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Given the limitation of traditional univariate analysis method in processing the multicollinearity of dam monitoring data, this 
paper reconstructs the multivariate response variables by introducing principal component analysis (PCA) method, explores the 
ways of determining principal components (PCs), and extracts a few PCs that have major influence on data variance. For 
steady observation series, a control field for the whole observation values has been established based upon PCA; for unsteady 
observation series that have significant tendency, a control field for the future observation values has been constructed accord-
ing to PC statistical predication model. These methods have already been applied to an actual project and the results showed 
that data interpretation method with PCA can not only realize data reduction, lower data redundancy, and reduce noise and 
false alarm rate, but also be effective to data analysis, having a broad application prospect.  
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1  Introduction 

For centuries, dams have provided mankind with essential 
benefits such as water supply, flood control, navigation, 
aquaculture, hydropower, and irrigation. They are an inte-
gral part of society’s infrastructure. Dam failures are rated 
as one of the major “low probability, high-loss” events. A 
large number of dams that are 50 or more years old are of 
great concern, since they are generally characterized by 
increased risk due to structural deterioration or inadequate 
spillway capacity [1]. If extreme loads like catastrophic 
flood, earthquake, etc. are encountered, hydraulic project 
may fail, which will directly threaten the downstream eco-
nomic society and lives. 

Performance monitoring of dam plays a significant role 
in dam safety plan, which is mainly conducted by visual  

inspections and analyzing data collected from instruments. 
Instrumentation can timely reflect critical indicators of 
structural behavior, and the data interpretation has already 
become the important composition of hydraulic engineering 
safety monitoring codes in China [2]. It recent years, the 
lack of real time data is no longer considered as a main con-
straint of data interpretation, yet a large time lag between 
initiation of analysis and completion has emerged and re-
stricted the work of national dam safety inspection. Its main 
cause is that the amount of effort put into research and in-
novation of data analysis method is small and out of propor-
tion compared to the effort put in instrumentation of the 
dam and gathering data. So in many instances, advanced 
automatic data acquisition systems (ADAS) and ineffective 
data processing capabilities seem a paradox. With the rapid 
development of ADAS, a variety of methods and instru-
ments with higher sampling frequency available to monitor 
the dam have emerged. But the statistical method of data is 
still in the stage of the univariate analysis, i.e., “one point, 
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one model”. It is hard to improve the data interpretation 
efficiency due to the universal noise in physical systems and 
abnormal data, which cannot be identified and processed 
without experts’ experience. 

Although the advanced data acquisition method provides 
detailed real time data, the direct result is that the analysis 
work has a geometric growth. Due to inefficient analysis, 
remedial treatments are potentially delayed, which means 
the incremental cost of repair work, even an irreparable 
damage. The need for effective analysis tools was recently 
emphasized in the 20th International Commission of Large 
Dams General Report by Dibiagio [3]. 

The principal component analysis (PCA) is now widely 
used for lowing redundancy and realizing reduction of data 
to enhance the analysis efficiency. It reduces the dimen-
sionality of high variable space with a minimum loss of 
information. There are many historical examples of suc-
cessful use of PCA. For example, when Stone studied US 
national economy, a few principal components were em-
ployed to replace the original variables which can ensure 
that the analysis still has more than 95% accuracy [4]. In 
dam monitoring field, when Behrouz et al. studied the dis-
placements, stress and seepage in Idukki arch dam, Daniel 
Johnson multiple arch dam and Chute-à-Caron gravity dam, 
they employed PCA and the hydrostatic-season-time (HST) 
model to estimate parameters of response variables, and at 
last obtained good analysis results to summarize dam be-
havior [5]. Li Xuehong et al. adopted PCA to improve neu-
ral networks learning capability, and then solved the multi-
collinearity of dam monitoring data [6]. Liu Chengdong et 
al. used PCA to extract the data information to determine 
weights for dam multi-factors [7]. Chen Long has estab-
lished a fuzzy comprehensive evaluation model of roller 
compacted concrete layer property based on PCA [8]. This 
paper utilizes PCA in the dam safety monitoring data analy-
sis, and studies confidence ellipse for analysis and forecast. 

