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This study presented the application of partial least squares regression (PLSR) in estimating daily pan evaporation by utilizing 
the unique feature of PLSR in eliminating collinearity issues in predictor variables. The climate variables and daily pan evapo-
ration data measured at two weather stations located near Elephant Butte Reservoir, New Mexico, USA and a weather station 
located in Shanshan County, Xinjiang, China were used in the study. The nonlinear relationship between climate variables and 
daily pan evaporation was successfully modeled using PLSR approach by solving collinearity that exists in the climate vari-
ables. The modeling results were compared to artificial neural networks (ANN) models with the same input variables. The re-
sults showed that the nonlinear equations developed using PLSR has similar performance with complex ANN approach for the 
study sites. The modeling process was straightforward and the equations were simpler and more explicit than the ANN 
black-box models. 
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1  Introduction 

Evaporation is an important component of the hydrologic 
cycle. Hence, its measurement and estimation are needed 
for water budgeting, the design of reservoirs, and various 
other hydrological analyses. However, evaporation estima-
tion on the daily time scale using climate variables is always 
challenging due to the complex nonlinear nature of the 
evaporation process. The “physically-based” combination 
type equations [1,2] generally give the best estimates for 
open water evaporation. However, their practical applica-
tion is limited since the calibrations of these models gener-
ally require a complete set of meteorological data and a vast  

amount of computational efforts [3]. To meet the needs of 
practical application, simpler empirical equations have been 
developed using limited climate variables. Stephens and 
Stewart [4] developed a linear model using only temperature 
and solar radiation as inputs. Priestley and Taylor [5] pro-
posed a radiation-based equation that essentially uses solar 
radiation and temperature as inputs for daily time scales. Li-
nacre [6] derived a simple formula to predict pan evaporation 
only from temperature for Australia. Hanson [7] suggested an 
equation using daily solar radiation and daily mean tem-
perature as inputs to model Class-A daily pan evaporation 
data for three locations in Idaho. In addition to the above 
empirical equations, the multiple linear regression (MLR) 
based equations have also been developed for estimating 
evaporation from climate variables. Kovoor and Nandagiri 
[8] attempted the application of multivariate statistical tech-
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niques such as principal components regression (PCA) and 
partial least squares regression (PLSR) in pan evaporation 
modeling to solve collinearity issues that exist in climate 
predictor variables when developing regression models. The 
results indicated that these approaches produced similar 
performance although more parsimonious regression equa-
tions can be developed using PLSR. Shirsath and Singh [9] 
developed daily pan evaporation MLR models using climate 
data and compared their performance to ANN and climate 
based models. Li [10] developed evaporation forecasting 
model using multiple linear regression. However, the linear 
empirical models and linear regression models that were 
developed for daily time scales cannot provide accurate 
estimates due to the highly nonlinear nature of evaporation 
processes. These limitations of estimating pan evaporation 
require simple-structured models that can address the in-
herent nonlinearity of the process using climate variables as 
inputs. 

Recently, there is rapid growing interest in the modeling 
of pan evaporation using the artificial neural networks 
(ANN) computing technique due to its capability of identi-
fying complex nonlinear relationships between input and 
output data sets without the necessity of understanding the 
nature of the phenomena and without making any underly-
ing assumptions regarding linearity or normality. Previous 
studies have confirmed the improved performance or com-
parableness of the ANN models relative to the traditional 
and multiple linear regression based models in estimating 
pan evaporation. Sudheer et al. [11] investigated the predic-
tion of Class-A pan evaporation using the ANN technique 
and found that the ANN could be applied successfully to 
modeling daily pan evaporation and performed better when 
compared to the linear Stephens-Stewart model with tem-
perature data as the only input. Bruton et al. [12] developed 
the ANN models to estimate daily pan evaporation using the 
measured weather variables as inputs. Their results showed 
that the ANN model of daily pan evaporation with all 
available variables as inputs was the most accurate model 
when compared to multiple linear regression models and the 
Priestly-Taylor model. Keskin and Terzi [13] compared the 
ANN models with the Penman model in daily lake evapora-
tion in Turkey and concluded that the ANN approach per-
formed better than the Penman method. Other research 
studies were reported in literature on the increased per-
formance of applying ANN to estimating pan evaporation 
when compared to other approaches [14–17]. 

