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A nonlinear multi-field coupled model for multi-constituent three-phase soils is derived by using the hybrid mixture theory. 
The balance equations with three levels (constituents, phases and the whole mixture soil) are set up under the assumption that 
soil is composed of multi-constituent elastic-plastic solid skeleton (which is different from the linearization method) and vis-
cous liquid and ideal gas. With reasonable constitutive assumptions in such restrictive conditions as the principles of determin-
ism, equipresence, material frame-indifference and the compatible principle in continuum mechanics, a theoretical framework 
of constitutive relations modeling three-phase soil in both non-equilibrium and equilibrium states is established, thus the closed 
field equations are formed. In the theoretical framework, the concept of effective generalized thermodynamic forces is intro-
duced, and the nonlinear coupling constitutive relations between generalized dissipation forces and generalized flows within 
the system at nonequilibrium state are also presented. On such a basis, four special coupling relations, i.e., solid thermal elas-
tic-plastic constitutive relation, liquid visco-elastic-plastic constitutive relation, the generalized Fourier’s law, and the general-
ized Darcy’s law are put forward. The generalized or nonlinear results mentioned above can degenerate into the linear coupling 
results given by Bennethum and Singh. Based on a specific dissipation function, the concrete form of generalized Darcy’s law 
is deduced, which may degenerate into the traditional form of Darcy’s law by neglecting the influence of skeleton deformation 
and temperature. Without considering temperature and other coupling effects, the nonlinear coupled model in this paper can 
degenerate into a soil elastic-plastic constitutive model. 
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1  Introduction 

Soil behaviors, e.g., the deformation of soil skeleton, 
pore-water seepage, advection and diffusion of pollutants in 
soil pores, pore-water phase change, etc., are normally con-
trolled by its multi-fields including the stress, seepage, 
temperature and chemical fields. These behaviors under 
multi-field differ significantly from those under a single 
field. The study of soil behaviors under multi-fields is of 
great demand in many applications, e.g., civil engineering 
construction, geo-disaster prevention, diffusion and migra-
tion of pollutants, and high-efficient exploitation of new 

energies (coal-bed methane, natural gas hydrate, etc.). After 
several decades’ research on multi-field coupling theory, 
great achievements have been made. Most of them are 
based on intuition, experience, or macroscopic recognition, 
and are lack of a united and consistent scientific theoretical 
basis. These empirical theories normally have their own 
limitations and often fail to describe the behaviors of soils 
under multi-field coupling conditions strictly and effectively. 
Therefore, the solutions cannot meet the needs of engineer-
ing practice. 

Currently, soil mechanics is still in a semi-theoretical and 
semi-empirical stage. Specifically, theories of seepage and 
deformation are established according to different assump-
tions and lack of a unified theoretical basis between the two 
parts. Empirical formula and methods can be seen every-
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where in soil mechanics. Experience and engineering judg-
ments are still playing important roles [1]. The develop-
ments of modern soil mechanics, particularly the critical 
state soil mechanics, have established the relation between 
soil deformation and shear strength, and improved the theo-
retical basis of soil mechanics. However, these develop-
ments still have not fundamentally changed the situation 
mentioned above. Unified and consistent theory of soil me-
chanics is still desired, in which multi-fields should  basi-
cally be coupled. 

After long-term weathering, rocks on the earth surface 
break into small particles and transform into soils. Soils are 
a loose assemblage of such mineral particles with weak 
connections, hence include soil skeleton formed by the solid 
particles and voids filled with liquid or gas. Usually, the 
motions of soil skeleton, pore-liquid and pore-gas are dif-
ferent and there are interactions among them. Because it is 
too difficult to obtain the specific geometry and shape vari-
ation of each pore, we cannot obtain certain description of 
the motions at each space point for pore-fluids and soil 
skeleton. In order to overcome the above difficulties, it is 
necessary to turn to the solution in macro level, which is a 
rougher and average level. For example, soils are often re-
garded as continuous homogenous materials in the macro 
level. That’s to say, a macroscopic homogeneous continuum 
is used to substitute the soil, which is in fact a microscopi-
cally heterogeneous porous media. This approach requires 
that the two kinds of media should have the same macro-
scopic behaviors. After such treatment, only the macro-
scopic properties of soils are required, which do not depend 
on the micro-structure of pores and can be obtained or veri-
fied by macro experiments. Therefore, continuum mechan-
ics can be applied to soils. By following this route, the mix-
ture theory [2–5] is established to describe the behavior of 
the porous media, i.e., soils, on a macroscopic level, as well 
as the later developed hybrid mixture theory [6–9]. 

Since 1960, the mixture theory has achieved great de-
velopment [2–5]. The mixture theory is used to describe the 
complex interactions between different phases in porous 
media and their responses to external stress or chemical 
actions. The mixture theory can be applied to soils, which 
are typical porous media, and seems to be able to unify the 
theoretical basis of soil mechanics. Comparing to rock and 
concrete, soils are of weak connections between the solid 
phase, i.e., the particles. The liquid phase, i.e., pore-water, 
and the air phase, i.e., pore-air, have strong effect on the soil 
deformation and shearing behaviors. Hence, much attention 
should be paid to the pore-water pressure and the pore-air 
pressure in soils. 

The mixture theory was originally proposed to analyze 
the multi-constituent gas mixtures [2]. Bowen (1980, 
1982)[3, 4] extended the mixture theory to multi-phase po-
rous media and used the volume fractions of different phas-
es as internal variables. Then, equations were established by 
considering the followed principles: 1) the momentum con-

versation, 2) the energy conversation, 3) the mass conversa-
tion, and 4) the principle of entropy increase. After incor-
porating some constitutive assumptions, constitutive equa-
tions can be derived finally. de Boer [5] and his research 
team set up the mixture theory considering variable volume 
fraction, and later named it as porous media theory. Mor-
land [10], Goodman and Cowin [11], Bowen [3, 4], Pass-
man [12], Hutter [13, 14], de Boer, et al. [5] were dedicated 
to the theoretical research on multi-phase porous media us-
ing mixture theory. Hassanizadeh and Gray [6–8] estab-
lished an averaging method in the mixture theory, which led 
to equivalent equations derived by Bowen (1980, 1982). 
The mixture theory involving the averaging method was 
called the hybrid mixture theory (HMT) and further ad-
vanced by Achanta and Cushman[9], Hassanizadeh and 
Gray [15, 16], Bennethum and Cushman, et al. [17, 18]. We 
believe that the hybrid mixture theory can provide a more 
reasonable description of soil microstructure and better 
links between soil micro and macro behaviors. In addition, 
the hybrid mixture theory can result in the same equations 
as those obtained using the mixture theory under proper 
assumptions.  

In this paper, the hybrid mixture theory is used to build a 
unified, theoretical, and thermodynamics-based theory for 
soils. Further, the continuum porous medium soil mechanics 
proposed in ref. [1] is used to establish a nonlinear multi- 
field coupling framework for soils. 