2  False alarms, data reduction and noise elimi- 
nation 

False alarms, data reduction and noise elimination are the 
three main prevailing problems in dam safety monitoring 
data. 

2.1  False alarms 

A false alarm is a signal sent out by an instrument which is 
out of control and detects some distorted data beyond de-
fensive line because of certain accidental factors, when the 
project is still at the safe condition in fact. From the per-
spective of monitoring system design, a wide variety of de-
vices and procedures are used to monitor performance of 
exciting dams and factors that can influence dam operation. 
The following features are mostly monitored by instruments: 

1) displacement, 2) pore pressure and uplift pressure, 3) 
water level and flow, 4) seepage flow, 5) water quality, 6) 
temperature, 7) crack and joint size, 8) seismic activity, 9) 
weather and precipitation, 10) stress and 11) strain. The 
ultimate result of traditional univariate analysis is a 
100(1−α )% prediction interval for the future observation 
and early warning. 
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where n is the observation sample size, p is the predictor 
variables (factors) size, b is the regression coefficient vector, 
x0 is the predictor variables vector, ŷ  is the predicted 

value of observed quantity, X is the predictor variables ma-
trix (n×p), Y is the matrix of a response variable observation 
value, Ŷ is the matrix of sample estimated value with re-
gression analysis, and Sy,x is the estimated standard error. 

A probabilistic analysis for false alarms ratio (FAR) 
caused by measure error can be conducted with the theory 
mentioned above. In present data interpretation, every re-
sponse variable of dam performance can be considered as a 
random variable. To simplify analysis, we suppose those 
variables are mutually independent and have no potential 
correlation, and this conservative hypothesis makes FAR 
smaller. According to the central limit theory, standardized 
observations follow the normal distribution. For α = 0.05 as 
bilateral quantile, the probability of observed value in the 
prediction interval is 
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Considering the dam failure is a kind of small probability 
events and abnormal data are mainly due to measure error, 
the univariate FAR approximately is thus equal to 
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To hydraulic projects, if the correlations among response 
variables are not taken into account, then the probability of 
no false alarm in an observation of l response variables can 
be estimated as 

 ( ) (1 ( )) 0.99 .= − =l lP C P B  (5) 

Figure 1 shows the relationship curve between FAR and  



1090 YU Hong, et al.   Sci China Tech Sci   April (2010) Vol.53 No.4 

 

 

Figure 1  The probability of non-false alarm in a single observation. 

the scale of monitoring response variables. Then it is recog-
nized that FAR is already beyond 90% when the scale is up 
to certain extent (l > 200); FAR will approximately equal 1 
when the scale reaches to 400. While in practice, in a me-
dium-sized hydraulic project for instance, hundreds of in-
struments should be arranged to attain normal monitoring 
standard. As for large project like the Three Gorges Dam, 
more than 8000 devices have already been placed in the 
monitoring system design phase. Furthermore, some of 
those instruments can monitor several response variables, 
thus it makes FAR higher. 

In fact, frequent false alarms, like a bottleneck, restrict 
the extensive application of traditional analysis method. 
However, this situation is not inevitable. During the dam 
safety monitoring practice, it was found that there is certain 
correlativity among many response variables, for example, 
the measurement value of inverse plummet at different ele-
vations in the same dam monolith, the observations of ten-
sion wire at distinct dam monoliths and so on. Based on the 
correlativity, PCA can be used to implement bivariate and 
multivariate analyses and confidence ellipses or confidence 
ellipsoids can be built with PCs to test the future observa-
tion value. Thus, on the one hand PCs take the place of re-
sponse variables that reduce the scale of variables, on the 
other hand that PCs reduce the perturbation caused by 
measure error to cut down FAR. 

