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Steam generator is optimized by applying entransy dissipation extremum principle and constructal theory and adopting analyti-
cal method. The obtained results show that the optimal spacing between adjacent tubes, the mass flow rate of gas and the maxi-
mum entransy dissipation rate all depend on the dimensionless diameter of one tube, the dimensionless pressure difference 
number and the dimensionless length of flow channel of gas. Besides the three dimensionless groups, the optimal numbers of 
riser tubes and downcomer tubes and their summation all depend on the dimensionless height of one tube. The maximum en-
transy dissipation rate increases as the pressure difference that drives the gas flowing increases, and as the diameter of one tube 
and the length of flow channel both decrease. The mean heat flux in the heat transfer process of hot gas grows greatly, and the 
performance of the system is improved. Compared with the optimal construct with heat transfer rate maximization, the optimal 
construct with entransy dissipation rate maximization can improved the heat transfer effect of the steam generator more. 
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1  Introduction 

In 1996, after the model building and mathematical analysis 
of the development of street network [1], Bejan put forward 
the constructal theory [2]. This theory can be expressed, for 
simplicity, as the structure derived from the optimal per-
formance. Since constructal theory was applied to optimiza-
tion problems involving heat conduction [3], constructal 
theory has been developing rapidly [4–16] and has provided 
new research impetus into heat transfer problems [17–31]. 

Steam generators are a major domain of technology de-
velopment in the power generation industries. Researches 
on the structures of steam generators are much significant. 
Kim et al. [32] proposed to use constructal theory in the  

conceptual design of steam generators for large-scale com-
mercial power plants and pointed out that constructal theory 
was ideally suited to this because it began the conceptual 
design with a clean slate, and suggested that the designers to 
recognize and consider all the possible and competing con-
figurations. Based on the simplifying assumption that the 
steam generator consisted of just one downcomer tube and 
many riser tubes, features that resulted from constructal 
design were the tube diameters, the number of riser tubes, 
the water circulation rate, the rate of steam production, and 
how the flow architecture should change when the operating 
pressure and the size of the flow system changed. Based on 
ref. [32], Kim et al. [33] considered that the steam generator 
was free to have many downcomer tubes. Features that re-
sulted from constructal design with heat transfer rate maxi-
mization were the numbers of downcomer and riser tubes 
and optimal spacing between adjacent tubes. 
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However, constructal optimization of the steam generator 
does not reflect global heat transfer performance by max-
imizing heat transfer rate as in ref. [33]. Guo et al. [34] in-
troduced definitively a new physical quantity--“entransy” 
ever called heat transfer potential capacity [35] and pro-
posed the entransy dissipation extremum principle. The 
physical meaning of entransy was further expounded with 
researches into, for example, physical mechanisms of heat 
conduction and electro-thermal simulation experiments 
[36–38]. Many scholars [39–60] have shown great interest 
in and have also studied heat transfer optimizations based 
on entransy dissipation extremum principle. Some scholars 
combined the entransy dissipation extremum principle with 
constructal theory to optimize a series of heat transfer prob-
lems [61–71]. Based on ref. [33], by combining the entransy 
dissipation extremum principle with constructal theory the 
steam generator will be re-optimized, and analytical expres-
sion of performance vs. geometric configuration of the 
steam generator will be obtained. 

2  Model of steam generator 

The model of steam generator is rectangularly parallelepi-
ped (HLW), which is traversed by N equidistant riser and 
downcomer tubes of diameter D and height H, as shown in 
Figure 1 [33]. The geometric constraints of the steam gen-
erator are the total volume 

  ,V HLW=  (1) 

and the volume fraction occupied by the tubes 

  
2

,
4
ND
LW

φ π
=  (2) 

where N is the total number of riser and downcomer tubes. 
If one uses 1/3V  as the fixed scale of the entire architecture, 
then there are five dimensionless geometrical features, 

1/3( , , , , ) ( , , , , ) /H L W D S H L W D S V=�� � � �  and eq. (1) can be 

non-dimensionalized as 

 1.HLW =� � �  (3) 

 

 
Figure 1  Model of steam generator [33]. 