Based on the hybrid mixture theory, porous media in-
cluding unsaturated soils exhibit a hierarchy of scales and 
there are often distinct separations between different scales. 
Figure 1 illustrates a three-scale (micro-scale, meso-scale, 
and macro-scale) system of unsaturated soils [17, 18]. At 
present, it is believed that only the meso and macro scales 
have direct influence on the macroscopic properties of soil. 
According to the volume averaging theory [6–8], porous 
media contains a number of phases and each phase contains 
a number of constituents. First, the balance equations and 
variables for each constituent can be derived on the micro- 
scale. Second, the balance equations for each phase are es-
tablished by using the classical continuum mechanics on the 
meso-scale. Third, the balance equations and macro varia- 

 

 

Figure 1  Three scales of unsaturated soils[17]. 
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bles for the mixture can be derived by volume averaging 
and the consideration of interactions between different 
phases.   

According to the continuum mechanics, soils are regard-
ed as continuum porous media under multi-field, including 
the stress, seepage, temperature, and chemical field. Differ-
ential equations on a local element are constructed to de-
scribe the macro behavior of a continuum medum under 
multi-fields. Hence, the following assumptions are implied.  

1) Representative element volume (REV) should be large 
enough in the micro-scale. On the micro-scale, the local 
element analyzed should contain enough solid particles and 
voids, so that it can be averaged statistically and has  
meaningful parameters and thermodynamics properties.  

2) REV should be small enough in the macro-scale that 
the local element analyzed can be treated as a point in the 
macro space. Then, averaged properties can be assigned to 
the local element and will not induce unacceptable error 
after integration.  

3) Characteristic scale of REV should not change with 
time and space. Even if there are slight changes of the char-
acteristic scale, the averaged material properties and param-
eters should still be constant rather than changing with their 
characteristic scales. 

Therefore, under the frame of volume averaging theory, 
the multi-phase porous media can be defined as:  

1) The mixture is composed of  phases and each phase 
contains the same set of j constituents. If a constituent does 
not exist in a specific phase, the concentration of the con-
stituent in the phase will be set as zero.  

2) The porous media is continuous and the ×j constit-
uents are overlapping and coexisting at every element in the 
space. Averaging thermodynamic and mechanical properties 
on meso-scale can be assigned to each element.  

3) The macro parameters of the mixture can be related to 
and be expressed by the properties on meso-scale. 

Pore fluid is usually multi-constituent in many practical 
engineering, particularly in the pollutants transport system, 
so it is very important to establish a mixture theory for mul-
ti-constituent and multi-phase porous media. Hutter et al. 
[13, 14] studied multi-field coupling theory of porous media 
using the classical mixture theory. Bennethum [19] illus-
trated the use of rational thermodynamics to develop the 
mathematical multi-field model for multi-constituent swell-
ing porous media. Huang and Zhao [20] established the 
mixture theory for multi-constituent micropolar porous me-
dia by combining  the hybrid mixture theory with mi-
cropolar continuum theory. However, linearization methods 
were used to describe the behaviours of the mixtures, and 
the solid phase was assumed to be elastic (such as a series 
of works by Bennethum) in all previous works, while the 
elastic-plastic deformation and the corresponding energy 
dissipation that is more important for soils were not consid-
ered. In addition, the theoretical interpretation of coupling 
phenomena were also not complete, and the unsaturated 

state of soil were seldom considered in these studies. 
In this paper, we assume that soil is composed of elastic- 

plastic solid, viscous liquid and ideal gas. The elastic-plastic 
constitutive modeling framework for multi-constituent un-
saturated soils is established based on the hybrid mixture 
theory; considering the coupling effects among deformation, 
seepage, and heat conduction, etc., a nonlinear multi-field 
coupled model for describing coupling behaviors of mul-
ti-constituent and multi-phase porous media is established. 
Using the averaging theory, the macroscopic balance equa-
tions and the entropy inequality equations for each phase 
and the whole soil are derived. And the constitutive rela-
tions in non-equilibrium state are given by Lagrange multi-
plier method to further process the entropy inequality. Then 
based on the balance constraints, the constitutive relations at 
equilibrium are presented. Finally, by dealing with the dis-
sipative parts of entropy inequality based on near-equilib- 
rium thermodynamics, the coupling relations among elas-
tic-plastic deformation, seepage, heat conduction, chemical 
reaction, diffusion of chemicals and pollutants, etc. are set 
up, then the theoretical framework of multi-field coupling 
for unsaturated soils is established. Four special coupling 
results, that is, solid thermal elastic-plastic constitutive rela-
tion, liquid viscous elastic-plastic constitutive relation, gen-
eralized Fourier’s law and generalized Darcy’s law, are also 
given. Furthermore, the specific form of the generalized 
Darcy’s law is deduced based on the given dissipative func-
tion. In addition, it is shown that the non-linear model pro-
posed in this paper could degenerate into soil elastic-plastic 
constitutive model without considering temperature or other 
coupling effects. 

When analyzing multi-field coupling problems for soils 
using hybrid mixture theory, the following three aspects 
need to be considered . 

1) Selection of independent state variables. The choice of 
independent state variables depends on the nature and char-
acteristics of the problems involved, the existing knowledge 
(including theoretical knowledge and experimental results, 
etc.), researchers’ experience, and so on. 

2) Establish all kinds of equations at equilibrium and the 
corresponding restrictions and constraints with Coleman 
and Noll(1963)[21]’s method. Note that the balance equa-
tions used to solve multi-field coupling problems are uni-
versal, which can be used for any substance and problem. 
So the specialty of coupling phenomena is usually reflected 
in the corresponding constitutive relations, meanwhile, the 
established restrictions and constraints directly give the 
definitions of certain variables and phenomena. 

3) Constitutive equations for multi-field coupling prob-
lems can be set up based on the specific dissipative func-
tions and the second law of thermodynamics. The selection 
for dissipative function depends on researchers’ experience, 
theoretical knowledge and test results.  

The aspects mentioned above will be discussed in the 
following relevant parts respectively. 
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2  Balance equations 

2.1  Basic assumptions 

For simplicity, the main assumptions for soil are as follows: 
1) The soil is composed of the superposition of solid 

skeleton s, liquid 1 and gas g.  
2) The solid, water and air phases have the same but not 

constant temperature at the same point (the process is non- 
isothermal), that is, T = Ts = T1 = Tg. 

3) Phases are immiscible with each other except steam 
and gas. Dry air and steam are treated as gas, and the disso-
lution of gas in liquid is ignored. 

4) Materials of phases are non-polar, thus conservation of 
momentum moment for each phase means that the Cauchy 
stress tensor of the phase is symmetric. 

5) The thermodynamic properties of materials at the in-
terface are ignored. 