2.2  Data reduction 

Because of the correlativity mentioned above, different re-
sponse variables usually reflect the same feature of the dam. 
From this point, certain data redundancy widely exists in 
observations. Before ADAS technology matured, the inter-
vals of artificial data samples were hard to keep the same 
steps. Consequently, it was usually necessary to use inter-
polation and extrapolation to create required regular data set 
for multivariate data processing, which is a heavy work and 
also hard to guarantee accuracy. Therefore, in that time 
multivariate analysis method was unavailable to extensive 
application. In addition, traditional univariate analysis 
method not considering the correlativity among targets and 
reserving high data redundancy, that limit the analysis effi-
ciency directly. With the development of automation tech-

nology, two influences have emerged. The negative one is 
that the scale of arranged instruments increases and huge 
collected data cause the large time lag between acquisition 
and conclusion. The positive one is that automation tech-
nology can ensure several instruments to simultaneously 
work and ensure data sequences to automatically meet 
analysis requirement. 

PCA reconstructs response variables and extracts PCs 
from them. In this way, information is rapidly concentrated 
from grand observations, and simultaneously data redun-
dancy is eliminated. At the same time, data reduction is re-
alized with PCA, to effectively shorten the analysis delay. 

2.3  Noise elimination  

To ensure the accuracy and reliability of data is the primary 
problem in dam safety monitoring data analysis. However, 
even adopting the most advanced method, measurement 
error is still unavoidable. Two main types of measurement 
errors are generally recognized: (1) systematic error and (2) 
random error. The former is that the measurement value is 
either more or less than the correct value by a fixed per-
centage, and this can be solved by reconfiguring the moni-
toring system. However, the latter is perturbation of meas-
urement that can be on either side of the true value. Sources 
of random errors include uncontrolled influential factors, 
such as air currents, ambient temperature fluctuations, rela-
tive humidity, power source disturbances, electromagnetic 
interference and so on. Generally, random error is often 
called noise, by analogy to acoustic noise. By use of PCA, 
long term observed data series are analyzed and PCs or pre-
diction factors are extracted from the original variables.  

3  Principal component analysis 

In PCA, under the premise of little or no information loss, 
the original correlated variables are transferred into the new 
and uncorrelated variables called the principal components. 
Each principal component is a linear combination of the 
original variables. 

3.1  Basic concepts 

We suppose that m response variables, each having n ob-
servations, denoted as x1, x2, ..., xm, ( for simplicity, the av-
erage of xi is 0 and variance is 1, 1≤i≤m), construct an 
n×m matrix X, xij is the jth observation value of xi: 
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The purpose of PCA is to obtain a few uncorrelated com-
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prehensive variables, which are linear combinations of m 
original variables (x1, x2, ..., xm). Through the new variables, 
most original information can be well represented and ex-
plained. We may define z1, z2, ..., zn as the new comprehen-
sive variables, each of which is a linear combination of m 
original variables: 
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The following conditions must be simultaneously satis-
fied: 

(1) zi is uncorrelated with zj (i≠j; i, j=1,2, ..., p); 
(2) z1 has the biggest variance in all linear combinations 

of x1, x2, ..., xm; z2 has the biggest variance in all linear com-
binations of x1, x2, ..., xm, which are uncorrelated with z1; … 
zp has the biggest variance in all linear combinations of x1, 
x2, ..., xm, which are uncorrelated with z1, z2, ..., zp−1. 

Then the new variables z1, z2, ..., zp can be called 1st, 2nd, 
3rd, …, pth principal components of original variables x1, 
x2, …, xm respectively. 

From the analysis mentioned above, it is known that the 
essential of PCA is to identify coefficients lij (i=1, 2, …, p, 
j=1, 2, …, m), which are the weights of the original vari-
ables xj (j=1, 2, …, m) on the PCs zi (i=1, 2, …, p). In 
mathematics, those coefficients are the eigenvectors of the 
correlation matrix of m original variables (x1, x2, …, xm), 
corresponding to the biggest p eigenvalues respectively. 
Meanwhile the variance var(zi) of each comprehensive 
variable zi is exactly the eigenvalue λi. For this reason, the 
contributions of PC’s variances are arranged in order of 
decreasing eigenvalues, i.e., 

 1 2 0.λ λ λ≥ ≥ ≥ ≥p  (8) 