In sum, the constructal design has four degrees of free-

dom ( H� , L� , D�  and S� ). Hot combustion gases are sin-
gle phase with constant properties. The gases of mass flow 
rate m� , specific heat at constant pressure Pc  and inlet 

temperature FT  flow from right to left. Steam flows in a 

vertical loop due to the fact that the riser tubes are close to 
the inlet of the gases are heated more intensely that the 
downcomer tubes close to the outlet of the gases. Because 
the temperature of the hot flue gas is not high enough to 
transform the water in the tubes into superheated steam at 
the outlet of each tube, the temperature of the water in tubes 
remains constant at the boiling temperature BT . 

3  Temperature distribution and entransy dis-
sipation rate of the gas 

Assuming that N is sufficiently large so that one can treat 
the gas temperature as a continuous function of position x. 
According to conversation of energy, enthalpy loss of the 
gas matches the transfer of heat to each tube at the located 
position, i.e. [33], 

 ( )d d ,B P
hA T T x mc T
L

− = �  (4) 

where h is the heat transfer coefficient considered as a 
known constant or a function of the known mass flow rate 
m� . The boundary condition corresponds to eq. (4) 

 ,   .Fx L T T= =  (5) 

By solving eq. (4) the gas temperature distribution in the 
steam generator is [33] 

 ( ) exp[ 1 ] .F B B
P

hA xT T T T
mc L

⎛ ⎞= − − +⎜ ⎟
⎝ ⎠�

 (6) 

Entransy which is a new physical quantity reflecting heat 
transfer ability of an object was defined by Guo et al. [34]. 
In the heat transfer process the total entransy dissipation 
rate vhE φ

�  is 

 d d ,vh h

v v

E E v T vφ φ= = ⋅∇∫ ∫� � �q  (7) 

where T∇  is the temperature gradient. In this heat con-
vection problem of this paper, the entransy dissipation rate 
is led by the heat exchange of the gas and the tube wall. In 
the position x of each tube the entransy dissipation rate is 
the product of the heat exchange and the temperature dif-
ference between the gas and tube wall. The entransy dissi-
pation rate of the gas in the steam generator is  

 
0 0

d( ) d ( ) d .
d

L L

vh B P B P
TE T T mc T T T mc x
xφ = − = −∫ ∫� � �  (8) 

The gas entransy dissipation rate can be obtained with 
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eqs. (6) and (8).  
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(9)

 

where F BT T TΔ = −  is specified and tuN  is determined 

by m� , h  and A, i.e., 

 .tu
P

hAN
mc

=
�

 (10) 

Therefore, the mean heat flux with a fixed boundary 
temperature can be expressed as 

 / .hQ E T= Δ�  (11) 

The entransy dissipation extremum principle proposed by 
Guo et al. [34] is stated as follows: for a fixed boundary 
heat flux, the heat transfer process is optimized when the 
entransy dissipation is minimized (minimum temperature 
difference), while for a fixed boundary temperature, the heat 
transfer process is optimized when the entransy dissipation 
is maximized (maximum heat flux). Here, the temperature 
difference and heat flux both denote mean effect. Ref. [34] 
indicated that the irreversibility in the heat transfer process 
for the purpose of heating or cooling was measured by dis-
sipation rate. The heat transfer problem not related to the 
transition between the heat and work belongs to the entran-
sy dissipation extremum principle with a fixed boundary 
temperature. The higher the entransy dissipation rate is, the 
larger the mean heat flux will be and the better the heat 
transfer effect will be. That is, when the gas entransy dissi-
pation rate is maximized, the mean heat flux in the heat 
transfer process will be maximized and the performance of 
the system will be the best. 