Based on the results of previous research in pan evapora-
tion estimation, the applied ANN models showed an in-
crease in performance when compared to the conventional 
multiple linear regression models and other traditional 
methods. However, the physical interpretation of the ANN 
architecture and the optimum data required for training and 
for adaptive learning still demand further explorations [18]. 
One disadvantage of ANN is that the model relationship 
cannot be explicitly expressed using a mathematical formu-

lation as in other traditional methods. This makes ANN 
more complex in its implementation and can be impractical 
for routine estimations of daily pan evaporation. In this 
study, the nonlinear relationship between climate variables 
and daily pan evaporation was analyzed. The nonlinear pan 
evaporation regression equations were developed utilizing 
the unique feature of PLSR in eliminating collinearity issues 
in predictor variables. Variable selection was performed 
using PLSR from a pool of variables that included original 
climate variables and transformed variables based on the 
nonlinear relationship with daily pan evaporation. In addi-
tion, square root data transformation was applied to daily 
pan evaporation. Subsequently, MLR and PLSR were per-
formed on the transformed data. The specific objectives of 
the study were to: (1) develop nonlinear daily pan estima-
tion regression equations using PLSR and MLR through 
collinearity analysis; (2) compare the estimation perform-
ance of the proposed nonlinear equations, linear equations, 
and ANN models in three dry climate locations in New 
Mexico, USA and in Shanshan County, Xinjiang, China; (3)  
and in contrast to the ANN method, propose a more explicit 
nonlinear pan evaporation equation in the study sites so that 
the missing evaporation data could be infilled and/or the 
evaporation records could be extended for better water 
management in the region. The methodologies, datasets 
used, and the results pertaining to the performances of the 
proposed pan evaporation prediction models are presented 
and discussed. 

2  Methodologies 

2.1  Regression methods 

Principal components regression and partial least squares 
regression are two forms of multivariate regression that deal 
with highly intercorrelated independent variables. In other 
words, they are extensions of multiple linear regression. The 
matrix form of multiple linear regression (MLR) models is 
expressed as follows [19,20]: 

 Y=XB+E*, (1) 

where Y  is the matrix of dependent variables (n × p); X, 
the  matrix of predictor variables (n × m); E* , the residual 
matrix (n × p); B , the matrix of coefficients (m × p); n , the 
number of observations; p, the number of dependent vari-
ables (p=1 in this study; it is daily pan evaporation); m, the 
number of independent variables 

The least squares solution is 

 B̂ = (X′X)−1X′Y. (2) 

In PCR, collinearity that exists in the predictor variables can 
be eliminated by extracting a group of orthogonal predictors 
through the application of principal components analysis 
(PCA) on X, and then performing MLR on Y using a subset 
of the resulting components of X. The PCA of the matrix (X) 
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decomposes (X) into a score matrix (T) times a loading ma-
trix (P) and a residual (i.e., error) matrix (E) [21,22]. It is 
possible to let the score matrix, T, represent the predictor 
matrix, X: 

 X=TP'+E,  T=XP, (3) 

where T is the matrix of X scores (n × a); P′, matrix of X 
loadings (a × m); E, residual matrix of X; a, the number of 
factors used in the regression. 

Then, the MLR formula can be written as follows by re-
placing X with T: 

 Y=TB+E*. (4) 

The solution is 

 B̂ = (T′T)−1T′Y. (5) 

In contrast to PCR, PLSR is developed based on both prin-
cipal components of X and Y. Specifically, PLSR searches 
for a set of components (also called latent vectors) that ex-
plains as much of the covariance between X and Y as possi-
ble by performing simultaneous decompositions of both X 
and Y [21]. 

PLSR is a combination of individual outer relations of X 
and Y, and an inner relation of linking both X and Y matri-
ces. The outer relation for the X matrix, which is a similar 
decomposition as PCA, can be expressed as [19] 

 X=TP′ + E=∑th ph′ + E. (6) 

The outer relation for the Y matrix can be expressed in 
similar fashion: 

 Y=UQ′+F*=∑uh qh′ + F*, (7) 

where th is the column vector of scores for X block; ph′
 , row 

vector of loadings for X block; U=, matrix of Y scores; 
Q′, matrix of Y loadings; F* = residual matrix of Y; uh = 

column vector of scores for Y block, factor h; qh′ = row vec-
tor of loadings for Y block, factor h 

The inner relation of X and Y can be expressed by re-
gression of the Y block score, u, against the X block score, t, 
for every component. The simplest model for this relation is 
linear [19]: 

 ûh = bhth (8) 

where bh = uh′
 th/th′

 th . This bh is equivalent to the regression 
coefficients. This simple model (eq. (8)) is not ideal, be-
cause the principal components of X and Y are calculated 
separately and therefore may have a weak relationship to 
one another. The inner relation can be improved by ex-
changing scores between X and Y blocks in an iterative 
process. Considering the outer and inner relation of X and Y 
blocks, the following mixed relation can be given for Y 
where the error, F (assumed to be independent and identi-
cally normally distributed random variables), is minimized: 

 Y=TBQ′ + F. (9) 

There are several algorithms available for obtaining par-
tial least squares estimators, such as nonlinear iterative par-
tial least squares (NIPALS), singular value decomposition 
(SVD). More detailed information about PLSR can be 
found in refs. [23,24,21,8]. Geladi and Kowalski [19] also 
provided a tutorial on the PLSR method. The Statistical 
Analysis Software® (SAS) version 9.1 was used for the 
PLSR and MLR model development in this study. 