3.2  Procedures  

3.2.1  Calculation of the correlation matrix’s eigenvalues 

PCA is a statistical technique applied to either the correla-
tion matrix (R) or covariance matrix (S). The first step to 
obtain principal components is to find the solution to the 
eigenvalue problem: 

 ( ) 0,λ− =pR I  (9) 

where I is the identify matrix of order m. A number of dif-
ferent numerical algorithms can be used to compute the 
eigenvectors and eigenvalues [9]. Solving eq. (9) results in a 
set of eigenvalues λj ( 1,2, , ),=j m  which can be placed 

as the elements of a diagonal matrix Λ, and a corresponding 
set of vectors ( 1,2, , )=j j mp . Principal components are 

linear combinations of the original variables, where the 
weight on each variable is given by the eigenvectors. The 
percentage of original data variance explained by the first k 
principal components can be expressed by eq. (10) or eq. (11) 
as 
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Eq. (10) represents the percentage of original data variance 
explained by the k principal component, called the contribu-
tion rate. Eq. (11) represents the total percentage of original 
data variance explained by the first k principal components, 
called accumulated contribution rate. 

3.2.2  Determination of PCs’ number 

There are four methods used to determine the number of 
PCs. 

(1) Accumulated contribution rate: All eigenvalues are 
ordered by values from big to small, and the 1st principal 
component is structured according to the principal eigen-
vector. We increase the number of PCs one by one, and 
calculate the accumulated contribution rate with eq. (11) 
until it is a relatively high percentage, say 70%–90%. 

(2) Average eigenvalue: Those components whose ei-
genvalues are greater than the average eigenvalue should be 
retained. Previous studies have shown that this method is 
fairly accurate when the number of original variables is <30 
and the variables are highly correlated [10]. 

(3) Scree graph: Eigenvalues are plotted as a function of 
the number of eigenvalues. The number of components is 
selected where the scree graph flattens out. 

(4) Signal and noise: The relationship between the prin-
cipal components and secondary components (SCs) can be 
explained by analogy with signal and noise. The difference 
between adjacent components can be presented by the fol-
lowing equation: 

 
1

, ( 1,2, , 1).
λ

γ
λ +

= = −k
k

k
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When all PCs are identified, γk presents the ratio of the 
minimum PC’s eigenvalue λk and the maximum noise’s 
eigenvalue λk+1. Due to different features of signal and noise, 
the ratio γk, which is obviously greater than the ratios with- 
in these two sets respectively, is defined as the boundary 
line between PCs and SCs. 
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3.2.3  Construction of PCs 

The original data can be reconstructed by using the first k 
principal components 

 ,′= + = +Y Z E Xp E  (13) 

where E is the residual matrix, Z is the matrix of principal 
components, and p is the matrix of k principal eigenvectors 

1 2{ , , , }= kp p p p . The residual matrix contains that part 

of the data not explained by the PCA and most likely repre-
sents the noise in the data. The method is useful for sepa-
rating signal form noise since random noise components are 
usually uncorrelated and are associated with low principal 
components. 

3.3  Safety monitoring method based on principal 
components 

If the dam is at a stable condition, then the hydrograph of 
principal components will not exhibit tendency variation 
with the time. As for this stable observation series, future 
observations can be used to conduct safety monitoring by 
establishing the control domain of whole observations. But 
if the dam is influenced by concrete creep, dry shrinkage, 
alkali-aggregate reaction and other factors, the hydrograph 
will show changes in trends. Therefore, it is necessary to 
construct control domain for future single observation to 
implement structural safety monitoring, which takes the 
model predicted value as the center. Here are two specific 
implementation methods. 

3.3.1  Control domain of whole observation 

When the dam behavior keeps stable, we can use collected 
data x1, x2, ..., xn to extract principal components z1, z2, ..., zp, 
and determine one or some future observations’ control 
domains. In this condition, observations can be seen as in-
dependently identically distributed, following ( , ).σpN u  

We suppose that z1, z2, ..., zp as independently identically 
distributed, following ( , ).σpN u  Z can be denoted as a 

future observation from the same distribution, and then sta-
tistics can be expressed by  
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100(1−α)% p-dimensional predicted ellipsoid is determined 
by all z’s satisfying the following condition:  
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It is a p-dimensional ellipsoid centered on sample aver-
age Z , whose relevant parameters can be determined as 
follows. 