4  Distribution of riser and downcomer tubes 

According to eq. (6), regardless of the water direction and 
mass flow rate in the tubes, the gas temperature varies con-
tinuously, so does the heat transfer rate from the gas to the 
water in the tubes. The heat transfer rate into one tube lo-
cated at any position can be expressed as [33] 

 1 out in( ) ( ),Bm h h hDH T T− = π −�  (12) 

where 1m�  is the water mass flow rate in the tube, and inh  

and outh  are the water specific enthalpies of the inlet and 

outlet of the tubes. Assuming that the water received by 
every tube is saturated, one can obtain inh  and outh , i.e., 

 in out out, ,f f fgh h h h x h= = +  (13) 

where fgh  is the specific enthalpy of phase change, fh  is 

the specific enthalpy of the saturated water, and outx  is the 

quality of water-vapor mixture. From ref. [33] one can obtain 

 out
out

1 1 .f

f fg

x
ρ

ρ ν ρ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (14) 

According to eqs. (6) and (12)–(14) one can obtain 

 1 exp 1 ,tu
hDH T xm N

B L
⎡ ⎤π Δ ⎛ ⎞= −⎜ ⎟⎢ ⎥

⎝ ⎠⎣ ⎦
�  (15) 

where out( / 1) / ( )fg f f fgB h ρ ρ ρ ν= − . The change in flow 

direction of the water in the tubes is not considered in eq. 
(15). In fact, the mass flow rate of the water in riser tubes is 
positive, but in downcomer tubes is negative. The change in 
direction occurs at the location ( cx ) obtained by the fol-

lowing equation: 

 1 1
0

d d 0.
c

c

x L

x
m x m x− + =∫ ∫� �  (16) 

Eliminating 1m�  between eqs. (15) and (16), one can 

obtain 

 
1 1 eln .

2

tuN
c

tu

x
L N

⎛ ⎞+
= ⎜ ⎟

⎝ ⎠
 (17) 

The separated location between the riser tubes and 
downcomer tubes will be obtained when tuN  is fixed. 

5  Geometry on the gas side 

As shown in Figure 2, the geometry of the steam generator 
is represented by the total volume V HLW= , dimensions 
H, L, W, D and the spacing between adjacent tubes S. 

Ref. [33] shows the heat transfer coefficient for a single 
cylinder washed by the fluid: 

 

4/55/81/ 2 1/3

2/3 1/ 4

0.62
0.3 1 ,

282000[1 (0.4 / ) ]
D F D

F F

Re Pr RehD
k Pr

⎡ ⎤⎛ ⎞= + +⎢ ⎥⎜ ⎟+ ⎝ ⎠⎢ ⎥⎣ ⎦
 (18) 

where Fk  and FPr  are properties of the hot gas. When 
510 10DRe< <  eq. (18) is approximated adequately by [33] 

 1/ 2 ,D
F

hD CRe
k

≅  (19) 

where /D FRe UD ν=  and C  is dimensionless factor of 

order 1, 
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The pressure difference ( FPΔ ) that drives the gas stream 

flowing is fixed. When the spacing between tubes is large,  
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Figure 2  Geometric detail of steam generator [33]. 

the thermal contact between gas and tubes is poor 
( 1tuN << ), and the gas entransy dissipation rate hE�  is 

small. When the spacing is small, the thermal contact is 
good, and tuN  is a large number, but hE�  is also small. 

Between the two S  extremes, there must be an optimal 

spacing ( optS ) for which hE�  is maximal ( ,maxhE� ). Based on 

the intersection of asymptotes method in refs. [14, 33], 
when H , L  and D  are fixed the optimal spacing cor-
responding to maximum hE�  will be predicted below. 

5.1  The large S  limit 

Because of the large spacings, the free velocity and mass 
flow rate of the hot gas are [33], respectively, 

 ,a
a

F

m
U

HWρ
≅

�
 (21) 
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D
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m

C LD
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�  (22) 

where the gas density Fρ  is treated as a constant, DC  is 

the drag coefficient. From eq. (19) one can obtain 
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The total contact area between gas and tubes is [33] 

 2 .a
DVA
S
π

=  (24) 

In the large S limit the number ,tu aN  approaches zero, 

and this means that the group ,[1 exp( 2 )]tu aN− −  approach-

es ,2 tu aN , and that eq. (9) can be expressed, for simplicity, 

as  

 2 2
, ,( ) ( )h a a P tu a a aE m c T N h A T= Δ = Δ� � . (25) 

From eqs. (10) and (21)–(25), one can obtain 
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This shows that the gas entransy dissipation rate de-
creases monotonically as S increases in the large S limit. For 
this reason, the tendency of the gas entransy dissipation rate 
as S decreases in the small S limit will be considered below. 