2.2  Artificial neural networks (ANN) 

Artificial neural networks are flexible mathematical struc-
tures that are capable of identifying complex non-linear 
relationships between input and output data sets. The most 
commonly used type of ANN is a feedforward network 
termed the multilayer perceptron (MLP). Kim and Valdes 
[25] described three-layered feedforward neural networks 
and provided a general framework for representing nonlin-
ear functional mapping between a set of input and output 
variables. The three-layered ANNs are based on a linear 
combination of the input variables, which are transformed 
by a nonlinear activation function. Figure 1 describes a 
typical artificial neural network structure with only one 
output neuron in the output layer. The output value of ANN 
for one output neuron can be expressed by the following 
equation:  

 0 h 0 0
1 1

ˆ ,
M N

p j ji pi j
j i

y f w f w x w w
= =

⎡ ⎤⎛ ⎞
= + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∑   (10) 

where wji is a weight in the hidden layer connecting the ith 
neuron in the input layer and the jth neuron in the hidden 
layer, wj0 is the bias for the jth hidden neuron, fh is the acti-
vation function of the hidden neuron, wj is a weight in the 
output layer connecting the jth neuron in the hidden layer 
and the neuron in the output layer, w0 is the bias for the 
output neuron, xpi is a value of the ith input for pattern p, 
and f0 is the activation function for the output neuron. The 
weights are different in the hidden and output layer and 
their values can be changed during the process of network 
training. 

The process of training ANNs is usually accomplished  

 

 

Figure 1  A typical three-layered feedforward neural network structure 
with one output neuron. 
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by a backpropagation algorithm, which has been applied 
successfully to solve difficult and diverse problems. This 
algorithm is based on the error-correction learning rule. The 
objective of the backpropagation training process is to ad-
just the weights of the network to minimize the sum of 
square errors of the network, which approximates the model 
outputs to the target values with a selected error goal: 
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where n is the number of observations, yp
 (n) is the desired 

target responses and ˆ py (n) is the actual response of the 

network at the nth iteration for pattern p. The detailed 
description of the algorithm is provided in many studies 
[26,27]. The NeuroSolutionsTM version 5.1 software, a neu-
ral network development environment, was used in neural 
network modeling in this study. 

3  Study site and data 

Three weather stations, two of them in USA and one in 
China, were selected in the study for pan evaporation mod-
eling. The two weather stations in USA are located near 
Elephant Butte Reservoir, New Mexico, USA, and belong 
to typical arid and semiarid climate. The North Lake 
Weather Station (called NLWS hereafter) (33°17′50″N, 
107°11′38″W) was equipped with an automated Class-A 
evaporation pan and the South Lake Weather Station (called 
SLWS hereafter) (33°8′46″N, 107°11′3″W) was equipped 
with a manually read Class-A evaporation pan. The weather 
station in China is located in Shanshan County, Turpan 
Prefecture, Xinjiang Uyghur Autonomous Region, China, 
and belongs to extreme arid climate. The Shanshan Weather 
Station (called SSWS hereafter) (42°12′00″N, 90°30′00″W) 
was equipped with a manually read E601 evaporation pan. 
There were six years of daily pan evaporation (E, mm/d) 
data measured from 2002 to 2007 at the NWLS, and three 
years of data at the SLWS from 2005 to 2007. There were 
two years of daily pan evaporation (E, mm/d) data measured 
from 2008 to 2009 at SSWS, but there was no solar radia-
tion data available for 2008 due to lack of instrumentation. 
Therefore only one year of data (2009) was used in the 
modeling for SSWS. Missing data were excluded from the 
data set for modeling purposes. Daily meteorological vari-
ables measured at all the three weather stations include 
maximum air temperature (Tmax,

 °C), minimum air tem-
perature (Tmin, °C), maximum relative humidity (RHmax, %), 
minimum relative humidity (RHmin, %), solar radiation (Rs, 
MJ/m2) and average wind speed (Ua, m/s). The SLWS data 
was divided into two sets: the calibration set (Years 2005– 
2006, 705 data points) and test set (Year 2007, 351 data 
points), the total number of data points is 1056. The NLWS 
data was divided into two sets: the calibration set (Years 
2002–2005, 1165 data points) and the test set (Years 2006– 

2007, 551 data points), the total number of data points is 
1716. Due to the shorter length of record, the SSWS data 
was randomized first and then divided into two sets: the 
calibration set (136 data points) and the test set (53 data 
points), and the total number of data points is 188. 

4  Results and discussion 

4.1  Development of models 

To develop nonlinear pan evaporation prediction equations 
using partial least square regression, two different data 
transformations were applied to the data. First, a proper data 
transformation was applied to predictor variables (maxi-
mum temperature, minimum temperature, solar radiation, 
maximum relative humidity, minimum relative humidity 
and wind speed) based on the analysis of scatter plots be-
tween individual climate variable and the daily pan evapo-
ration (Figure 2). The best nonlinear function fitted on the 
scatter plot was used to transform the climate variables to 
generate new predictors. Second, a square root transforma-
tion was applied to response variable (daily pan evaporation) 
to get better linear relationship between predictor variables 
and response variable (as shown in Table 1). 