Because S is symmetric and positive definite, we can 
know from linear algebra that S has real eigenvalues, all of 
which are greater than zero. Supposing p eigenvalues are 

 1 2 0.λ λ λ≥ ≥ ≥ ≥p  (17) 

And that their corresponding unit eigenvectors are u1, 
u2, ..., up, which are p-dimensional column vectors and meet 
the following feature: 
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If the future observation Z falls out of the control ellipse, 
then it’s denoted as losing control. 

3.3.2  Control domain of future single observation 

Due to concrete creep, dry shrinkage, alkali-aggregate reac-
tion and other factors, the features of concrete change with 
the time. Principal components can be predicted by the hy-
drostatic-season-time (HST) model [11], random intervals 
of the predicted value can be determined, and the probabil-
ity of containing observation is 1−α. 

The main expressions of model (HST) are as follows: 

 ( ) ( ) ( ) ( ),θ= + +D t H h S T t  (22) 

 2 3 4
1 2 3 4 5( ) + ,= + + +H h a a h a h a h a h  (23) 

 ( ) 2
6 7 8 9sin cos sin cos sin ,θ θ θ θ θ θ= + + +S a a a a  (24) 

 2 3
1 2 3( ) ,′ ′ ′= + +T t c t c t c t  (25) 

where D(t) is the response variable, H(h), S(θ ), T(t) are re-
spectively reservoir level, ambient temperature and time 
effects components, where  

min
0

max min

,  
− ′= = −

−
H H

h t t t
H H

 and 
2π ,
365

tθ
′

=  

where Hmin and Hmax are respectively the minimum and 
maximum reservoir water levels, t′ is the initial date of 
data record in the statistic analysis collection. 

Confidence interval of the predicted value, whose prob-
ability is 100(1−α)%, can be expressed as  
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It is a p-dimensional ellipsoid centered on the predicted 

value ˆ,Z  whose relevant parameters can be determined by 
eqs. (17)–(19), and then eq. (26) can be rewritten as 
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In this way, 100(1−α)% confidence interval of observation 
takes the predicted value as the center, and its half-          
axial lengths denoted as semi-axes are respectively 
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If the error of predicted value itself is not taken into ac-
count, the above conclusion is accurate. But owing to the 
inescapability of predicted errors, it is necessary to syn-
thetically consider the influence of half-axial length. In this 
paper, the author suggests that the half-axial length should 
be adjusted by using the following formula: 

 ,μ= +sa sa S  (29) 

where μ  is the reduction factor and has some connection 
with relevant parameters of the model, is generally 0.4–0.5. 
S is the regression standard deviation of the model. The 
reduction process should keep the eccentricity of control 
ellipse constant. If the future observation Z falls out of the 
control ellipse, then it is called as out of control. 

4  Case study 

In order to confirm the effectiveness of multivariable analy-
sis, we take Chencun Hydropower Station dam as the ex-
ample and carry on principal component analysis with the 
above method. 

4.1  Introduction 

Chencun Hydropower Station is situated in the upstream of 
Qingyi River, a tributary of Yangtze River in south of An-
hui. It is a comprehensive hydro-junction, which serves 
mainly for power generation, and flood control, irrigation, 
aquaculture and navigation as well. Its main water-retaining 
structure is the Chencun gravity arch dam. This project was 
finished through three phases of construction successively. 
When pouring the 2nd stage concrete, layers ascended so 
quickly that time intervals between pouring layers were 
short, and the shrinkage deformation of the 2nd stage con-
crete was subjected to strong constraint of the 1st stage 
concrete. This caused the crack to appear at the top of the 
1st stage concrete (near 105 height). The crack was 380 m 
long by more than 5 m deep, which weakened dam stiffness 
and had influence on dam integrity. At first, artificial joint 
meter was used to monitor cracks. In order to timely ob-
serve the crack opening, from August 17, 1998, automatic 
joint meter were installed in 5#, 8#, 18#, 26# and 28# 
monoliths. In this paper, the principal component analysis 
method was applied to process automatic collected data 
from August 17, 1998–July 10, 2007. 

