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A new noise reduction method for nonlinear signal based on maximum variance unfolding (MVU) is proposed. The noisy sig-
nal is firstly embedded into a high-dimensional phase space based on phase space reconstruction theory, and then the manifold 
learning algorithm MVU is used to perform nonlinear dimensionality reduction on the data of phase space in order to separate 
low-dimensional manifold representing the attractor from noise subspace. Finally, the noise-reduced signal is obtained through 
reconstructing the low-dimensional manifold. The simulation results of Lorenz system show that the proposed MVU-based 
noise reduction method outperforms the KPCA-based method and has the advantages of simple parameter estimation and low 
parameter sensitivity. The proposed method is applied to fault detection of a vibration signal from rotor-stator of aero engine 
with slight rubbing fault. The denoised results show that the slight rubbing features overwhelmed by noise can be effectively 
extracted by the proposed noise reduction method. 

nonlinear noise reduction, manifold learning, maximum variance unfolding, fault diagnosis 

 

Citation:  Zhang Y, Li B W. Noise reduction method for nonlinear signal based on maximum variance unfolding and its application to fault diagnosis. Sci 
China Tech Sci, 2010, 53: 2122−2128, doi: 10.1007/s11431-009-3172-8 

 

 

 
1  Introduction 

The useful information of operating machinery tends to be 
submerged by the strong noise, so it is necessary to elimi-
nate noise from measured signal effectively before diag-
nosing machine faults. The mechanical systems are often 
characterized by non-linear dynamics behaviors, which 
make the signal have the characteristic of power broadband 
and pseudo noise. So the conventional linear methods based 
on band-pass filter in the frequency domain are difficult to 
separate the signal from noise effectively. Recently, a num-
ber of non-linear analysis methods, such as local projection 
(LP) [1], singular spectrum decomposition (SSD) [2] and 
kernel principal component (KPCA) [3, 4], are used for 
signal denoising. The LP and SSD methods are both con-
ducted by performing local iterative modification on all  

points in the phase space to approximate the true attractor 
trajectory. However, the two methods are considered as a 
local linear method, which can not describe the global non-
linear characteristic of the dynamics system. The 
KPCA-based method maps the nonlinear data in phase 
space into a higher dimensional feature space by kernel 
function, and performs linear dimension reduction by PCA 
to separate the clean signal space from the noise subspace. 
However, its performance largely depends on its kernel 
function and parameters which can only be selected empiri-
cally. 

Manifold learning which is a new effective method of 
nonlinear dimensionality reduction has attracted more and 
more attention recently. The purpose of manifold learning is 
to project the original high-dimensional data into a lower 
dimensional feature space by preserving the local neigh-
borhood structure. Manifold learning is effective for us to 
discover the intrinsic low-dimensional manifold structure of 
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nonlinear high-dimensional data. At present, the representa-
tive methods include isometric mapping (ISOMAP) [5], 
locally linear embedding (LLE) [6], Laplacian eigenmaps [7] 
and maximum variance unfolding (MVU) [8]. MVU pro-
posed by Weinberger in 2006 is a new manifold learning 
method based on the notion of local isometry, which un-
folds the underlying data manifold in its reduced space by 
rotation and translation subject to the constraints that pre-
serve the angles and distances of local neighborhoods. It can 
not only learn the low-dimensional manifold embedded in 
the high-dimensional data but also indicate the intrinsic di-
mension of manifold. 

We consider the noise-free attractor trajectory of system 
as a low-dimensional smooth hypersurface manifold em-
bedded in the phase space, and use the manifold learning 
method to discover the attractor manifold for noise reduc-
tion. In this paper, the noisy signal is firstly embedded into 
a high-dimensional phase space based on phase space re-
construction theory, and MVU is used to perform nonlinear 
reduction on the data of phase space in order to separate 
low-dimensional manifold representing the attractor from 
noise subspace. Then the noise reduction result is achieved 
through reconstructing the low-dimensional manifold. 
However, there is no apparent mapping between the 
high-dimension space and the reduced space in MVU, and 
MVU does not provide a method that can reconstruct the 
manifold from low-dimension space to high-dimension 
space. Thus the local polynomial regression is used to re-
construct the manifold. The simulation results of Lorenz 
system show that the proposed MVU-based noise reduction 
method outperforms the KPCA-based method and has the 
advantages of simple parameter estimation and low param-
eter sensitivity. The proposed method is applied to fault 
detection of a vibration signal from rotor-stator of aero en-
gine with slight rubbing fault. The denoised results show 
that the slight rubbing features overwhelmed by noise can 
be effectively extracted by the proposed noise reduction 
method. 