As shown in Figure 2, the relationship between maxi-
mum temperature, solar radiation and daily pan evaporation 
in SLWS could be best approximated by second order func-
tion. In contrast, the logarithmic function was the best func-
tion to the relationship between maximum relative humidity, 
minimum relative humidity, wind speed and daily pan 
evaporation. Similar relationships between climate variables 
and daily pan evaporation were observed for NLWS. In 
addition, proper response variable (daily pan evaporation) 
transformation was investigated through analyzing the scat-
ter plots of the original predictors and daily pan evaporation 
with various forms of transformation. As a result, the square 
root transformation of pan evaporation was better linear fit 
for the relationship between climate variables and evapora-
tion. As shown in Table 1, two different categories of mod-
els were developed using the PLSR, MLR and ANN ap-
proaches. The first category was linear models that were 
developed by PLSR and MLR (without transformation) 
utilizing all the available climate variables (Tmax, Tmin, 
RHmax, RHmin, Rs, Ua) as inputs. The second category was 
nonlinear models that were developed by the MLR, PLSR 
and ANN modeling methodologies using all climate vari-
ables and their derivatives through the transformed vari-
ables as inputs. 

It is well known that multiple linear regression may pro-
duce unreliable prediction results when the predictor vari-
ables are highly intercorrelated. This is known as multicol-
linearity and can be detected by means of variable inflation 
factors (VIF) in developing regression models. These fac-
tors are an indication of how much the variance of the esti-
mated regression coefficients is inflated as compared to the  
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Figure 2  Scatter plot between individual climate variable and daily pan evaporation in South Lake Weather Station, USA. 

Table 1  Different modeling approaches in this study using transformed variables 

Models Data transformation Initial input variables Response variable Variable selection method 

MLR-1 no Tmax, Tmin, RHmax, RHmin, Rs, Ua Ep stepwise 
Linear 

PLSR-1 no Tmax, Tmin, RHmax, RHmin, Rs, Ua Ep variable selection in PLSR 

PLSR-2 predictor variables 
Tmax, Tmin, RHmax, RHmin, Rs, Ua,  
T2

max, Ln(RHmax), Ln(RHmin), R
2

s, Ln(Ua) 
Ep variable selection in PLSR 

MLR-2 predictor variables Results from variable selection of PLSR-2 Ep stepwise 

PLSR-3 response variable Tmax, Tmin, RHmax, RHmin, Rs, Ua pE  variable selection in PLSR 

MLR-3 response variable Tmax, Tmin, RHmax, RHmin, Rs, Ua pE  stepwise 

Nonlinear 

ANN no Tmax, Tmin, RHmax, RHmin, Rs, Ua Ep no 

 
predictor variables when they are not linearly related. Usu-
ally, a VIF value in excess of 10 is often taken as an indica-
tion of multicollinearity [20]. In the context of pan evapora-
tion modeling using climate variables (maximum air tem-
perature, minimum air temperature, maximum relative hu-
midity, minimum relative humidity, solar radiation and av-
erage wind speed) multicollinearity is likely to exist since 
the measured variables are inherently related to one another. 

In this study some of the input variables were highly corre-
lated with one another (Table 2). The highest correlation 
occurred between maximum and minimum temperature 
with correlation coefficient of 0.90, 0.89 and 0.71 for 
SLWS, NLWS and SSWS respectively. These correlations 
were even higher than the individual correlation coefficients 
of maximum and minimum temperature with pan evapora-
tion (0.72 for SLWS, 0.78 for NLWS and 0.52 for SSWS). 



168 Abudu S, et al.   Sci China Tech Sci   January (2011) Vol.54 No.1 

Table 2  Correlation coefficients between climate variables and daily pan evaporation in the study sites 