4.2  Construction of principal components  

Take observations of 5 joint meters as the original values, 
denoted as x1, x2, …, x5. After data inspection, it was found 
in the total 1217 groups of data, 17 groups (33 data records) 
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had no instrument measure records, accounting for 1.4% of 
the total samples. Finally, 1200 observations were obtained 
by excluding those abnormal data. Then we drew histo-
grams and scatter diagrams of the original variables (shown 
as Figure 2), and calculated correlation coefficient matrix R 
(shown as Table 1).  

The eigenvalues of R and their contribution rate, accu-
mulated contribution rate and signal to noise ratio were 
calculated by eqs. (9)–(11), then scree graphs of eigenvalues 
were drawn as shown in Figure 3 and Table 2. 

From Table 2, we can see only the 1st and 2nd eigenval-
ues are greater than 1. Combined with Figure 3, we also 
find 67.84% of data change volume can be interpreted by 
the first PC, 24.06% by the second PC, the accumulated 

contribution rate of these two sides has already achieved 
91.9%, which can fully explain data change. In the light of 
signal to noise ratio (λk/λk+1), the ratio between 2nd and 3rd 
PC is the biggest. Therefore, the 3rd PC and subsequent 
components are defined as noise. Loadings of PCs are 
shown in Table 3. 

After the analysis of load, it is seen that the 1st PC 
mainly explains the change of x18, x26, x28, and the 2nd PC 
mainly explains the changes of x5, x8. The original 5 re-
spond variables are down to 2 through extracting PCs, 
which really realizes data reduction. Meanwhile, 8% data 
variation is seen as noise, which efficiently lessens the 
workload of blunder adjustment. It is illustrated that the 
process of extracting PC is also a process of filtering noise. 

 

 

Figure 2  Scatter diagrams and histograms. 

Table 1  Correlation coefficients 

 x1 x2 x3 x4 x5 

x1 1.000 0.215 0.424 0.412 0.434 

x2 0.215 1.000 −0.687 −0.604 −0.620 

x3 0.424 −0.687 1.000 0.948 0.827 

x4 0.412 −0.604 0.948 1.000 0.791 

x5 0.434 −0.620 0.827 0.791 1.000 
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Figure 3  Scatter. 

Table 2  Eigenvalues and related information of R 

 λi Contribution rate 
Accumulated  

contribution rate λk/λk+1  

1 3.392 0.678 0.678 2.819 

2 1.203 0.241 0.919 4.929 

3 0.244 0.049 0.968 1.900 

4 0.129 0.026 0.994 4.016 

5 0.032 0.006 1.000 0.006 

Table 3  Loadings of PCs 

Loadings 
Variable 

PC1 PC2 

x5 −0.238 −0.801 
x8 0.390 −0.596 

x18 −0.530 −0.003 
x26 −0.514 −0.036 
x28 −0.497 −0.044 

4.3  Method and index of PC monitoring 

4.3.1  Construction of the control domain of whole obser-
vation 

The equation of control domain can be obtained by eqs. 
(13)–(20) as 

 

11.181 0.224983 0.00898 1.181
0.271 0.00898 0.004166 0.271

6.010.

Z Z
−′⎛ ⎞ − ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤

− −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠
≤

 

(30) 

Semi-major axis is 1.1644, its direction is u1= [−0.99918 
0.040546]T; the semi-minor axis is 0.1512, its direction is 
u2=[−0.99918−0.040546]T. The overall scatter diagram and 
control domain diagram are shown in Figure 4. 