5.2  The small S limit 

Because of the small spacings, the average spacing between 
adjacent tubes along the gas channel L can be expressed  
as [33] 

 ,avgS Sσ=  (27) 

where σ  is a factor of order 1, but greater than 1. For the 
elemental channel represented by the volume avgS H L× × , 

the number of such channels is /W D  and the total mass 
flow rate of the gas is [33] 
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In the small S limit the number ,tu bN  becomes large, 

and this means that the group ,exp( 2 )tu aN−  approaches 

zero, and that eq. (9) can be expressed, for simplicity, as 
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From eqs. (27)–(29) one can obtain 
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This shows that the gas entransy dissipation rate de-
creases monotonically as S decreases in the small S limit. 

5.3  The intersection of asymptotes 

Based on the intersection of asymptotes method in refs. [14, 
33], the optimal spacing S corresponding to maximum en-
transy dissipation rate is obtained by intersecting the two 
asymptotes (i.e., eqs. (26) and (30)). 
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where a bC C≅ , F
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difference number 
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sivity of the gas F
F

F F

k
a

cρ
= . The factor in square brackets 

in eq. (31) is approximately 1 and can be neglected, and 
thus, eq. (31) becomes 

 2/9 1/6 7/18 5/18
opt 2 ,S Be L D−=� � �  (32) 

and the corresponding mass flow rate and maximum en-
transy dissipation rate are, respectively, 
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If one regards the factors in square brackets in eqs. (33) 
and (34) as two numbers of order 1 [33], one can obtain 

 2/3 1/3 7/10 1/ 2 11/10
opt 2 ,F

P

k
m V Be D L

c
−≅ � ��  (35) 

 1/3 2 2/5 1 6/5
,max 2 ( ) .h FE k T Be D L− − −≅ Δ� � �  (36) 

The optimal number of the tubes in the steam generator is 

 opt 2

4/9 1/3 5/9 7/9 1

1

2 .

L Wn
S S S H
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= =

≅

� �
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(37)

 

From eq. (36), one can see that the maximum entransy 
dissipation rate depends on two of the remaining free di-

mensions of the assembly, D�  and L� . The ,maxhE�  value 

increases as both D�  and L�  decrease. That is, thinner 

tubes and a shorter gas flow length are better for increasing 
the total entransy dissipation rate of gas, and the perfor-
mance of the system can be improved. It is because that 

when both D�  and L�  decrease, the spacing between ad-

jacent tubes becomes smaller, and thus, the thermal contact 
between gas and tubes becomes better and the performance 
of the system is improved. 

6  Geometry on the steam side 

The gas side and steam side are not uncoupled [33]. The 
location of the flow reversal depends on the group tuN  in 

eq. (17). ,opttuN  led by optimal performance of the system 

is determined by 
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and thus, the location of the flow reversal ( ,optcx ), the num-

ber of riser tubes ( upn ) and the number of downcomer tubes 

( downn ) are, respectively, 

 ,opt ,opt

,opt

1 exp( )1 ln ,
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c tu

tu

x N
L N

+⎡ ⎤
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 (39) 

 ,opt
up opt(1 ) ,cx

n n
L

= −  (40) 

 ,opt
down opt .

cx
n n

L
=  (41) 

According to eqs. (37)–(41), upn  and downn  are both 

the functions of Be , L� , D�  and H� . Figure 3 shows the 
number of riser and downcomer tubes and their ratio 
( down up/n n ) vs. ,opttuN  characteristics. From the figure, one 

can see that the number of downcomer tubes is greater than 
the number of riser tubes, however, the ratio is down /n  

up 1n ∼ . This means that the mass flow rate in one tube has 

the same scale in both riser and downcomer tubes. From the 
analyses of this section and last section, constructal design 
of the gas side determines the flow reversal position (or the 
optimal number of riser and downcomer tubes) and the rela-
tionships between the geometric features of the design for 
the steam generator (eqs. (32)–(41)). 