2.2  Balance equations, entropy inequality and restrict- 
ion equations 

The volume fraction is introduced to describe the internal 
microstructure of porous media according to the averaging 
theory. ns, n1 and ng are the volume fraction of solid, liquid 
and gas, respectively; in the equation ns=1n, where n is the 
porosity of porous media; n1 = nSw, where Sw is the degree 
of saturation for liquid phase; ng = n(1Sw); n = n1+ng. 
Bennethum [19] derived the macroscopic balance equations 
for two-phase (solid and liquid phases) swelling porous me-
dia using the averaging theory. Now we extend it into 
three-phase (solid, liquid and gas phases) porous media. 

(I) Mass conservation 
The mass conservation equation of constituent j in phase 

 can be expressed as 

 j j
α α α j j j

α α α α

D
ˆ

D

n
n e

t


  v , 

α =s, l,g , j=1, 2, , N ,  (1) 

where j
αD Dt  denotes material time derivative following 

the j-th constituent in the -phase, i.e.,  j
αD / Dt   

  / t       j j
α α αD / Dt    v u    , j

αv  is the mass 

averaged velocity of j -th constituent in phase α , j
αu is the 

diffusive velocity, j j
α α α u v v , αv  is the velocity of 

phase α ; j
α  is the averaged mass density of j-th constitu-

ent in α phase; j
αê  is the rate of mass exchange between 

constituent j inside phase  and other constituents outside 
phase , where the mass exchange between constitute j and 
other constituents inside phase  is ignored, that is to say, 
the role of reactive chemical field is not taken into account. 

In order to get higher-level macroscopic equations by 

constituent conservation equation, Olivella et al. [22, 23] 
adopted the compositional approach, which used the total 
balance equation with the same species in different phases 
superimposed instead of the balance equation with different 
constituents in the same phase superimposed, so as to estab-
lish field equations. The advantage of the approach is that 
there is no interaction among each phase, which is espe-
cially effective in establishing momentum balance equations. 
The total mixture equation can be derived from the super-
position of each total species equation. But, starting with 
constituent balance equations, we will establish balance 
equations for each phase and the whole soil in this paper, 
which will have more general significance and the result is 
the same as that of Olivella et al. [22, 23]. 

Summing over all constituents and according to the rela-
tions between microscopic and macroscopic quantities, we 
obtain the mass conservation equation for phase : 

 
 α α α

α α α α

D
ˆ

D

n
n e

t


   v , α =s, l,g ,  (2) 

where      α αD / D /      t t v . Taking soil skeleton 

as the reference system, then the mass average velocity 

β,sv of fluid phase (1, g) relative to solid skeleton s is 

β,s β s , v v v thus      β s β,sD / D D / D ;    t t v   is 

the average mass density of phase ; αê is the mass ex-

change rate between phase  and other phases. 
In order to get the mass conservation equation of con-

stituent j, which is expressed by mass concentration j
αC  

(defined as j j
α α αC   ) and diffusion velocity j

αu , we sub-

tract j
αC  eq. (2) from eq. (1): 

 
j

j j j jα α
α α α α α α α α

D
ˆ ˆ

D

C
n n e C e

t
    u , 

   α =s, l,g , j=1, 2, , N . (3) 

By summing over all phases, the mass conservation 
equation for the total soil mixture can be derived as follows: 

 
D

0
Dt

    v , (4) 

where  is the total mass density of soil; v is the velocity of 
soil. 

(II) Momentum conservation 
The momentum conservation equation for constituent j in 

phase  can be expressed as 

 
j j

j j j j j jα α
α α α α α α α α α

D ˆˆ
D

n n n
t

     
v

t g T i , 

 α =s, l,g , j=1,2, , N ,    (5) 

where j
αt  is the stress tensor of constituent j in phase ; 
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j
αg  is the volume force density of constituent j ; j

α̂T  is the 

momentum gained by constituent j in the process of interac-

tion between phase α and other phases; j
α̂i  is the momen-

tum obtained by constituent j in the process of interaction 

between constituent j and other constituents. 

The momentum conservation equation of phase α can be 
derived by summing over all constituents: 

 α α
α α α α α α α α

D ˆ
D

n n n
t

    
v

t g T , 

 α =s, l,g , (6) 

where t is the stress tensor of phase ; g is the volume 

force density of phase ; α̂T is the momentum exchange 

rate between phase  and other phases. 
Summing over all phases, the momentum conservation 

equation for the total soil mixture can be derived as follows 

 
D

0
Dt

    
v

t g ,  (7) 

where t and g are the stress tensor and volume force density 
of the total soil mixture, respectively. Generally, g is the 
acceleration of gravity. 

(III) Energy conservation 
The energy conservation equation for constituent j in 

phase  can be expressed as 

 
j j

j j j j j j j jα α
α α α α α α α α α α α α

D ˆ ˆ:
D

E
n n n n h Q E

t
      t d q ,   

 α =s, l,g , j=1, 2, , N ,  (8) 

where j
αE  is the internal energy density of constituent j in 

phase ; j
αd  is the symmetric part of j

αv , which is called 

Euler deformation rate tensor and controls the extension; 
j
αq  is the heat flux of constituent j in phase ; j

αh  is the 

external heating supply density (generally induced by radia-

tion); j
αQ̂  is the energy exchange between constituent j in-

side phase  and other phases (due to nonmass transfer in-

teractions); and j
αÊ  is the energy exchange between con-

stituent j and other constituents inside phase  (due to non- 
chemical or non-mechanical interactions). 

The energy conservation equation of phase  is given by 

 α α
α α α α α α α α α α α

D ˆ:
D

E
n n n n h Q

t
     t d q , 

 α =s, l,g , (9) 

where E, d, q and h are the internal energy density, de-
formation rate tensor, heat flux vector and external heating 

supply density of phase , respectively; αQ̂  is the energy 

exchange between phase  and other phases. 
By summing all constituents, the energy conservation 

equation for the total soil mixture can be derived as follows: 

 
D

: 0
D

E
h

t
     t d q ,  (10) 

where E, d, q and h are the internal energy density, defor-
mation rate tensor, heat flux vector and external heating 
supply density of the total soil mixture, respectively. 