4.3.2  Construction of the control domain of future obser-
vation 

From the scatter diagram of whole observations and hydro-
graphs of PC1, PC2 and environmental variables (shown in 
Figures 5, 6 and 7), we find there is a growing tendency of 
the annual peak of principal component. That is to say, the 
crack behavior is still unstable, which needs to establish the 
control domain of future observation for better monitoring. 
What’s more, according to eqs. (22)–(25), HST prediction 
models of PC1 and PC2 are made, and model parameters 
are given in Table 4. The HST model correlation coefficient 
R of PC1 is 0.973, and its standard deviation S is 0.46. Cor-
relation coefficient R of PC2 is 0.954, and standard devia-
tion S is 0.082. 

The changes of PC1 and PC2 are not synchronous as 
well, which means they won’t simultaneously achieve the 
peak. Unfavorable load combination does not merely appear 
at the moment when principal component achieves the peak, 
so it is important to determine the united control domain of 
PC1 and PC2, which has great influences on structure safety.  

 

 
Figure 4  The control domain of whole observations. 

 
Figure 5  Fitted hydrograph of PC1 measured values. 
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Table 4  HST model parameters of PC1 and PC2 

 Const a1 a2 a3 a4 a5 a6 a7 a8 c1 c3 

PC1 −3.142 −2.599 9.930 −14.223 6.962 0.241 0.576 0.373 −0.320 0.032 −2.206×10−7 

PC2 −1.462 0 0.221 −0.750 0.524 0.012 −0.040 −0.024 0.049 0.011 −5.601×10−8 

 

 

Figure 6  Fitted hydrograph of PC2 measured values. 

 

Figure 7  Hydrograph of ambient temperature and reservoir level. 

The equation of control domain can be obtained according 
to eqs. (26)–(28) as 

−′⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤−⎡ ⎤⎜ ⎟ ⎜ ⎟− − ≤⎢ ⎥ ⎢ ⎥⎢ ⎥⎜ ⎟ ⎜ ⎟−⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠

1

1 1

2 2

ˆ ˆ0.224983 0.00898
0.005.

ˆ ˆ0.00898 0.004166

Z Z

Z Z
Z Z  

(31) 

After taking the reduction factor of semi-major axis as 0.55, 
the axis reduces to 0.287 and its direction is u1= [−0.99918 
0.040546]T. By taking the reduction factor of the semi- mi-
nor axis as 0.4, the axis reduces to 0.0372 and its direction 
is u2=[−0.99918 −0.040546]T. 

Once selecting the predicted value around the PC peak in 
2007, the control domain of observations could be drawn as 
shown in Figure 8. From the figure, we can see the control 
domain completely contains the observations, which illus-
trates the crack behavior doesn’t display variation and the 
dam is in the normal operation under current load combina-
tion. 

 

Figure 8  Confidence ellipse of future observation. 

5  Conclusion 

In this paper, data redundancy and measurement noise 
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phenomenon, which widely exists in the massive data col-
lected from dam safety monitoring system, is fully ana-
lyzed. It is also pointed out that the traditional univariate 
analysis method ignores the correlativity among responsive 
variables, which not only causes analysis lag, but also 
makes frequent false alarms. That is why analysis effi-
ciency and application are extremely restricted. Therefore, 
the theory and method of principal component analysis 
(PCA) are introduced to data analysis and monitoring, and 
through a specific case it is explained that the above prob-
lems can be effectively solved. The mainly conclusions of 
the paper are as follows. 

(1) Data reduction. By use of the correlativity among 
respond variables, principal components are extracted, and 
data redundancy can be effectively reduced. The number of 
reconstructed PCs are generally not greater than 4−5, which 
means a data reduction about 60% of original size. 

(2) Noise filtering. Principal component can separate 
more than 90% signal from noise. It may process the major-
ity abnormal data successfully, which efficiently lessens the 
work of gross error adjustment. 

(3) Multivariate analysis and monitoring. Multivariate 
values can be processed with PCA and monitored by multi- 

dimensional confidence ellipsoid, which changes the tradi-
tional mode of univariate analysis, improves data processing 
and structure safety monitoring. Meanwhile, false alarms are 
controlled at a low level, and the original monitoring system 
updated by PCA can be used in a large scale. 
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