( 1)kx k m   ,  , 1mx  , 

then one can obtain 2
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1,2, , n . Therefore, C approaches to ( 1) nm  A  when m 

tends to be infinite, and the concrete form of matrix An is  
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The magnitude of the ratio is approximated to 10n  
when n is in the interval of (7,15) , i.e., the error of the 

solution will reach 10n when the error of the right-hand 
member gi in eq. (9) is 1. Obviously, the error is not caused 
by the specific solving method itself, it should be attributed 
to the extreme sensitivity of the solution to the disturbance 
of the right-hand member. It can be seen from the simple 
example that the calculation error of equation will be 
greatly amplified when n is greater than seven. As a result, 
the solution of normal equations in eq. (5) is rather prone to 
be ill-conditioned. 

As summarized in section 1, there are three kinds of dam 
safety monitoring models. For the statistical models, the 
number of influence factors is often greater than seven and 
even reaches dozens in some special cases. Therefore, sta-
tistical models are prone to be ill-conditioned when solving 
the relative effect coefficients of the influence factors. For 
the deterministic model, the number of influence factors is 
often less than seven, and the normal equation often has a 
better numerical performance. For the hybrid models, the 
number of influence factors is greater than that of determi-
nistic models and smaller than that of statistical models. 
Therefore, the possibility of being ill-conditioned for hybrid 
models lies between statistical models and deterministic 
models. 

It is shown in the foregoing analysis that the fewer the 
influence factors are, the higher the model accuracy will be. 
Not only the monitoring workload can be decreased but also 
the accuracy of the model is improved considerably. The 
following research is conducted to demonstrate the im-
provement of the model accuracy. 

Suppose that S and R are the residual mean square error 
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and the residual squares sum of the response variable, re-
spectively. The relationship between them reads 

 ( 1).S R m n    (10) 

It is evident that a smaller n results in a smaller S and a 
higher accuracy of the model when R changes slightly. By 
carefully selecting factors composed of representative in-
fluence quantity, the model with fewer influence factors not 
only can have a higher accuracy but also will not easily be 
ill-conditioned. 

3  Ill-conditioned model caused by information 
incomplete and its processing method  

3.1  Processing method towards the ill-conditioned 
model based on the method of dynamic iteration 

As pointed out previously that the hydraulic component f(H) 
in eqs. (2) and (3) should be calculated using FEM so as to 
establish a deterministic model or a hybrid model for the 
safety monitoring. The displacement of dam (especially 
concrete dams) caused by hydrostatic pressure is generally a 
smooth curve without inflection points. The f(H) is usually 
expressed by a polynomial function of the hydraulic head H, 
i.e., 
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where ai are the fitting coefficients; m is the highest order of 
the polynomial function. 

According to the theory about hydraulic structures and 
engineering mechanics, the displacement of certain point in 
dams shall be a smooth curve without any inflection points 
under the hydrostatic pressure. However, the ill-conditioned 
phenomenon of inflection point can often appear when de-
termining the curve, which means the expression of f(H) 
will not be able to reflect objectively the dam deformation 
regulation under the hydrostatic pressure, so it causes great 
difficulty to the analysis of dam deformation regulation and 
very probably leads to a false conclusion. The causes of 
such a phenomenon can be classified into two categories. 
The first one is the small number of the load cases selected 
to analyze the influence of water pressure on dam deforma-
tion, i.e., the considered load cases are too few to include all 
the cases completely so that unreasonable phenomenon of 
inflection points appears. The other reason is that the fitting 
coefficients ai determined directly by the conventional 
method are not always the most suitable, and then the in-
flection point in the expression of f(H) will appear. 

The treatment to remove the inflection points in an 
ill-conditioned problem is studied. Without loss of general-
ity, let us assume that m=4. Eq. (11) can now be expanded 
as follows: 

 2 3 4
0 1 2 3 4( ) .f H a a H a H a H a H      (12) 

Obviously, f(H) is possible to have inflection points 
within the range of the hydraulic head H. The necessary 
condition for the existence of inflection points is that the 
first and second derivatives of f(H) exist. Furthermore, from 
the viewpoint of mathematical theory, there should be one 
real root at least for equation f ″(H)=0 if the inflection points 
exist. This condition can be expressed as follows: 

 2
3 2 436 96 0.a a a     (13) 

In order to avoid the inflection points existing in f(H), 
( 2,3, 4)ia i   have to meet the following condition: 

 2
3 2 436 96 0.a a a     (14) 

As indicated by eq. (14), the inflection points can be ef-
fectively avoided by reasonably adjusting the values of a2, 
a3 and a4. 