(IV) Entropy inequality 
According to the second law of thermodynamics, the to-

tal entropy generation of the system must be greater than or 
equal to zero, that is, 

 

j j jN
j α α α α

α α
α=s,l,g j=1

j j j j
α α α α α

D

D

ˆ ˆ 0,

n
n

t T

n


 

   

  
    

  
   

  q


 

(11)

 

where j
α  is the entropy density of constituent j in phase ; 

T is absolute temperature; j
α  is external entropy supply 

density; j
α̂ is entropy exchange between constituent j in-

side phase  and other phases (due to nonmass transfer in-
teractions); and ˆ j

 is entropy exchange between constitu-

ent j and other constituents inside phase  (due to nonmass 

transfer interactions). 
(V) Relations and constraints between phases and con-

stituents 

The relations between physical quantities of phases and 
those of the corresponding constituents are as follows: 

 
N

j
α α

j=1

   ,
N

j
α α

j=1

ˆ ˆe e  ,  (12) 

 
N

j j j j
α α α α α

j=1

  t t u u ,
N

j j
α α α

j=1

C g g , 

  
N

j j j
α α α α

j=1

ˆ ˆ ê T T u , (13) 

 
N

j j
α α α

j=1

C v v ,
N

j j
α α α

j=1

C  , 
N

j j
α α α

j=1

A C A  ,  (14) 

N
j j j j

α α α α α
j=1

1

2
E C E

    
 

 u u , 

  
N

j j j j
α α α α α

j=1

h C h   g u , (15) 

 
N

j j j j j j j j
α α α α α α α α α

j=1

1

2
E           

q q t u u u u . (16) 

The following constraints are also satisfied: 

 α
α=s,l,g

1n  , 
N

j
α

j=1

1C  , 
N

j j
α α

j=1

0  u ,   (17) 



 Cai G Q, et al.   Sci China Tech Sci   May (2011) Vol.54 No.5 1305 

 α
α=s,l,g

ˆ 0e  , j
α

α=s,l,g

ˆ 0e  ,    (18) 

  
N

j
α

j=1

ˆ 0 i , 
N

j
α

j=1

ˆ 0  ,  
N

j j j
α α α

j=1

ˆˆ + 0E   i u ,   (19) 

 j j j j j j j
α α α α α α α

α=s,l,g

1ˆ ˆ ˆ 0
2

Q e E
           

 T v v v ,  (20) 

 j j j
α α α

α=s,l,g

ˆ ˆ 0e  T v ,   j j j
α α α

α=s,l,g

ˆ ˆ 0e   , 

 j=1, 2, , N .   (21) 

(VI) Relations and constraints between the entire mixture 
and phases 

The relations between physical quantities of the whole 
soil mixture and those of the corresponding phases are as 
follows: 

 α α
α=s,l,g

n   ,  α
α

α=s,l,g




 v v , (22) 

  α α α α α
α=s,l,g

= n  t t u u , α α
α=s,l,g

n g g , (23) 

α α α α α α α α
α=s,l,g

1

2
E           

q q t u u u u , 

  α α α α
α=s,l,g

h n h   g u ,   (24) 

where u is the relative velocity of each phase relative to the 
entire soil mixture, u = vv. If soil skeleton is taken as a 
reference system, then the relative velocity of solid phase is 
zero, and the relative velocity of fluid phase is v,s. 

Different from the static equilibrium case in which seep-
age and diffusion are not taken into account, the stress t and 
heat flux vector q here are subject to the relative velocity u 
of each phase relative to the whole solid mixture; see eqs. 
(23) and (24). 

Meanwhile, eqs. (2), (3), (6) and (9) should satisfy the 
following constraints: 

 αˆ 0e  ,  α̂ 0T ,  α
ˆ 0Q  .  (25) 

(VII)  Further processing of entropy inequality 
Define Helmholtz’ free energy function as 

 A E T  . (26) 

After substitute eqs. (9) and (26) into eq. (11) and sim-
plification, it follows that 
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 (27) 

Replace the absolute velocity by diffusion velocity j
αu  

and seepage velocity v,s which are more important in soil 
mechanics; the above entropy inequality which is expressed 
by constituent properties is expressed in terms of phase 
properties using eqs. (12)–(21) as  
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α α α α
α=s,l,g α=s,l,g

0.n h n T       (28) 

3  Constitutive relations 

3.1  Constitutive assumptions 

In the above-mentioned balance equations and entropy ine-
qualities, there are 47N+3 unknown variables: 

βn -(2); T -(1); α -(3); j
αC -(  3 1N  ); 

 αv -( 3 2 ); j
αv -(  3 3 1N  ), (29) 

αA -(3); j
αA -(  3 1N  ); α -(3); j

α -( 3N ); 

αt -( 3 6 ); j
αt  - (  3 1 6N   );  

α̂T -(32); j
α̂T -(  3 1 2N   ); 

αê -(2); j
αê -(  2 1N  ); αq -(3); j

αq -(  3 1N  ); 

 α =s, l,g , j=1,2, , N 1 , (30) 

where group (29) is constitutive independent variables, and 
group (30) are constitutive dependent variables. Since only 
N-1 constituents are considered, the above variables are 
indeed independent where constituent N is non-independent, 
subject to constraints. Other unknowns can be derived from 
the kinematic relations, self-definition or constraints among 
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exchange terms. There are 12N+1 conservation equations 
for the existing constituents and phases, and 35N+2 equa-
tions are absent. 

Therefore, general balance equations of previous section 
must be supplemented with constitutive relations which 
account for material properties under consideration, and 
also remove the deficient in the number of equations. Com-
pared with the classical single phase mixture theory, the 
volume fraction is introduced to describe the change of in-
ternal structure. Thus, the unknowns are more than the 
equations, which cause difficulty in closing the filed equa-
tions in the above process. Here, we adopt the closure 
scheme which was first put forward by Bowen[4], that is, 
close the system by constitutive relation of volume fraction 
n(constraint relations at equilibrium (1)). Bennethum[19] 
also adopted this method. 

According to the principle of equipresence in continuum 
mechanics and the requirements of the problems needed to 
study, we assume that each constitutive variable is a func-
tion of all the following macroscopic constitutive inde-
pendent variables: 

n , βn ,T , T , α , α , j
αC , j

αC , β,sv , βd , j
αu , j

βu , sE  

 α =s, l,g ;β =l,g ; j=1,2, , N 1 . (31) 

Based on the principle of local action, constitutive varia-
bles can be expressed as a function of independent state 
variables, that is, 

 




j
β β α α α

j j j
α β,s β α β s

,  ,  ,  ,  ,  ,  ,

,  ,  ,  ,  ,  ,

n n T T C

C

   

v d u u E

  

 
 

(32)
 

where  is an aggregate function of constitutive variables; 
n, n describe changes of the internal microstructure of 
porous media (changes of fluid phase); T, T describe tem-
perature effect and heat conduction, respectively; ,  
describe the compression deformation of each phase (vol-
ume change); j j

α αC C, describe changes of constituent 

concentration inside phases; v,s describes seepage of fluid 
relative to solid; d is the symmetric part of v, which de-
scribes the viscosity of fluid phase itself; j

αu  describes 

diffusion of constituents; j
βu  describes the viscous re-

sistance of fluid phase caused by diffusion of its internal 
constituents; and Es describes the deformation of shape 
changes of soil skeleton. 

