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An open-loop control system for hovering at any selected position on spacecraft orbit is first presented given that the satellite’s 
engine provides continuous finite thrust. Actually, the hovering states are unstable considering perturbations and thrust errors, 
so a feedback sliding mode variable structure control, which is adaptive and chattering-free, is designed. Under this feedback 
control scheme, the high-frequency chattering phenomenon is avoided, while the system stays highly robust at the same time. 
Simulation results show that the feedback control thrusts are continuous and the steady-states error can be confined to 104 m at 
the presence of uncertain perturbations. Finally, the feasibility of realizing hovering orbits is analyzed taking the “Moliya” and 
geosynchronous Earth orbit (GEO) satellites as examples. 
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1  Introduction 

“Hovering orbit” is the orbit of the active satellite which 
holds still relative to some space target. Due to the precious 
character of relative stillness, hovering orbit has a bright 
future in space missions [1, 2], such as interfering commu-
nication by hovering to communication satellite towards the 
side of Earth, expanding the space resources of GEO, and 
hovering formation flying on hyperbolic orbits of deep 
space missions, which can expand the baseline of measure-
ment.  

There are two kinds of work of hovering orbits, hovering 
to asteroids and hovering to near Earth satellites.  

Sawai et al. [3] studied the control of a spacecraft hover- 
ing over a uniformly rotating asteroid using altimetry. Bro-
schart [4] investigated the stability of realistic hovering con-
trol laws in the small-body-fixed and inertial reference 
frames. Lu [5] presented that it might be used to deflect 

small Earth-approaching asteroids’ orbits to avoid possible 
impaction using the gravity between asteroid and spacecraft 
which is hovered to the asteroid at right position. 

Most of resent researches on hovering orbits to near 
Earth satellites focused on circle orbits.  

Lin [6] studied the method to hover to target spacecrafts 
of circle orbits in the radial direction. Yan [7] expanded the 
hovering position, and gave a geometry method to realize 
hovering to circle orbits at any position. Li [8] analyzed the 
initial and control method of hovering formation using Hill 
equations. 

Actually, ideal circle orbits don’t exist because of per-
turbations, and the solutions based on circle orbits men-
tioned above are not quite suitable to realistic space mis-
sions. Therefore, it is necessary to study the hovering 
method to target spacecrafts on elliptic and hyperbolic or-
bits. We presented an open loop orbit control strategy to 
maintain hovering at any selected position to elliptical orbit 
in ref. [9] based on dynamics theory, and supposed that the 
satellite’s engine provides continuous finite thrust. However, 
the open loop control method is not stable due to perturba-
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tions and thrust errors, and feedback control laws are badly 
needed to keep the hovering states stable. 

Based on the results of ref. [9], a feedback sliding mode 
variable structure control scheme which is adaptive and 
chattering-free is mainly designed in this paper. The rela-
tionship among precise, control parameters and fuel con-
sumption is also discussed, and simulation results show that 
the feedback control law is effective. 

2  Open-loop control method 

2.1  Definition of coordinates 

Typically, a relative orbit is sensed or measured in terms of 
the local-vertical-local-horizon (LVLH) coordinates, which 
are denoted as S-xyz in Figure 1, in which S denotes refer-
ence satellite and C represents company satellite. Subscript 
S denotes reference satellite quantities and subscript C in-
dicates company satellite quantities. The rotating LVLH 
coordinate frame has it’s x axis aligned with the reference’s 
radial position vector and the z axis aligned with angular 
momentum vector. r is the position vector, and l is the rela-
tive position vector. The relationship between r and l can be 
written as  

 c s . r r l  (1) 

Let rs be T
s s( 0 0) rr  and l be T( )x y zl  in 

terms of LVLH coordinates. rc can be written as rc = 
T

s( ) .r x y z  

2.2  Open-loop control equations 

The open-loop hovering control equation of elliptic orbits is 
given in ref. [9] as  
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Figure 1  Earth inertial Cartesian coordinates and LVLH coordinates. 

where acontrol is the control acceleration, and  is the Earth 
gravity constant.   and  denote angular velocity and ac- 
celeration, respectively, and can be written as 

 2
s ,  f h r  (3) 

 
3

s

2 sin ,
   e f
r

 (4) 

where 2(1 )h a e   is the angular momentum. a, e and 

f  represent the semi-major axis, eccentricity and true 
anomaly, respectively. 