2  MVU algorithm  

Suppose the noisy data set T
1 2( , , , )   L nX = x x x  is sam-

pled from r-dimensional manifold M embedded in the 
d-dimensional space dR . Without the knowledge of r and 
M, the purpose of manifold learning is to find the mapping 

: ( )d rf r d→ �R R  according to the high-dimensional 

data X and get the low-dimensional manifold coordinate 
T

1 2( ,  ,  ,  )= L nY y y y , r
i ∈y R  in one-to-one correspond-

ence with the data set X. 
The method for maximum variance unfolding is con-

structed based on a simple intuition. Assumed that the in-
puts ix  are connected to their k nearest neighbors by rigid 

rods, the algorithm attempts to pull the inputs apart by 

maximizing the total sum of their pairwise distances without 
breaking (or stretching) the rigid rods that connect the near-
est neighbors. The outputs are obtained from the final state 
of this transformation. For example, Figure 1 shows the 
nonlinear dimensionality reduction results for an S-curve 
data set by MVU. From the color coding of data, we can see 
that MVU successfully unfolds the S-curve and preserves its 
local structure in the reduced space. 

The “unfolding” transformation described above can be for-
mulated as a quadratic program. Let { }0,1ij ∈W  denote 

whether inputs ix  and jx  are k-nearest neighbors. The MVU 

algorithm can be expressed as the following optimization: 

 

1

s.t.

2

, 1

2 2

max ,

,

0.

n

i j
i j

i j ij i j ij

n

i

=

−

− = −

=

∑

∑
i=

y y

y y W x x W

y

 (1) 

Here, the first constraint enforces that distances between 
nearby inputs match distances between nearby outputs, 
while the second constraint yields a unique solution (up to 
rotation) by centering the outputs on the origin. 

The apparent intractability of this quadratic program can 
be finessed by a simple change of variables. Note that as 
written above, the optimization over the outputs iy  is not 

convex, meaning that it potentially suffers from spurious 
local minima. Defining the inner product matrix 

,ij i j=〈 〉K y y , we can reformulate the optimization as a 

semi-definite program (SDP) over the matrix [ ]ij n n×=K K , 

which can be written as 
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where trace( )� denotes the trace of matrix K. The last (addi-

tional) constraint needs the matrix K to be positive semi-definite, 
which can guarantee the data to be from convex set. 

 

 

Figure 1  (a) The S-curve data; (b) the dimensionality reduction result for 
S-curve data. 
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There are several efficient general-purpose toolboxes for 
solving semi-definite programming problems, such as the 
SeDuMi [9] and CSDP [10] toolboxes. 

Let *K denote the optimal solution of K. The spectral 
decomposition of *K can be written as 

 *

1

,
n

ij i jα α α
α

λ
=

= ∑K V V  (3) 

where iαV  denotes the i-th element of the eigenvector cor-

responding to the α-th largest eigenvalue αλ , if the eigen-

values are sorted from the largest to the smallest. 
An n-dimensional mapping *

iy  of the inputs ix  is 

given by identifying the α-th element of *
iy  as 

 * .iα α αλ=iy V  (4) 

The ( )r r d<< -dimensional mapping iy  is obtained by 

reserving the first r elements of *
iy  and truncating the rest 

elements. 

3  Noise reduction method for nonlinear signal 
based on MVU 

Suppose [ ]1 2,  ,  ,  Nz z z= Lz  is one-dimensional noisy 

nonlinear signal. By embedding it into an m-dimensional 
phase space, we can obtain the following data matrix: 
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where m denotes embedding dimension and satisfies 
2 1m D +≥ , D is the fractal dimension of attractor, τ de-

notes delay time. T
1 ( 1)[ ,  ,  ,  ]i i i m iz z zτ τ× + − × += Lx , which is a 

column vector of matrix X corresponding to one data point 
of phase space. So there are 0 ( 1)N N m τ= − − ×  data 

points in all. Takens has proven that the attractor trajectory 
of system can be recovered by reconstructing the phase 
space with a proper embedding dimension. In the 
m -dimensional phase space, the system attractor is located 
on a low-dimensional subspace, whereas the white noise in 
signal distributes in every dimension of the phase space. If 
the noise-free attractor track of the system is considered as a 
low-dimensional smooth hypersurface manifold embedded 
in the phase space, then we can use the manifold learning 
method to separate the attractor manifold for noise reduc-
tion according to the different distributions of signal and 

noise in the phase space. 
According to the analysis above, the MVU algorithm is 

used to perform nonlinear mapping for the data in the phase 
space. The optimal kernel matrix is learned by solving (2), 
and then the 0N -dimensional mappings * * *