It should be pointed out that the deformation behavior of 
porous media is generally expressed by solid deformation 
gradient tensor Fs. In order to meet the objective require-
ments, the Lagrange strain tensor Es ( T

s s s1 / 2[( )E F F  

]I ) is selected as an independent state variable in this 

paper. 
Using Lagrange multiplier method and constraints (2),  

(3) and (17)-3, and setting oldT =(28), we derive the re-

vised entropy inequality: 

 
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
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v

u





(33)

 

Note that only N -1constituents are independent in the 
third term at the left side of the inequality sign in the for-
mula above, and constituent N is subject to the constraint 

relation 
N

j j
α α

j=1

0,C  u  therefore, 
N
α 0  , while j

αu  and 

j
αu , as independent state variables, will be independent 

when j=1,2, , N . Therefore, the terms need to be rewrit-

ten as independent state variables with j=1,2, , N -1 . 

 
jN N-1

j j j j Nα
α α α α αN

j=1 j=1 α

C

C
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    
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 u M u M M , (34) 
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C C
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 (35) 

where vector j
αM  and second-order tensor j

αN  represent 

the coefficients of j
αu  and j

αu  in the simplified entropy 

inequality, respectively. 
Considering that solid is multi-constituent elastic-plastic 

material, and fluid is multi-constituent viscous material, we 
assume that the deformation is infinitesimal and the strain 
tensor for solid and the volume fraction for fluid can be 
additively decomposed into an  elastic part and plastic 
part: 

 e p
s s s+E E E , e p

β β βn n n  , β= l,  g . (36) 

Based on the principle of phase separation[12, 24], 
Helmholtz free energy function of each phase can be given 
as 
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 (37) 

where  , l , g  are the internal variables of other types of 

dissipation except plastic deformation p
sE , p

ln  and p
gn . 

Using the chain rule and the functional forms postulated 
in eq. (37), the total derivatives of the free energies can be 
rewritten as partial derivatives which would be substituted 
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into the entropy inequality (33). Based on eqs. (34), (35) 
and      j

α α j,αD / D (D / D )t t  v   , we can derive 

the following inequality by ignoring external supply terms 
of momentum and energy: 
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(38)

 

where  = s, 1, g; =1, g; p is the thermodynamic force of 
phase , 

2
α α α α( / );p A     

e T
s s s s s s( / ) ;A    t F E F  

j
α  is the relative chemical potential of constituent j, 

j α
α j

α

A

C






  ( j=1, 2, , N 1 ). 

3.2  General non-equilibrium results  

As usual, entropy inequality (38) is a linear function of 

s αD / Dt , j
s αD / DC t , sD / DT t , ds and j

su , which are 

neither independent state variables nor constitutive depend-
ent variables. In order to satisfy the entropy inequality for 
all allowable processes, the coefficients of these variables 
must be identically zero. It yields 
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The residual entropy inequality is 
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   


 
      

 
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 
   
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 



 

 

e C C A A

e
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n n n n

n

AA
n n





u u v v u u

E v
E

v
 β=l,g

0,

 



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where D represents the total energy dissipation. The first 
term on the left side of the inequality sign is the dissipation 
caused by capillary relaxation; the second term is the 
dissipation caused by viscosity of fluid itself; the third term 
is the dissipation caused by the constituent diffusion effect; 
the fourth term is the dissipation due to viscous resistance 
caused by diffusion of the fluid’s internal constituents; the 
fifth term is the dissipation caused by heat conduction; the 
sixth term is the dissipation caused by the macroscopic 
seepage of fluid relative to soil skeleton; the seventh term is 
the dissipation due to mass exchange between phases, 
generally caused by phase transition; the eighth term is the 
dissipation due to mass exchange between constituents 
inside phases, which is generally caused by chemical 
reactions (only non-reactive chemical fields are considered 
in this paper); the ninth and tenth terms are the dissipations 
caused by the plastic deformation of solid skeleton and the 
fluid’s irreversible changes, respectively; the last two terms 
are the dissipations caused by other internal variables except 
plastic deformation inside porous media (such as damages). 

3.3  Equilibrium restrictions 

According to thermodynamics, the following independent 
variables equal zero at equilibrium: 

s β j j j p p
e β α β β,s β β s β β

D
ˆ ˆ, , , , , , , , , , , 0

D

n
Y e e n

t


 
  
 

  d u u T v E    

α =s, l,g ;β =l,g ; j=1,2, , N 1 .  (45) 

It is postulated that at equilibrium entropy is the maxi-
mum and entropy generation is the minimum at equilibrium. 
Thus we have 0x   , 2 0x y    , where ,x y rep-

resent any variables in eq. (45). Therefore, the equations 
which must be satisfied at equilibrium are given as follows: 

1)        β
β β s s β β

β

0
A

n
n

    


   


, 

that is,          β
β s β β

β

A
p p n

n



 


.              (46) 

This equation gives the dynamics compatibility condition 
restricting changes of the pressure difference at the interface 

between fluid and solid, thus the suction expression of un-
saturated porous media can be derived as 

 g l
g l g g l l

g l

A A
p p n n

n n
 

 
  

 
. (47) 

2)         
N

j j j
β β β β β β

j=1

0     t I u u , 

that is,         

N
j j j

β β β β β
j=1

p    t I u u .        (48) 

Eq. (48) is the expression of stress in fluid at equilibrium, 
where there is only equilibrium part induced by elastic force 
but no dissipation. 
3) 

 

     
 

j j j j N j j
α α α α α α α α α

j j
N Nα α
α αN N

α α

ˆˆ

ˆˆ 0.

       
 

     
 



N

n n A A

C C

C C

 



T i

T i t
 

(49)
 

Using the momentum conservation eq. (5) of constituents, 

we can eliminate j j
α α̂
ˆ T i  and simplify the above equation 

into: 

 j j j N j N j j
α α α α α α α α α αj N

α α

1 1
n A A n   

 
  

       
   
 I I t t  . 

 (50) 

Then, j
αt  can be eliminated using eq. (43), then it can be 

derived as 

 j
α 0  .   (51) 

The expression shows that the opposite chemical potential is 
constant at equilibrium. 

4)           
j
βj N j j N j

β β β β β αN
β

=
C

A A
C

    t t I .        (52) 

This equation gives the stress tensor expression of constitu-
ents of fluid, without dissipation part. 

5)       
N

j j j j j j j
α α α α α α α α

j=1

1

2
A          

q t u u u u .     (53) 

The equation gives the expression of heat flow vector of 
phases at equilibrium. We can see that there is no heat flow 
in or out of porous media, and that the generation of heat is 
only due to external force and internal diffusion. 

6)     
N-1

β β j j
β β β β2

j=1β

A p
T C

T
  


 
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β β βp
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n n
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n n
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(54)
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By the conclusions at non-equilibrium state, it can be sim-
plified as 

 β
β β β β β

β

ˆ A
p n n

n


 
    

T  ,  (55) 

β̂T  can be eliminated by substituting the momentum con-

servation equation of phases (6) with eq. (55), and βt  can 

also be eliminated using eq. (48).  After ignoring inertia 
term and high-order term, this yields 

 β
β β β β

β

A
p n

n
 


  


g  .  (56) 

Eq. (56) tells us that the traditional relation of hydrostatic 
pressure β βp  g is not satisfied. That is to say, the fluid 

flow can not be described only by pressure gradient and 
gravity. The free energy function shows that the fluid flow 
is related not only to itself (e.g., pressure, density or viscos-
ity, etc.), but also to the environment and boundary proper-
ties (e.g., temperature, specific surface area or surface ten-
sion, etc.). 