2.3  Fuel consumption 

Let T be the orbital period, T=2/ns, in which 3
s n a  

denotes the mean angular velocity of the reference satellite. 
The velocity increment during an orbital period can be ex-
pressed as 

 control

0

d .
T

Tv t   a  (5) 

The velocity increments of three coordinate directions 
are given in ref. [9] as  

  
3

2 2 2
s
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2π 3 1 ,
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
  Tzv zn e  (8) 

Supposing that the reference orbit is circle, we can get 
=0 and 2 3

s ,  r  then the control acceleration can be 

simplified as  

  T2
control 3 0 ,x z a  (9) 

and the velocity increments of an orbital period are  

 s s6π ,  2π .   Tx Tzv n x v n z  (10) 

If the reference orbit is hyperbolic, for leading-following 
hovering formation, which has 

 T(0 0) ,yl  (11) 

the velocity increments are 

  2
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where f
 is the true anomaly at infinite distance, and p is 

the semilatus rectum. According to the definition of hyper-
bola, it is easy to get  

 
1

cos ,f
e

   (14) 

and 

 1 1
cos .f

e



   
 

 (15) 

3  Feedback control scheme design 

The control eq. (2) is derived under the assumption of 
two-body, actually the hovering formation with this control 
method will gradually be destroyed by perturbations. 
Therefore, feedback control laws must be applied to keep 
the formation stable. However, the perturbations are very 
complex, and it is hard to build accurate models for them. 
So, the quantity of anti-jamming becomes the most impor-
tant performance of the feedback scheme. 

Sliding mode variable structure control is widely con-
cerned due to its highly robust character, however, the 
high-frequency chattering phenomenon caused by the iner-
tial of realistic switches restricts the application of variable 
structure control a lot. To solve this problem, an adaptive 
chattering-free variable structure control scheme is devel-
oped in the following sections, which can almost eliminate 
chattering phenomenon and stay highly robust. 

3.1  State equation 

Let the relative position vector of hovering satellite be  

 T
1 ( ) ,x y zX  (16) 

and the relative velocity vector be 

 T
2 1 ( ) .x y z    X X  (17) 

The relative acceleration vector can be expressed as 

      2 , , , , ,f t t f t   X X B X U X U  (18) 

where  ,  ,  f t X U  denotes the part of relative accelera-

tion which can not be modeled, and U indicates the control 
vector which can be separated into two parts 

 d c , U U U  (19) 

where Uc represents the feedback control vector, and Ud 
denotes the standard open-loop control vector, which is 

 d control .U a  (20) 

Using T-H eq. [10], we can get 

   1 1 2 2, ,f t X A X + A X  (21) 

  
1 0 0

, 0 1 0 ,

0 0 1

t

 
   
  

B X  (22) 

where 

 

2
s

2
1 s

s

2 0

0 ,

0 0

 
 

 
    
  

c

c

c

A  (23) 

 2

0 2 0

2 0 0 ,

0 0 0




 
   
  

A  (24) 

cs can be expressed as 
3
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s s 2
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So far, the states equation can be written in term of chaos 
[11] as  
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3.2  Expanded state equation 

Supposing that 

 3 2 , X X  (26) 

we can immediately have  

    3 , , , ,F t F t    X X U X U  (27) 

where 
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Substituting eqs. (26)–(29) into eq. (25) leads to the 
expanded state equation in terms of chaos  
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3.3  Sliding mode variable structure control scheme 
design 

The control scheme is designed for the states equation of 
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eq. (30). 

3.3.1  Sliding surface design 

The sliding variable is chosen as 

 1 2 ,  s e c e c e   (31) 

where 

 d 1, e X X  (32) 

where Xd denotes the expected hovering position. Eq. (31) 
depicts a typical second-order system. c1 and c2 are both 
diagonally matrix, which can be solved according to ex-
pected dynamic characteristics. 

3.3.2  Reaching law design 

Saturation function is used to weaken chattering, which is 

    sgn ,  ,
, 1,2,3.

,  ,




 

  


j j

j

j j

s s
sat s j

s s
 (33) 

The reaching law of ref. [12] is adopted, which is  

  , ,k sat r    s s s  (34) 

where k > 0 and r > 0 must be satisfied.  
In the following, the equal control law veq on sliding sur-

face is first solved. During the sliding mode, the variable 
must meet 

 0.s  (35) 

Substituting eqs. (30)–(32) into eq. (35), we can get 

   d d eq 1 2, 0.        tX F X U v c e c e  (36) 

Therefore, the equal control law veq can be written as 

  eq d d 1 2, .       tv X F X U c e c e  (37) 

Then, the variable structure control law v will be de-
rived which can drive the system to sliding mode. The slid-
ing variable should meet eq. (34) while the system is not in 
the sliding mode. Substituting eqs. (30)–(32) into eq. (34), 
we can get  
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(38)
 

Substituting eq. (37) into eq. (38) yields the variable 
structure control law v  as  

  , .k sat r    v s s  (39) 

According to eqs. (37) and (39), the variable structure 
control scheme for expanded system can be written as 

 c eq ,  v v v  (40) 

which can also be expressed as 
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(41)
 

The variable structure control law for the original system 
denoted by eq. (25) is the integral of eq. (41), which is  
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By substituting eq. (21) into eq. (42), it can be simplified 
into  
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(43)
 

Comparing eq. (41) and eq. (43), we can find the fol-
lowings.  