1 2 0
,  ,  ,  NLy y y  

are obtained by solving (3) and (4). 
How to specify the reduced dimension r  (determined 

by the fractal dimension of attractor) is a crucial problem. It 
is difficult to compute the fractal dimension of attractor 
accurately due to the influence of noise [11]. So it is not 
appropriate to specify r by the fractal dimension of attractor. 
MVU can indicate the intrinsic dimension of manifold. 
MVU unfolds the data manifold in the reduce space and 
hence * * *

1 2 0
,  ,  ,  NLy y y  are very likely to lie on a linear 

subspace of the reduce space. Since spectral decomposition 
of kernel matrix K is performed in the reduce space and 
eigenvalues of K are proportional to the variance along 
principal components, it is considered that the largest r  
eigenvalues are associated with variances of manifold and 
the rest smallest 0N r−  eigenvalues are associated with 

the variances of noise. Weinberger [8], who proposed MVU, 
also pointed that a large gap in the eigenvalue spectrum 
between the r-th and r+1-th eigenvalue indicates that the 
data lie on or near a manifold of dimensionality r. So the 
intrinsic dimension of data can be effectively determined 
according to the eigenvalues of K learned by MVU. For 
example, Figure 2 shows the normalized eigenvalues of the 
kernel matrix learned by MVU and the kernel matrix of 
KPCA for the S-curve data set shown in Figure 1 (only the 
largest 15 normalized eigenvalues are shown). The 3rd 
largest normalized eigenvalue from MVU which suddenly 
decreases to near zero indicates the correct intrinsic dimen-
sion (r=2) of the S-curve data set. 

Thus we choose the largest r eigenvalues and their cor-
responding eigenvectors to compute the manifold’s coordi-
nates 

01 2,  ,  ,  NLy y y  in the r-dimensional space by solv-

ing (4). So the 0( )N r− -dimensional noise subspace is 

separated by choosing r, and 
01 2,  ,  ,  NLy y y  represent the 

clean attractor manifold.  
 

 
Figure 2  The normalized eigenvalues of the kernel matrix learned by 
MVU and the kernel matrix of KPCA for the S-curve data set. 
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The one-dimensional noise-reduced signal can be ob-
tained through reconstructing the noise-reduced manifold 
from reduced space to the high-dimensional phase space. 
However, MVU does not provide a reconstructing method 
for the low-dimension manifold. There is no apparent map-
ping between high-dimension space and reduced space in 
MVU. We define the reconstruction problem by 

 0( ) , 1,  2,  ,  ,i i if i N= + = Lx y ε  (6) 

where m
i ∈x R  denotes the high-dimensional data point in 

the phase space, ( )f � denotes the nonlinear mapping 

function from low-dimensional data to the high-dimensional 
data, and iε  denotes the noise. The purpose of reconstruc-

tion is to recover the attractor manifold ( )if y  in the 

high-dimensional phase space. Eq. (6) can be considered as 
a non-parametric regression problem, thus we apply local 

polynomial regression to { } 0

1
( , )

N

i i i=
x y  to construct the 

manifold ( )if y  underlying the set of points ix . The de-

tail of local polynomial regression algorithm is referred to 
ref. [12]. 

The MVU-based noise reduction method is summarized 
in the following. 

1) Choose the proper embedding dimension m and delay 
time τ to embed the one-dimensional noisy signal into an 
m-dimensional phase space. 

2) Choose the proper number of nearest neighbors k to 
construct the N N×  binary adjacency matrix W. Set 

1=ijW  if ix  is a k-nearest neighbor of jx , otherwise, set 

0=ijW . ix  denotes the data point in the phase space and 

N denotes the number of data points. 
3) Learn the optimal kernel matrix K by solving (2). 
4) Perform spectrum decomposition for K and set the re-

duced dimension to be the intrinsic dimension r determined 
according to the eigenvalues of K. Then choose the largest r 
eigenvalues and their corresponding eigenvectors to com-
pute the manifold’s coordinates 

01 2,  ,  ,  NLy y y  in the 

r-dimensional space by solving (4). 
5) Use local polynomial regression to reconstruct the at-

tractor manifold from reduced space to the 
high-dimensional phase space. 

6) Obtain the noise-reduced one-dimensional signal by 
the inverse transform of phase space reconstruction. 

7) Repeat the above steps until having a good noise re-
duction effect. 