7)        
N-1

j j j j
β s s s β β β s

j=1

0C C A A         .     (57) 

Its simplification is 

    
N-1 1

β j j j js
β β β s s s

j=1 1β s

N

j

p p
A C A C 

 





   
           

   . (58) 

This equation gives the relations between Gibbs free energy 
and the total chemical potential. 

8)      j j j j j j
β s β β β,s β,s s s

1
0

2
        u u v v u u .      (59) 

Ignoring the high-order term yields 

 j j
β s  ,   j j

β s   .  (60) 

This equation states that the chemical potentials of the same 
constituents in different phases are equal at equilibrium. 

9)       s
p
s

0
A


E

, s 0
A




, β

p
β

0
A

n





, β

β

0
A







.     (61) 

Eq. (61) shows that the free energy function at equilibrium 
is irrelevant to plastic deformation or internal variables, and 
there is no dissipation. 

Now, all equations of unsaturated soils containing multi- 
constituent viscous fluid have been established, including 
the conservation eqs. (1)–(11), the restriction equations at 
equilibrium (46)–(61), the restriction equations at non- 
equilibrium (39)–(43), and the general constraints (12)– 
(25), which constitute a closed system together. 

4  Coupling between generalized forces and 
flows in near-equilibrium state 

4.1  Framework of coupling theory 

In this paper, βn , βd , j
αu , j

βu , T , β,sv , β̂e , j
β̂e , p

s
E ,  , p

βn , 

and β  on the left side of the inequality sign of the dissi-

pative inequality (44) can be regarded as thermo-dynamic 
flows, all of which are unequal to zero in the near-equilib- 
rium state.  

The dissipation function on the left side of the inequality 
sign of the dissipative inequality (44) can be expressed as 

 D  X Y ,  (62) 

where  j j j p p
β β α β β,s β β s β βˆ ˆ, , , , , , , , , , ,n T e e n      Y d u u v E  is 

defined as generalized thermodynamic flow. X , which is 
respectively expressed by , , , Z, , , E, , , H, M 
and N, is defined as the effective generalized thermody-

namic force, and the element X  consists of all kinds of 
the special thermodynamic forces that couple together with 
the special corresponding element Y . At the near-equilib- 
rium state, the generalized flow is not equal to zero, thus by 
eq. (62), the dissipative inequality (44) can be simply ex-
pressed as follows: 
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:

:

: Η

Μ Ν

 

(63)

 

In the dissipative inequality (63), the generalized flow Y 

is thought to be definite, while the generalized force X  
which is coupled with the generalized flow is not a conven-
tional force. It should be the coupling of all kinds of the 
special thermodynamic forces, which are coupled together 
with the special corresponding element of Yi. (See coeffi-
cients of different kinds of generalized flow in dissipative 
inequality (44)). Accordingly, the generation of a certain 
generalized flow is driven by all kinds of generalized forces 
(principle of equipresence), that is to say, in the case that 
the coupling is taken into account, the change of Yi is also 
driven by other (generalized) forces besides its correspond-
ing forces. Therefore, the real effective driving forces (ef-
fective generalized thermodynamic force) which lead to the 
changes of certain generalized flows must be the results of 
joint participation of all kinds of generalized forces. Ref. 
[24] gives a discussion for the effective stress of unsaturated 
soil about the static problem at the equilibrium state. Ac-
cording to the thermodynamic theory in non-equilibrium 
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state, the following equation can be obtained: 

 
 D




 Y
X

Y
. (64) 

Based on the thermodynamics of irreversible processes at 
non-equilibrium state, we can know that any effective gen-

eralized thermodynamic force X and dissipation potential 
function D can be decomposed into the quantities at 

equilibrium state e
X ( eD ) and n

X ( nD ) at non- 

equilibrium state: 

    e e n   X X Y X Y ,    e e n=D D DY Y . (65) 

And the dissipation is zero at the equilibrium state, that is, 

 n e 0,X Y   n e 0.D Y  X  can be expanded at eY Y  

by using Taylor series, at the same time,  n e 0X Y  and 

 n e 0D Y  are taken into account, then the first order 

approximation can be derived as 
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   
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 
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X Y A A d A u A u A A v

A A A E A A A

 


 

 i 1 12  ,    (66) 

where  i-1 e

e
n 








Y Y

X
A Y ,  i-2 e

e
 







Y Y

X
A Y

d
, ... . 

In equation  i 12 12 i X Y A Y ,when X  and 

considering eq. (64), we have 
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Y .  (67) 

Similarly, 
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A Y
u
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
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A Y
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, 

 
2
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D
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 
2

1-8 e jˆ
D

A
n e 



 

Y ,  
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1-9 e p
β s

D
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A Y
E

,  

 
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1-10 e
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D
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
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A Y


,  
2

1-11 e p
β

D
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n n


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  

Y , 

 
2

1-12 e
β

D
A

n 



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Y .                           (68) 

Similarly, when X  is equal to , , Z, , , E, , , 
H, M or N, respectively, the coefficients of eq. (66) can be 
determined according to the above method. Eqs. (66)–(68) 

are general expressions of coupling effect among different 
fields of soils, which contain the term ( βn , p

s
E ,  , p

βn , β ) 

directly related to the stress field, the term ( β,sv , βd ) related 

to the seepage field, the term ( j
αu , j

βu ) relevant to the dif-

fusion field, the term ( β̂e , j
β̂e ) associated with the chemical 

field, and the term ( T ) related to the temperature field. 
Compared with the stress-strain constitutive relations for 
geotechnical materials derived based on thermodynamics, 
the above formulas can synthetically consider the coupling 
effect under various fields, thus the theoretical basis of multi- 
field coupling of soils can be established. For a specific 
problem, after making sure which fields should be included, 
the dissipative inequality can be simplified, eliding dissipa-
tion caused by fields which have no effects. While for a 
specific material, the specific form of dissipation potential 
function D needs to be determined according to the type, 
physical meaning, the existing experimental results and the 
research experience of the problem under treatment. Finally, 
the coupling relations among different fields are determined 
using eqs. (66)–(68). 

We should note that eq. (64) is correct based on the 
premise that the generalized fluxes are taken as independent 
variables in this paper. However, taking generalized forces 
as independent variables is more convenient in some other 

cases, hence * ( ) /D  Y X X  is derived, where * ( )D X  is 

the Legendre transform of D(Y). The general expressions of 
coupling effect among different fields of soils for the latter 
case can be derived in the same way. 