1) Saturation function is brought into eq. (41), which can 
weaken the chattering in some degree, but for discrete system 
it can not make sure that the control thrust is continuous. 

2) Based on eq. (41), integral is further used in eq. (43) 
which is more effective to eliminate the high-frequency 
chattering phenomenon. 

The system of eq. (25) is stable under the control of eq. 
(43), and arbitrarily desired tracking accuracy can be 
achieved within a finite time if the parameter of the control 
scheme is appropriately set. See details in ref. [12]. 

The sliding surface and parameters of reaching law are 
key factors in variable structure control, which decide the 
precision and quality, so the value of k in eq. (43) should be 
well considered. Increasing the value of k, the reaching 
movement will be more fast, which enhances the quality of 
robustness but reduces the steady-state precision. It will be 
helpful to decrease the value of k to raise the steady-state 
precision, but the time of convergence will be delayed at the 
same time, even making it impossible to reach sliding mode 
in some worst situations. To solve this contradiction, an 
attenuation factor (0< < 1) is brought into k, which was 
proposed in ref. [13], and k is expressed as 

 
   
   

1 , min ,
1, 2,3.

1 , max ,

j

j

k i k i s
j

k i k i s

 



    
  

 (44) 

4  Simulations 

Three different types of reference orbits are chosen to real-
ize hovering formation, which are highly elliptic: “Molniya” 
communication satellite (S1), circle GEO satellite (S2) and 
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hyperbolic Lunar detector (S3). The initial orbit elements 
are shown in Table 1, and the data of S3 are measured in 
Lunar-centered inertial frame. 

4.1  Open-loop controller 

Suppose that the target hovering position vector of S1 is 
T

1 ( 1000 0 0) l . The control acceleration which is the 

function of true anomaly  f  can be obtained from eq. (2) as 

  34
control

3 0.74cos

2.32 10 1.48sin 1 0.74cos .

0



 
      
 
 

f

f fa  (45) 

The relationship between acceleration and true anomaly 
is shown in Figure 2, from which we can see that the mini-
mum of total acceleration is approximately 9.11×106 m s2, 
coming up at the apogee. 

According to eqs. (6)–(8), the velocity increments of 
three coordinate directions in a orbital period are vTx = 
9.915 m s1, vTy=2.857 m s1 and vTz=0, with total incre-
ment vT =10.317 m s1. 

Assuming that the target hovering position vector of S2 
is T

2 (0 0 1000)l , the control acceleration is simpli-

fied as constant value along the z direction, with the value  

Tabel 1  Initial orbit elements of reference satellites 

Elements S1 S2 S3 

a (km) 26553.375 42241.098 1550.400 

e 0.741 0 1.500 

i (°) 63.400 0 23.500 

w (°) 270.000 0 270.000 

 (°) 30.520 60.000 0 

f (°) 0 0 131.810 

 

 

Figure 2  Relationship between acceleration and true anomaly (S1). 

of az =5.289×106 m s1. The velocity increment per day is 
0.457 m s1. 

Let the azimuth be  ( [0, 2π]   ), which is defined as 

the angle measured from the y axis to the projection of rela-
tive position vector on the local horizon plane.  (   

[ 1 2π, 1 2π])   denotes the altitude angle, which is defined 

as the angle between the relative position vector and the 
local horizon plane. The relative position vector can be 
written as T(sin cos sin cos cos )l     l . The 

velocity increments per day at different positions are shown 
in Figure 3. 

Suppose that the target hovering position vector of S3 is 
T

3 (0 1000 0)l , and that the relationship between ac-

celeration and true anomaly is shown in Figure 4. The ve-
locity increments in a orbital period are vTy=10.259 m s1, 
vTy=5.166 m s1, with total increment vT=11.486 m s1. 
From eq. (12), we know that the velocity increment is the 
function of perilune altitude and eccentricity, which is 
shown clearly in Figure 5. 