Location Variables Tmax Tmin RHmax RHmin Rs Ua E 

Tmax 1.00 0.90 -0.27 -0.32 0.72 -0.01 0.72 

Tmin  1.00 -0.12 -0.04 0.59 0.11 0.68 

RHmax   1.00 0.74 -0.50 -0.22 −0.57 

RHmin    1.00 −0.57 −0.17 −0.49 

SLWS, USA 

Rs     1.00 0.21 0.81 

 Ua      1.00 0.33 

Tmax 1.00 0.89 −0.46 −0.48 0.75 0.12 0.79 

Tmin  1.00 −0.32 −0.19 0.60 0.22 0.74 

RHmax   1.00 0.72 −0.59 −0.29 −0.63 

RHmin    1.00 −0.64 −0.19 −0.56 

NLWS, USA 

Rs     1.00 0.26 0.80 

 Ua      1.00 0.48 

Tmax 1.00 0.71 −0.06 −0.32 0.60 −0.39 0.52 

Tmin  1.00 0.05 0.10 0.23 −0.03 0.57 

RHmax   1.00 0.61 −0.05 −0.27 −0.08 

RHmin    1.00 −0.47 0.05 −0.25 

Rs     1.00 −0.21 0.55 

SSWS, China 

Ua      1.00 0.01 

 
To solve the collinearity issue, the stepwise regression 

was performed in this study to eliminate the variables that 
were not significant at the 0.05 significance level. The 
stepwise regression started with all the climate variables 
(Tmax, Tmin, RHmax, RHmin, Rs, Ua) and used both backward 
and forward selection. As shown in Table 3, the MLR 
model was not acceptable in terms of multicollinearity since 
maximum VIFs of 14.07 and 13.02 were obtained for 
SLWS and NLWS respectively, which suggested strong 
multicollinearity among predictors. For SSWS, the maxi-
mum VIF is 5.61, indicating that no significant collinearity 
was observed while developing the MLR equation for 
SSWS. This may be due to the smaller sample size (n=135) 
that was used for the analysis. The results of stepwise selec-
tion showed that the maximum temperature was not signifi-
cant for all the weather stations and therefore was dropped 
from all the final MLR equations developed. Minimum 
relative humidity was dropped from the MLR equations in 
SLWS and NLWS, whereas the minimum relative humidity 
was retained in the MLR equation for SSWS.  The four- 
input (Tmin, RHmax, Rs, Ua) MLR equations did not show any 
indication of multicollinearity (all VIFs are smaller than 
2.16 for SLWS, smaller than 2.15 for NLWS and 1.49 for 
SSWS). The results are shown in Table 3. The final MLR-1 
equations developed for all weather stations and their per- 
formance for the calibration period are displayed in Table 4. 

Linear partial least squares regression equations (PLSR-1) 
were developed using variable selection on six original cli-
mate variables. There are two major issues when developing 
PLSR equations. They are the selection of number of com-
ponents used for the regression equation development and 

the variable selection based on the contribution of each 
variable on the final equation. The selection of optimal 
numbers of the extracted components (factors) is a key issue 
in developing PLSR, particularly when the models are used 
for prediction [22]. The PLSR approaches the MLR tech-
nique as more components are extracted. However, when 
there are many predictors, MLR can over fit the observed 
data. Regression methods with fewer extracted components 
can provide better predictability of future observations. The 
rationality of coefficients in the final equation was used to 
determine the number of components that should be re-
tained in PLSR. The rationality of coefficients included the 
examination of both sign and magnitude of the coefficients 
of predictor variables in the final equation [28]. The com-
ponents of PLSR should be chosen such that the regression 
coefficients of all variables in the final equation have the 
same algebraic signs as the correlation coefficients with the 
dependent variables. Detailed discussions are given in refs. 
[28–30] regarding rationality of coefficients. 

As in MLR, variable selection should be applied when 
developing the PLSR equations. Some variables can be 
dropped from the final equations because of their insignifi-
cant relationship with the dependent variable or high col-
linearity with other independent variables. Wold [24] pro-
posed a variable selection technique in PLSR using a Vari-
able Influence on Projection (VIP). The VIP is a weighted 
sum of squares of the partial least squares weights with the 
weights calculated from the amount of dependent variable 
variance of each partial least squares component. The VIP is 
a statistic that shows the contribution of each independent 
variable to the model and represents the value of each  
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Table 3  Variable inflation factors for full models and final models 

Variable inflation factor (VIF) 

Full model Final model Variables 

SLWS NLWS SSWS SLWS NLWS SSWS 

Intercept 0.00 0.00 0 0.00 0.00 0.00 

Tmax 14.07 13.02 5.61    

Tmin 11.83 9.91 3.34 1.64 1.56 1.10 

RHmax 2.41 2.37 2.06 1.44 1.59  

RHmin 4.24 3.89 2.89   1.38 

Rs 3.09 3.20 2.20 2.16 2.15 1.49 

Ua 1.41 1.35 1.71 1.07 1.12 1.05 

Table 4  Developed equations for the study sites and their calibration performance 

Station Model Equation R2 
RMSE  
(mm/d) 

Components  
used 

VIFmax 

MLR-1 p min max s a4.29 0.23 0.07 0.26 0.50E T RH R U= + − + +  0.808 2.08  2.2 (Rs) 

PLSR-1 p min max a4.31 0.23 0.07 0.26 0.50sE T RH R U= + − + +  0.808 2.07 3  

PLSR-2 2 2
p max min max s a5.35 0.002 0.15 0.06 0.006 0.61E T T RH R U= + + − + +  0.816 2.03 4  

MLR-2 2
p min max s a5.69 0.21 0.05 0.007 0.46E T RH R U= + − + +  0.797 2.04  2.1 ( 2

sR ) 

PLSR-3 p max min max min s a1.89 0.007 0.04 0.01 0.002 0.04 0.10E T T RH RH R U= + + − − + +  0.816 2.04 5  