When considering the linear case, the result is the same 
as that of the linear non-equilibrium thermodynamic theory, 
which can be obtained by setting eq. (68) equal to different 
constants. That is to say, the generalized forces in the dissi-
pative inequality can be expressed as the linear combination 
of all kinds of generalized flows, which makes eqs. (66)– 
(68) degenerate into the results given by Bennethum[19] 

and Singh [27]. 
The followings are some non-linear constitutive equa-

tions at non-equilibrium state in special cases which are 
frequently encountered. 
1) Thermal elastic-plastic coupling constitutive equation for 
solid 

The plastic deformation of solid is described by p
sE . 

Considering the effect of seepage, temperature, and chemi-
cal fields on solid stress field, neglecting the influence of 
other factors, and the dissipation potential function D1, the 
effective generalized stress of solid is 

 p j D
M s H β,s T C β sˆT e     E v t     = : , (69) 

where D
s
t  is defined as the dissipative part of the effective 

generalized stress of solid; 2 p p
M 1 s s/D   E E  repre-

sents the strain of solid skeleton caused by load; 
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2 p
H 1 s β,s/D   E v  represents the effects of seepage 

field on stress field, which is called ‘seepage-mechanical 
coupling coefficient’ of solid; 2 p

T 1 s/D T   E   

represents the influence of temperature on stress field, 
which is called ‘thermal-mechanical coupling coefficient’ of 
solid; and 2 p j

C 1 s β̂/D e   E  represents the effects of 

chemical field on stress field, which is called ‘chemi-
cal-mechanical coupling coefficient’ of solid. 
2) Visco-elastic-plastic coupling constitutive equations for 
liquid 

Considering the effects of seepage, temperature and 
chemical fields on liquid stress field, neglecting other fac-
tors, and setting the dissipation potential function as 2D , we 

have 

 p j D
M l H l,s T C l lˆn T e t         v Μ , (70) 

where 
D

lt  is defined as the dissipative part of the general-

ized stress of liquid; 2 p p
M 2 l l/D n n       represents the 

change of plastic moisture content caused by external load-
ing; 2 p

H 2 l l,s/D n   v  represents the effect of seepage 

field on stress field, which is called ‘seepage-mechanical 
coupling coefficient’ of liquid; 2 p

T 2 l/D n T      rep-

resents the influence of temperature on stress field, which is 
called ‘thermal-mechanical coupling coefficient’ of liquid; 

2 p j
C 2 l l̂/D n e      represents the effect of chemical field 

on stress field, which is called ‘chemical-mechanical cou-
pling coefficient’ of liquid. 
3) Generalized Fourier’s law 

Considering the effects of stress, seepage, and chemical 
fields on heat conduction, neglecting other factors, and set-
ting the dissipation potential function as 3D , then: 

 
p p

T M s M β H β,s

j
H β C β

:

ˆ: d ,

     
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 



T n

e

 E v

q

    

 
 

(71)
 

where q  is defined as generalized heat flow vector; 
2

T 3 /D T T     represents the heat transfer caused 

by temperature gradient, which is called ‘generalized ther-
mal conductivity coefficient’; 2 p

M 3 s/D T   E  

represents the heat generated in the process of irreversible 
deformation of solid skeleton; 2 p

M 3 β/D T n       repre-

sents the heat generated in the process of irreversible 
change of fluid content; 2

H 3 β,s/D T   v  repre-

sents the heat generated during the seepage process of fluid; 
2

H 3 β/D T    d  represents the heat generated by 

the viscosity of fluid; and 2 j
C 3 β̂/D T e     represents 

the heat released or absorbed in the process of chemical 
reaction. Note that the heat generated by the last five rea-

sons is less than that generated by temperature gradient. 
4) Generalized Darcy’s law 

Considering the effects of stress, temperature and chem-
ical fields on the seepage of liquid, neglecting other factors, 
and setting the dissipation potential function as D4, we have 

 
p p

H β,s H β M s M β

j
T C β

: :

ˆ ,

     

   

 


n

T e

v d E

t

    

 
 

(72)
 

where t is defined as the generalized seepage force; 
2

H 4 β,s β,s/D   v v represents seepage caused by hy-

draulic gradient, which is called ‘general osmotic coeffi-
cient’; 2

H 4 β,s β/D    v d  represents the retarding 

effect of fluid viscosity on seepage; 2 p
M 4 β,s s/D   v E  

represents the impact of the plastic deformation of solid 
skeleton on seepage field; 2 p

M 4 β,s β/D n    v   represents 

the influence of the irreversible change of fluid content on 
seepage field; 

2
T 4 β,s/D T   v   represents the effect 

of temperature field on seepage field; and 2
C 4 /D   

j
β,s β̂e v  represents the influence of chemical field on the 

seepage field. 
If the linear coupling is considered only, then the dissipa-

tion potential function will be expanded by taking the first 
order, and the coefficients , , , and  of the generalized 
flows on the right sides of equal formulas (69)–(72) will 
degenerate into material parameters, thus the above-men- 
tioned nonlinear coupling model degenerates into a linear 
coupling model proposed by Singh(2003)[27]: 

 
 m

D
s sa T   t E b , (73) 

 D
l β T   t c d d: , (74) 

 
 m

s βT     q e f E g d , (75) 

 β,s β j T     t h v i d ,  (76) 

where , , , , , , , , ,a jb c d e f g h i  are material parameters; 
 m

sE  

is m th order material derivative of Es, which is used to 
describe the viscosity of solid. Note that Singh [27] consid-
ered the viscous effects on swelling biopolymeric systems 
for solid phase, while plasticity which is more important for 
soils is also taken into account in this paper. If the coupling 
effect is ignored, the above-mentioned model can further 
degenerate into the conventional elastic-plastic constitutive 
model and the classical Fourier’s law and Darcy’s law. 

4.2  Application of theoretical models 

The determination of dissipation potential function is the 
key to advance the above-mentioned theory. Obviously, 
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there is no correct set of dissipation potential functions, 
however, they can be appropriately chosen in such a way 
that they meet certain theoretical and practical requirements. 
Theoretically, the selection for dissipation potential function 
must satisfy the dissipative inequality, that is, the second 
law of thermodynamics; meanwhile, the selection for dissi-
pation potential function must also be consistent with the 
experimental observations. Collins [28] and Li [25, 26] gave 
the concrete form of the corresponding dissipation potential 
functions for saturated soil and unsaturated soil, respective-
ly; however, both the two studies failed to consider the mul-
ti-field coupling effects of soils. Jussila [29, 30] gave the 
dissipation potential function describing the thermal-hydro- 
mechanical coupling of swelling unsaturated bentonite, but 
only elastic deformation of soils was considered. 