As to eq. (12), the displacement f(Hi) of any point in the 
dam under the hydraulic head ( 1,2, , )iH i n   can be 

obtained by FEM. If f(H) is the optimal equation, then it has 
to fit the following equation according to the least square 
principle: 

 1 1[ ] { } { } ,ij m n i n i mc a c    (15) 

where [cij] and {ci} are the coefficient matrix and the load 
matrix of the normal equation in eq. (12), respectively, both 
of which are related to Hi, f(Hi) and the number of load 
cases n selected in the FEM calculations. 

The matrices {cij} and {ci} are usually different for dif-
ferent combinations of Hi and f(Hi), so ai obtained using eq. 
(15) are also different. Under the premise of meeting the 
engineering accuracy, function f(H) can avoid the inflection 
points only if the related coefficients fit the condition of eq. 
(14). There are two methods to solve the problem men-
tioned above. Firstly, the load cases of different hydraulic 
head Hi are selected within the possible range as much as 
possible so that the displacement f(Hi) obtained by FEM is 
used to establish the model without inflection points. The 
second one is the so-called dynamic iteration method [7], in 
which the cost of FEM calculations can be considerably 
reduced. 

3.2  Processing method towards the ill-conditioned 
model based on the entropy theory 

In this part, the method to establish a model for f(H) without 
inflection points is emphatically studied based on the en-
tropy theory. 

The entropy theory was first proposed by Clausius in 
thermodynamics to express the irreversibility of heat 
conduction. Later it was applied to information science to 
measure the average information in information theory 
[8]. The information entropy of discrete and continuous 
random variables x are defined respectively as follows: 
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Discrete variables:      
1

( ) ln ,
n

i ii
S x p p


   (16) 

Continuous variables:  d( ) ( ) ln ( ) ,
R

S x f x f x x   (17) 

where S(x) is the measurement of system uncertainty, which 
is used to characterize the magnitude of information. pi is 
the occurrence probability of xi in discrete random variable 
x. f(x) is the probability density function (PDF) of continu-
ous random variable x. 

There are two meanings in eqs. (16) and (17): One is that 
the information entropy S(x) can be calculated once the oc-
currence probability of information is known; the other one 
is that the information entropy S(x) can be considered as a 
function of probability distribution or PDF. According to 
the statistical inference rule of probability distribution pro-
posed by Jaynes [9], the probability distribution that has the 
maximum entropy should be selected when inferred from 
partial information. This is because the maximum entropy 
means the least human assumptions on the condition of data 
inadequacy, which ensures that the results obtained conform 
to the reality the best. 

It is well known that the relationship between the hy-
draulic head and the displacement of a dam is certain, i.e., 
the ratio of the area of the shaded parts in Figure 1 to the 
area of the curved triangle HmaxAHmin is also certain when 
Hi tends to zero. Therefore, the PDF of displacement 
distribution can be defined by the dataset ( , ( ))i iH f H , 

which includes different hydraulic heads and the corre-
sponding displacement calculated by FEM, i.e., 
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where n is the number of FEM calculations. 
The principle of the maximum entropy asserts that the 

PDF F(H) with minimum deviation will ensure that the 
corresponding entropy value reaches its maximum value 
under the known constraint conditions of the sample data 
information. i.e., 
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Figure 1  The relationship curve of hydraulic head and displacement. 

where  is the integral space; ( 1,2, , )j j N    is the 

jth-order origin moment of the known sample; N denotes 
the maximum order. According to the experience, the 
calculation precision is satisfactory when N reaches 4. 

The optimization problem expressed in eq. (19) can be 
solved by the method of Lagrange multiplier. i.e., 
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Then, the expression of f(H) in eq.(12) can be obtained 
by associating eq. (18) with eq. (20). 

Because the maximum entropy means the least informa-
tion added by human, the expression of f(H) obtained by the 
principle of maximum information entropy is the closest to 
the real relationship between the hydraulic head and the 
corresponding displacement that satisfies the requirement of 
eq. (14). Therefore, the expression of f(H) obtained by this 
method can be considered as the best expression for the 
hydraulic component without inflection points. 