MLR-3 p min max min s a2.09 0.04 0.01 0.005 0.04 0.09E T RH RH R U= + − − + +  0.816 2.03  3.0 (RHmin) 

SLWS 

ANN 6-7-1, inputs: Tmax, Tmin, RHmax, RHmin, Rs, Ua 0.817 2.02   

MLR-1 p min max s a1.80 0.21 0.05 0.25 0.87E T RH R U= + − + +  0.841 1.77  2.2 (Rs) 

PLSR-1 p min max s a1.86 0.21 0.05 0.25 0.88E T RH R U= + − + +  0.841 1.77 3  

PLSR-2 2 2
p max min max s a2.31 0.003 0.08 0.04 0.006 1.02E T T RH R U= + + − + +  0.863 1.64 4  

MLR-2 2 2
p min max s a1.29 0.005 0.03 0.005 1.29E T RH R U= + − + +  0.843 1.70  2.6 (R2

s) 

PLSR-3 p max min max min s a1.31 0.02 0.03 0.006 0.007 0.03 0.19E T T RH RH R U= + + − − + +  0.874 1.58 5  

MLR-3 p min max min s a1.67 0.04 0.005 0.012 0.04 0.17E T RH RH R U= + − − + +  0.871 1.60  2.9 (Rs) 

NLWS 

ANN 6-7-1, inputs: Tmax, Tmin, RHmax, RHmin, Rs, Ua 0.880 1.54   

MLR-1 p min min s a1.75 0.24 0.07 0.13 0.86E T RH R U= + − + +  0.523 1.49  1.5 (Rs) 

PLSR-1 p min min s a1.75 0.24 0.07 0.13 0.86E T RH R U= + − + +  0.523 1.49 3  

PLSR-2 2 2
p min min s4.21 0.008 0.06 0.004 0.87 aE T RH R U= + − + +  0.533 1.47 4  

MLR-2 2 2
p min min s a4.21 0.008 0.06 0.004 0.87E T RH R U= + − + +  0.533 1.47  1.4( 2

sR ) 

PLSR-3 p min min s a1.63 0.04 0.01 0.02 0.15E T RH R U= + − + +  0.524 1.49 3  

MLR-3 p min min s a1.63 0.04 0.01 0.02 0.15E T RH R U= + − + +  0.524 1.49  1.5(Rs) 

SSWS 

ANN 4-5-1, inputs: Tmin, RHmin, Rs, Ua 0.539 1.46   

 
predictor in fitting the PLSR model for both predictors and 
responses. For a selected number of components and input 
variables, the VIP values of each predictor variable can be 
calculated and used to examine the strength of the relation-
ship, irregularities, and the contribution of the independent 
variables in the model. To determine which predictor should 
be eliminated from the model, the standardized regression 

coefficient and the VIP of each predictor should be ana-
lyzed. An independent variable may have a small coeffi-
cient value, but may have a large VIP, which implies that 
this independent variable is important and contributes sig-
nificantly to the prediction and therefore, has to be kept in 
the model. Wold [24] suggested that a VIP value of less 
than 0.8 is small. If a predictor has a relatively small coeffi-
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cient (in absolute value) and a small value of VIP (less than 
0.8), then it is a prime candidate for deletion. In this study, 
the variable selection was carried out by analyzing the VIP, 
standardized regression coefficient of each predictor and the 
reduction rate of the coefficient of determination (R2) for 
the calibration period when dropping unimportant variables 
from the final equation. In addition the root mean squared 
error (RMSE) can be used to evaluate the calibration per-
formance of the model. 

Using the above selection procedures in PLSR, a linear 
prediction equation (PLSR-1) and two nonlinear prediction 
equations (PLSR-2 and PLSR-3) were developed for the 
weather stations. Based on the variable selection results of 
PLSR-2 and PLSR-3, two MLR nonlinear equations 
(MLR-2 and MLR-3) were developed using stepwise vari-
able selection and considering the variable inflation factor 
(VIF) values in MLR. The final variables entering into the 
equations have small VIF values (as shown in Table 4). 
Since VIFs were much smaller than 10, it was assumed that 
collinearity was not a problem in the prediction of pan 
evaporation using these equations developed by MLR. As 
shown in Table 4, there was slight improvement in the cali-
bration performances of the nonlinear approaches through 
transformation of predictors and response variables. In 
SLWS, both transformation approaches yielded similar 
calibration performance (R2=0.816 and RMSE=2.03 mm/d 
for PLSR-2 and R2=0.816 and RMSE=2.04 mm/d for 
PLSR-3). The PLSR approach performed slightly better 
than the MLR approach when using predictor transforma-
tion. However, the calibration performance remained the 
same for the PLSR and MLR methods when using response 
variable transformation. In NLWS, similar results were ob-
served as in SLWS. The calibration performance of both 
nonlinear equations improved significantly compared to the 
linear models. For example, the R2 increased from 0.841 to 
0.874 and RMSE decreased from 1.77 mm/d to 1.58 mm/d 
from PLSR-1 to PLSR-3. When the two data transforma-
tions were compared the response variable transformation 
yielded slightly better calibration results (R2=0.863 and 
RMSE=1.64 mm/d for PLSR-2 and R2=0.874 and RMSE= 
1.58 mm/d for PLSR-3). Compared to NLWS, the calibra-
tion performance of nonlinear models in SSWS was not 
significantly different from the linear models. However, the 
nonlinear equations developed using predictor variable 
transformation showed better calibration performance com-
pared to other models. These results may be due to the 
smaller sample size that was used for the model develop-
ment. 