Table 1 shows the optimal constructs of the steam gener-
ator based on entransy dissipation rate maximization (this 
paper) and heat transfer rate maximization (ref. [33]), re-
spectively. The optimal constructs involve the optimal 
spacing, mass flow rate of the gas, the number of tubes, 
maximum entransy dissipation rate and maximum heat 
transfer rate. The optimal construct with heat transfer rate 
maximization does not reflect global heat transfer perfor-
mance as in ref. [33]. However, the optimal construct with 
entransy dissipation rate maximization indicates the mean 
heat flux in the heat transfer process of the steam generator, 
and reflects the global heat transfer performance. Compared  

 

 

Figure 3  Numbers of riser and downcomer tubes. 
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Table 1  Optimal constructs of steam generator with different optimization objectives 

Optimization objective optS  optn  1/3
opt / ( )P Fm c k V  1/3

max / ( )Fq k TVΔ  1/3 2
,max / [ ( ) ]h FE k V TΔ  

Entransy dissipation rate maximization (this paper) 
2 1 5 7
9 6 18 182 Be D L

−
 

4 1 5 7
19 3 9 92 Be D L H

− − −
−  

2 1 51
3 6 622 Be D L

− −
 

1 1 51
3 6 622 Be D L
−

− −
 

2 1 11 10
3 3 9 92 Be D L

− −
 

Heat transfer rate maximization (ref. [33]) 
1 5 7
6 18 18Be D L

−
 

1 5 7
13 9 9Be D L H

− − −  
1 51
6 62Be D L

− −
 

1 51
6 62Be D L

− −
 

1 11 10
3 9 9Be D L

− −
 

 

with the dimensionless mean heat flux ( ,h tQ� ) with heat 

transfer rate maximization, the dimensionless mean heat 

flux ( hQ� ) with entransy dissipation rate maximization in- 

creases by 58.7%. Therefore, the optimal construct based on 
the latter improves the global heat transfer performance of 
the steam generator obviously. 

7  Conclusions 

Steam generator is optimized by applying entransy dissipa-
tion extremum principle and constructal theory and by 
adopting analytical method. This paper similar to ref. [33] 
assumes the steam generator has a large number of tubes 
that the temperature distribution in the gas channel may be 
modelled as continuous, and also assumes that the tubes are 
all isothermal, and that the fluid in the tubes is single phase. 
According to these assumptions one can obtain the analyti-
cal expression of the mass flow rate in each tube along the 
gas channel, and the flow reversal that separates the riser 
tubes from downcomer tubes vs. the number of heat transfer 
units (Ntu) characteristic. 

On the gas side, by adopting the method of intersecting 
the asymptotes, one can obtain the optimal spacing between 
adjacent tubes, the maximum entransy dissipation rate and 
optimal mass flow rate of gas with corresponding scaling 
relations, and the optimal number of steam tubes. The results 
show that the optimal spacing, mass flow rate and maximum 
entransy dissipation of gas all depend on the dimensionless 
pressure difference number of the gas, the dimensionless 
tube diameter, and the dimensionless length of the gas chan-
nel. Besides the three dimensionless groups, the optimal 
number of steam tubes depends on the length of the tubes. 
The maximum entransy dissipation rate increases as the pre- 
ssure difference that drives the gas flowing increases, and as 
the diameter of one tube and the length of flow channel both 
decrease. The mean heat flux in the heat transfer process of 
hot gas grows greatly, i.e., the heat transferred to the water in 
the tubes of the steam generator becomes more, and the per-
formance of the system is improved. Compared with the 
optimal construct with heat transfer rate maximization, the 
optimal construct with entransy dissipation rate maximiza-
tion can greatly improve the heat transfer effect of the steam 
generator. In this paper, constructal design for the steam 
generator based on entransy dissipation extremum principle 
has led to some significant results, and fully enriched con-
structal theory and the theory of entransy dissipation. 
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