4  Example analysis 

To verify the effectiveness of the algorithm proposed in the 
study, the displacements monitored along 9# section of a 
gravity arch dam in Northwest China are chosen for analy-
sis. The height of the selected section is 178 m, and the dis-
placements of the dam body and the foundation are moni-
tored by direct plumb line and inverted plumb line installed. 

Because a long sequence of monitoring data is available, 
we attempt to establish a deterministic monitoring model so 
as to avoid the ill-conditioned problem. The dam is discre-
tized with 23568 elements and the displacements of the dam 
body and the foundation are calculated by FEM, consider-
ing eight different hydraulic heads ( 1 8)iH i   , i.e., 68, 98, 

108, 118, 128, 143, 148 and 168 m. The radial horizontal 
displacements f(Hi) of the measuring point in 2600  ob-
tained by FEM calculations are 0.01, 2.88, 5.60, 9.90, 14.03, 
20.74, 23.50 and 45.60 mm, respectively. 

Based on the least square principle, the eight groups of 
results obtained are fitted, and the fitting coefficients 

( 0 4)ia i   , the discriminant  distinguishing the exis-

tence of inflection points and the multiple correlation coef-
ficient R characterizing the accuracy of f(H) are listed in 
Table 1. As can be inferred from the sign of the discrimi-
nant, there are two inflection points (H1=115.71 m, 
H2=112.14 m) in the model f(H) established directly by the 
least square method, indicating the inadequacy of the 
method and the necessity for employing other approaches. 

The coefficents ( 0 4)ia i   ,  and R  of f(H) ob-

tained by the method of dynamic iteration and maximum 
information entropy are also listed in Table 1 for compari-
son. In particular, the fourth iterative results obtained by  
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Table 1  The result statistic table of f(H) obtained by different methods 

Methods 
Least 
square 

Dynamic 
iteration 

Maximum in-
formation en-

tropy 

a0 3.0243×102 3.0244×102 3.1089×102 

a1 1.1454×101 1.1454×101 1.1719×101 

a2 1.5581×101 1.5579×101 1.5874×101 

a3 9.1197×104 9.1110×104 9.2566×104 

Fitting 
coefficient 

a4 2.0012×106 2.0005×106 2.0242×106 

 7.3448×109 3.5442×108 3.9309×1010 

R 0.9998 0.9925 0.9998 

 
dynamic iteration method are used to approximate the re-
sults of the least square method. 

Some meaningful conclusions can be deawn from Table 1. 
1) The discriminant  of f(H) obtained by the method of 

least square is greater than zero, indicating the existence of 
inflection points ill-condition off(H). 

2) The expression of f(H) without inflection points can be 
obtained by the method of dynamic iteration and maximum 
information entropy. For the method of dynamic iteration, 
there are many solutions meeting the condition of eq. (14). 
The final solution should be selected so as to preserve a 
higher accuracy. Since iterations are involved in the dy-
namic iteration method, the computational expense is gen-
erally high. On the contrary, the method of maximum in-
formation entropy can provide a function of f(H) without 
inflection points directly, so it is economic to the cost of 
computation. 

Based on the comparison of the mentioned methods, the 
maximum information entropy seems to be the most cost- 
effective way to establish the expression of f(H) without 
inflection point. 

5  Conclusions 

In this paper, we concentrate our attention on the ill- condi-
tioned problems of dam safety monitoring models. The 
causes leading to the ill-conditioned problems are first ana-
lyzed and the criterions for the judgment are then studied, 
finally the corresponding treatments are proposed. The main 
conclusions are summarized as follows. 

1) The reason for the ill-conditioned problems of dam 
safety monitoring models lies in the fact that the number of 
influence factors exceeds seven. Since the number of influ-
ence factors in deterministic models is six at most, the de-

gree of ill condition is much weaker than those in statistical 
models and hybrid models. The number of influence factors 
in dam safety monitoring models should be as less as possi-
ble for the sake of accuracy. 

2) The ill-conditioned problems caused by incomplete 
information are explored. After analyzing the causes of in-
flection points of the hydraulic component in dam safety 
monitoring models, the criterion of ill-conditioned problems 
is proposed and the corresponding processing methods are 
subsequently suggested to remove the inflection points. 

3) During the analysis of engineering problems, massive 
in-situ monitoring data are processed and the corresponding 
analysis models are of paramount importance in monitoring 
the safety of the engineering. Due to the generality of theory 
proposed in the study, it could also be used in evaluating the 
performance of structures in other fields for higher accuracy 
and validity. 
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