To evaluate the performance of nonlinear models, the 
ANN modeling approach was selected for comparison due 
to its recent successful applications in nonlinear modeling 
of evaporation processes [13–17]. To compare the results of 
nonlinear equations with neural network models, the ANN 
models were developed using all the climate variables for 

NLWS and SLWS (Table 1). The ANN model input vari-
ables for SSWS were kept the same as the developed PLSR 
and MLR nonlinear models. For the two weather stations in 
the USA, the calibration data set was divided into a training 
set (605 samples for SLWS and 1000 samples for NLWS) 
and cross validation set (100 samples for SLWS and 165 for 
NLWS). For SSWS, the calibration data set consisted of 
135 samples. The training process used the hyperbolic tan-
gent function as the activation function in the hidden layer, 
linear function in output layer. The NeuroSolutions software 
automatically scaled and shifted the input data to match the 
range of the first hidden layer’s transfer function. For ex-
ample, if the hidden layer’s activation function is a hyper-
bolic tangent function, the input data will be scaled and 
shifted to lie between −1 and 1 [31]. The momentum learn-
ing rule was utilized to calculate the weight update. For all 
the ANN models, the step size and momentum were se-
lected as 1.0 and 0.7 respectively. For the two weather sta-
tions in the USA, the training termination criteria employed 
cross validation techniques that will stop the training when 
the cross validation error begins to increase. The maximum 
number of training epochs was set to be 5000. The training 
was terminated when there was no further improvement in 
cross validation after 500 epochs. For SSWS, the training 
was carried out by limiting the number of epochs to 200, 
mainly because of the smaller sample size (n=135). One 
hidden layer was used in all the ANN types in this study. 
Previous experimental results [26] indicate that one hidden 
layer is enough for most hydrological problems. The nodes 
in the hidden layer were decided by trial and error. Different 
numbers of nodes, from 3 to 12, were used to train different 
networks. 

Based on the errors in the training and cross validation set, 
the best ANN network was selected. As shown in Table 4, 
the number of nodes in the hidden layer was set to 7 with 6 
inputs for both SLWS and NLWS. The number of nodes in 
the hidden layer was set to 5 with 4 inputs for SSWS. 
Once the optimum network architectures for different 
models were selected, each network was trained six to ten 
times to see if the network performance was stable for 
different initial values. For each training process, the 
NeuroSolutions will assign new initial values automati-
cally [31]. The calibration performance of the ANN mod-
els is shown in Table 4. As can be seen, the ANN model 
performed similar to nonlinear equations developed by 
PLSR for SLWS and SSWS. A slight improvement was 
seen in the calibration performance for the ANN model in 
NLWS with the highest R2 equal to 0.880 and the lowest 
RMSE equal to 1.54 mm/d, whereas, the best nonlinear 
equation for NLWS (PLSR-3) has an R2 of 0.874 and 
RMSE of 1.58 mm/d. These results indicated that difference 
between the calibration performance of the nonlinear equa-
tions developed with the PLSR and ANN models was mar-
ginal for the selected weather stations. 
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4.2  Application of models for new data 

The robustness of the presented models was tested for pre-
diction using new data at the weather stations. The testing 
data was comprised of one year of data for SLWS (2007, 
351 samples), two years of data for NLWS (2006-2007, 
551 samples) and randomized 53 samples for SSWS. Model 
prediction performance was evaluated using the coefficient 
of determination (R2) and the root mean squared error 
(RMSE). The model performances are shown in Table 5. It 
is evident that the nonlinear models yielded better perform-
ance than the linear models overall for the weather stations. 
The best performed nonlinear model in SLWS was PLSR-3 
and resulted in an R2 of 0.76 and an RMSE of 2.02 mm/d, 
which is a slightly better performance compared to the lin-
ear PLSR model (PLSR-1, R2=0.74 and RMSE=2.15 mm/d). 
Similar results can be observed for SSWS, where the best 
performed one was  PLSR-2 (R2=0.57; RMSE=1.36 mm/d) 
and was slightly better than MLR1 linear model (R2=0.55; 
RMSE=1.39 mm/d). A significant improvement was ob-
served from linear models to nonlinear models at NLWS. 
The R2 increased from 0.73 to 0.81 and RMSE decreased 
from 2.21 mm/d to 1.80 mm/d. This supports the assertion 
that pan evaporation is a nonlinear process and that linear 
models only partially account for some of the variance that 
nonlinear models explain. No significant differences in per-
formances were detected when the nonlinear equations de-
veloped by PLSR and MLR were compared to ANN models. 
In fact the nonlinear equation developed by PLSR either 
performed slightly better than or equivalent to the other 
models at the weather stations. However, the PLSR equa-
tions are explicit and can be implemented readily in contrast 
to the ANN models which use a complex machine learning 
technique that cannot be translated into explicit mathemati-
cal formulation. 