For the given problems, variables that are related to the 
dissipation potential functions can be known with the exist-
ing knowledge, thus they can be determined based on the 
existing theories, experimental results and experience. Then 
the dissipation potential functions can be expanded by Tay-
lor’s series, and the expression of the corresponding consti-
tutive equation can also be given. Next, the above theoreti-
cal framework is used to analyze both the two kinds of spe-
cific issues. 
1)  Generalized Darcy’s law considering temperature ef-
fect 

Here the corresponding dissipation potential function is 
selected as 

  4 4 β,sD D T v , .  (77) 

Then, its second order expansion is 

 β,s β,s

4 β,s β,s β,s

1 1

2 2
TTD T T T       v vv v v   ,  (78) 

where β,s v  and T  are the influence parameters of seep-
age gradient and temperature gradient, respectively, and 

β,sT v  is a coupling parameter. 
Substituting it into formula (72) yields 

 β,s β,s

β,s

T T    v vt v Π . (79) 

According to the dissipative inequality (44), it can be de-
rived as  

 β
β β β β β

β

ˆ A
p n n

n


 
     

T Π ,  (80) 

so, 

 β,s β,s β
β β,s β β β β

β

ˆ T A
T p n n

n
  

 
      

v vT v   . (81) 

Substituting it into the phase momentum conservation eq. 
(6) and ignoring the inertia term, we have 

 

 β,s

β,s

β,s β β β β β

β
β β β β

β

.

 

 

   

 
     

T

n n

A
T p n n

n



 

v

v

v t g

 
(82)

 

Without considering fluid viscosity, d in the dissipative 
inequality is neither an independent state nor a constitutive-
ly dependent variable, so its coefficient is equal to zero in 

the non-equilibrium state, that is, 
N

j j j
β β β β β

j=1

.p    t I u u  

Substituting it into formula (82), gives 
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β,s

N
j j j

β,s β β β β β
j=1

β
β β β β β β β ,T

n p

A
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n
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  


  
     
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v I u u

g



 

 

(83)

 

where the first term on the right side of the equation is the 
external pressure gradient considering the constituent diffu-
sion effect; the second term is the gravity hydraulic head. 
The first two terms are the hydraulic gradient terms in the 
traditional Darcy’s law, the third term is the temperature 
gradient, which reflects the influence of heat conduction on 
seepage; and the fourth term is the influence of porosity 
change caused by the elastic deformation of soil skeleton on 
seepage. When ignoring the latter two effects and consider-
ing only the single-constituent fluid, the above-mentioned 
generalized Darcy’s law can degenerate into the general 
Darcy’s law. 

  β,s β β βk p  v g , (84) 

where k is a permeability coefficient. 
2) Elastic-plastic constitutive model for soil 

The above-mentioned thermal-elastic-plastic constitutive 
equation of solid (69) is coupled with the influences of 
seepage, temperature and chemical fields on stress field of 
solid. When neglecting the impact of other fields, formula 
(69) can degenerate into the elastic-plastic model. 

 p D
M s sE t  = : ,

2
1

M p p
s s

D

  E E

 . (85) 

For isotropic saturated soil, Collins [28] stated that the 
dissipation created by plastic volumetric strain and plastic 
shear strain are independent of each other, and there is no 
coupling. On such a basis, the dissipation potential function 
in incremental form dD and stored energy 2d can be 

proposed as 

     
1/ 22 2p p p p p

v v s v sd d , ;d ,d = d dD D p A B        
, (86a) 

 p
2 c s

1
d d

2
p   , (86b) 
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where A and B are the linear functions of c, ,p q p  with the 

same dimensions as the stress, and   c1 1/ 2A p p    , 

  c1 1/ 2B M p p      . ,p q  are the stress varia-

bles of solid under triaxial stress condition; p
vd  and p

sd , 

are the volumetric strain and the shear strain, respectively, 
which are related to ,p q ; pc is preconsolidation pressure;  

is a parameter between zero and one;  is a variable related 
to stress ratio, which can be expressed as CSL c2 /p p    , 

and ranges from zero to one.  actually reflects that the 
proportion of stored energy in the total plastic work is /2; 
the smaller  is, the more plastic work will be dissipated. 

Using the dissipation potential function, the dissipative 
stress is derived as 

 
 
 

 
 

2 p 2 p
v s

p p
v s

d d
π ,

d d

  


  

 
   
 

 A B
, (87) 

where π,  are the average effective stress and deviator 
stress in the dissipative stress space, respectively: 

απ ,  p p  αq q   ; p and q are the back stresses un-

der triaxial stress condition, thus the yield equation in dis-
sipative stress space is given as 

  
2

2 2 2

2
π, π 0     B

g B
A

. (88) 

Using the stored energy d2, the back stresses are figured 
out: 

 
 
 

2
α cp

v

d 1

2d
p p


 

 


, 
 
 

2
α p

s

d
0

d
q


 

 


. (89) 

The stresses in true stress space are 

 α c

1
π π

2
     p p p , αq q    . (90) 

Substituting formula (90) into formula (88) yields the equa-
tion in real stress space: 

    
2

2 2 2
c c2

, , 2 0
B

f p q p p p q B
A

      .  (91) 

Then, the plastic strain increment in the real stress space is 

 
2

p
v c2

1
d 2

2

B
p p

A
    

 
 , p

sd 2q  . (92) 

By applying the hardening law and the consistency con-

dition c
c

d d d d 0,
  

   
  

 

f f f

f p q p
p q p

 the plastic factor 

 can be figured out. 
The dissipation potential functions that are coupled with 

the elastic-plastic deformation of soil, seepage and heat 

conduction must be given by combination of the above- 
mentioned theoretical basis with the experimental results. 
At present, study in this area is still limited, which will be 
an important issue in further research. 

5  Conclusions 

In such a complicated surrounding environment (especially 
in practical engineering), as the construction of repositories 
of high-level nuclear waste and the municipal landfill, soil 
is not only affected by a single field but by the multi-field 
coupling actions. Most of the existing theories started with 
experience and established the analyzing method for soils 
under multi-field coupling in testing or numerical methods. 
In this case, it is difficult to establish a unified, consistent 
multi-field coupling theory using such approaches. In this 
paper, soil is treated as porous media, which is composed of 
elastic-plastic solid skeleton, viscous liquid and ideal gas. 
By taking the multi-field coupling effects into account, such 
as deformation, seepage, heat conduction, and so on, the 
theoretical framework of multi-field coupling issues of multi- 
constituent and multi-phase soil can be established. Based 
on the hybrid mixture theory, the constitutive relations of 
multi-constituent unsaturated soil in the non-equilibrium 
state (39)–(43), the constitutive relations at equilibrium 
(46)–(61), the coupling relations of generalized force and 
the generalized flow in the near-equilibrium state (64)–(72) 
can also be obtained. The coupling relations (66)–(68) es-
tablished in this paper are general expressions of multi-field 
coupling of soils, which can provide a theoretical basis for 
experimental and numerical method research. Of course, for 
multi-field coupling issues in specific circumstances, the 
specific form of the dissipation potential function needs to 
be determined in combination with theoretical knowledge 
and experiments, in order to give a method for determining 
the specific coupling equations and the corresponding pa-
rameters. 
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