4.2  Feedback controller 

The sliding mode variable structure control depicted as eq. 
(43) will be used to maintain the hovering formation stable. 
The control parameters are chosen as =104, =0.9995, 
k=r=106, c1=diag (8  8  8)×102, and c2=diag (1  1  1) 
×103. The initial value of the integral term is set as 104, 
and the initial position err is 10 m, with simulation step  
0.1 s. The unknown terms are given as  

   5, , 10 sin .f t t  X U  (46) 

The relative range errors under feedback control are given 
in Figures 6 and 7, with the steady error less than 104 m.  
The real relative states are yielded as follows. First, the orbit 
elements of both company and reference satellites in inertial 
frame are calculated, then we can get the relative states in 
terms of inertial frame. Through frame transition between 
Earth-centered inertial coordinate and LVLH, we can finally 
have the relative states in LVLH coordinates. Perturbations 
during the computation include non-spherical of 21×21 
terms, solar radiation, atmosphere drag and the third body 
gravity.  

Figure 8 shows the feedback control thrust in one period, 
and the thrusts of y and z axes are local, from which we can 
see that the control thrust is continuous and the chattering 
phenomenon is eliminated. The total fuel consumption of 
the feedback control in one orbital period is approximately 
0.345 m s1. 

Figure 9 depicts the changing curve of the sliding vari-
able s, and the graph of y and z axes are local, from which 
we can find that the sliding variable is also continuous and 
is confined to less than 107. 
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Figure 3  Velocity increment contour lines during a orbital period (S2). 

 

Figure 4  Relationship between acceleration and true anomaly (S3). 

 

Figure 5  Velocity increment contour lines vs. eccentricity and perilune 
altitude (S3). 

 

Figure 6  Relative range errors. 

 

Figure 7  Relative range errors (local). 

 

Figure 8  Feedback control thrusts. 
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Figure 9  The value of function s. 

4.3  Analysis of total fuel consumption 

In this section, the feasibility of realizing hovering orbits is 
analyzed taking the S1 and S2 satellites as example.  

Let the mass of reference satellite be ms, designed 
life-span be Td, velocity increment per day of unit mass be 
v, total fuel consumption be m, and the exhaust velocity 
be ve. Then we can get 

 e s d .    mv v m T  (47) 

Given the mass of satellite S1 ms1=1000 kg, the velocity 
increment of open-loop control in one orbital period is 
10.317 m s1, while the feedback control needs 0.345 m s1. 
The total velocity increment of unit mass per day is  

   1
s1 10.317 0.345 2 21.324 m s .     v  (48) 

Given the mission that disturbs the communication of S1 
for 100 days, the life-span of the mission is Td1=100 d. 
Taking GOCE (Gravity field and steady-state Ocean Circu-
lation Explorer) [14] for example, which is equipped with 
xenon ions propulsions with exhaust velocity exceeding 
40000 m s1. Substituting Td1=100 d and ve=40000 m s1 
into eq. (47), we can yield the total fuel consumption to be 

s1 53.310 kg.  m  

Given the mass of satellite S2 ms2=1000 kg, the velocity 
increment of open-loop control in one orbital period is 
0.457 m s1. The unknown perturbations of high orbits are 
smaller than low orbits, which can be chosen as 

   6, , 10 sin .f t t  X U  (49) 

The initial position error is set to be 10 m. The velocity 
increment of feedback control in the first orbital period is 
0.347 m s1, which will be reduced to 0.014 m s1 per day 
after the first period. So, the total velocity increment of unit 
mass per day can be easily calculated as 1

s2 0.471m s .  v  

Supposing that Td2=5 a, the total fuel consumption can be 
obtain as s2 21.5 kg  m , which is less than 3% of the 

mass of the entire satellite. With GEO satellites launched 
more and more, this kind of space resource becomes much 
more precious, which makes the research of hovering orbits 
much more meaningful.  

5  Conclusions 

1) An open-loop hovering control strategy is proposed 
which might be applied to any kind of orbits.  

2) A feedback sliding mode variable structure control 
scheme is designed, under which the chattering phenome-
non is avoided while the system stays highly robust at the 
same time. 

3) To hover right below the “Molniya” communication 
satellite at a distance of 1 km, the velocity increment needed 
by feedback control in one orbital period is 0.345 m s1, 
with steady error less than 104 m. The fuel consumption is 
53.3 kg given the mass of hovering satellite 1000 kg and the 
life-span 100 d. 

4) To hover to GEO satellite in the normal direction at 
the distance of 1 km for 5 a, the fuel required is 21.5 kg if 
the hovering satellite’s mass is 1000 kg. 
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