When the two nonlinear equations developed by PLSR 
and MLR were compared, it was observed that carefully 
developed nonlinear MLR equations can avoid the multicol-
linearity problem using stepwise variable selection. Their 
performance is similar (slightly lower), although the 
maximum temperature was dropped out from the MLR 
equation due to multicollinearity. In NLWS, the PLSR-3 

model provided slightly better performance than MLR-3. 
Coefficients of determination were 0.80 and 0.81 and 
RMSEs were 1.85 mm/d and 1.80 mm/d for MLR-3 and 
PLSR-3 respectively. The square root transformation of 
daily pan evaporation gave better performance than the 
transformation of individual climate variables in SLWS and 
NLWS for the MLR nonlinear equations. In both weather 
stations, the square root transformation of daily pan evapo-
ration, followed by the development of regression equations 
using PLSR produced the same results as the complex ANN 
models and data-intensive combination type empirical 
equations. The predictor variable transformation approach 
(PLSR-2) yielded better results when compared to the other 
models in SSWS. 

The scatter plots of the observed and estimated daily pan 
evaporation of linear models (MLR-1 and PLSR-1) and 
nonlinear models (PLSR-3/PLSR-2 and ANN) are given in 
Figures 3-5 for all the weather stations. The comparison of 
the MLR-1 and PLSR-1 models indicated that the PLSR-1 
model did not show a distinct improvement when com-
pared to the MLR-1 model. This may be due to the fact of 
both being linear models, the only difference is the struc-
ture of the models. It can be seen that the nonlinear models 
showed better performance when compared to linear mod-
els. When ANN and PLSR-3/PLSR-2 were compared, no 
significant difference could be observed for all the weather 
stations. The performance of the ANNs and nonlinear 
PLSR models was quite similar for all the weather stations. 
However, the nonlinear PLSR models have a much simpler 
form and can be expressed in an explicit estimation equa-
tion form in contrast to the ANN model. The weakness of 
the ANN models is that they are essentially black box 
models that cannot be readily replicated. Hence, from the 
point of parsimony and practical use, the nonlinear PLSR 
models would be preferable for estimating daily pan evapo-
ration at the study sites. 

5  Conclusions 

This study presented the application of partial least squares 
regression (PLSR) in estimating daily pan evaporation. The  

Table 5  Comparison of performance of the models for testing data set for all weather stations 

SLWS (n=351) NLWS (n=551) SSWS (n=53) 
Models 

R2 RMSE (mm/d) R2 RMSE (mm/d) R2 RMSE (mm/d) 

MLR-1 0.74 2.15 0.73 2.21 0.55 1.39 
Linear 

PLSR-1 0.74 2.15 0.73 2.20 0.55 1.39 
        

PLSR-2 0.76 2.06 0.78 1.98 0.57 1.36 

MLR -2 0.76 2.06 0.79 1.95 0.57 1.36 

PLSR-3 0.76 2.02 0.81 1.80 0.55 1.39 

MLR-3 0.76 2.03 0.80 1.85 0.55 1.39 

Nonlinear 

ANN 0.77 2.07 0.82 1.80 0.56 1.37 
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Figure 3  Scatter plots between observed daily pan evaporation using different models for South Lake Weather Station, USA. 

 

Figure 4  Scatter plots between observed daily pan evaporation using different models for North Lake Weather Station, USA. 
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Figure 5  Scatter plots between observed daily pan evaporation using different models for Shanshan Weather Station, China.

nonlinear nature of daily evaporation was modeled by using 
data transformation and applying the unique feature of 
PLSR that can deal with highly intercorrelated predictor 
variables. The modeling results were compared to artificial 
neural networks (ANN) models that used the same input 
variables. The results showed that the nonlinear equations 
developed using PLSR had similar performance with the 
complex ANN approach for the study sites. The modeling 
process produced equations that were much simpler and 
could be expressed explicitly which were not possible with 
neural networks models. The proper data transformation 
that reflects the nonlinear relationship between climate 
variables and daily pan evaporation has been proved to be 
an effective method in daily pan evaporation modeling in 
this study. However, the empirical equations in this study 
were developed for only three weather stations that located 
in the typical arid and semi-arid climate regions in the 
United States and China. For other weather stations, new 
PLSR equations should be calibrated based on the specific 
conditions of the new study sites. Further studies would be 
needed to apply the methodology to other study sites, espe-
cially in different climate conditions. 
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