4  Simulation and analysis 

A numerical experiment on Lorenz system was conducted 
to evaluate the performance of the proposed MVU-based 

noise reduction method. The Lorenz system is a typical 
nonlinear dynamic system whose equation is given by 
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The system is in chaotic when ω=10, r=28, b=3/8. The 
fourth-order Runge Kutta algorithm with the step size set to 
0.01 was used to compute eq. (7). The 2000 data points of x 
were taken as testing signal, to which 15 dB white Gaussian 
noise was added. Then we used KPCA-based method and 
our proposed MVU-based method to perform noise reduc-
tion on the noisy testing signal, respectively. The signal to 
noise ratio (SNR) and mean square error (MSE) were used 
as performance indexes defined as 

 SNR
2

10 2
10 log ,x

w

σ
σ
⎛ ⎞

= ⎜ ⎟
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  (8) 

where 2
xσ  is the square of signal, and 2

wσ  is the square of 

noise. 

 MSE 2

1

1
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n

i

x i x i
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where n is the length of signal, ( )x i  is the noisy signal, 

and ˆ( )x i  is the noise-reduced signal. 

In the phase space reconstruction, the same parameters 
were chosen for two method, that is, embedding dimension 
m=6 and delay time τ=1. For MVU, the number of nearest 
neighbors k was set to 4. For KPCA, the Gaussian kernel 

2
( , ) exp( / )k δ= − −a b a b  was used and the kernel pa-

rameter δ was set to 30 by cross-validation scheme. The 
normalized eigenvalues of the kernel matrix learned by 
MVU and the kernel matrix of KPCA are shown in Figure 3 
(only the largest 15 normalized eigenvalues were shown). 
We can see that the third largest normalized eigenvalue of 
the matrix learned by MVU suddenly decreased to near zero. 
This indicates that the intrinsic dimension of attractor is 2, 
which is very close to the true Lorenz system attractor’s 
fractal dimension 2.06. However, we cannot draw a similar 
conclusion on intrinsic dimension according to the eigen-
values from KPCA because there is no sharp “turning point” 
in the plot. The reduced dimension of KPCA is set to 5 by 
counting the eigenvalues larger than the average eigenvalue. 
This rule was recommended for KPCA by Lee [13]. 

The two-dimensional phase trajectory of the noisy Lorenz 
signal is shown in Figure 4. The two-dimensional phase tra-
jectory of noise-reduced Lorenz signal by MVU and KPCA 
are shown in Figures 5 and 6, respectively. The noise reduc-
tion results of the two methods are shown in Table 1. It can  
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Figure 3  The normalized eigenvalues of the kernel matrix learned by 
MVU and the kernel matrix of KPCA. 

 

Figure 4  The two-dimensional phase trajectory of the noisy Lorenz signal. 

 

Figure 5  The two-dimensional phase trajectory of the noise-reduced 
Lorenz signal by KPCA. 

be seen that the MVU-based method has good performance 
for noise reduction. Compared to the KPCA-based method, 
the SNR of MVU-based method is increased by 3.09 dB 
and the MSE decreased by 0.0115, which means the 
MVU-based method outperforms the KPCA-based method. 
Another advantage of the MVU-based noise reduction 
method is that it requires only one parameter, the number of 
nearest neighbors k, which can be estimated simply. In or-
der to analyze the influence of parameter k on the noise re-
duction efficiency, we chose different k to perform noise 
reduction on the noisy Lorenz signal above. The experiment 

result is shown in Figure 7. we can see that the change of 
SNR of the noise-reduced signal was about 1 dB when k 
varied from 2 to 10. Thus it is thought that the choice of k 
has little influence on the noise reduction efficiency in the 
experiment. 

5  Application 

Rotor rubbing is the common fault mode of aero engine. 
The vibration signal generated by rubbing is nonlinear, 
whose spectrum includes fractional, double, triple frequen-
cies and so on. Since the energy of slight rubbing is small, 
the slight rub features tend to be overwhelmed by the high 
background noise and are difficult to be extracted. 

Figure 8 shows the time-domain curve and spectrum of a 
vibration signal from rotor-stator of aero engine with slight 
rubbing fault. The rotor speed is 390 Hz and the sampling 
frequency is 5120 Hz. From the order spectrum, we can 
only find the power frequency and double frequency, which  

 

 

Figure 6  The two-dimensional phase trajectory of the noise-reduced 
Lorenz signal by MVU. 

Table 1  SNR and MSE of noise-reduced signal by MVU and KPCA 

Noise reduction method SNR (dB) MSE 

KPCA 31.16 0.0542 
MVU 34.25 0.0427 

 

 

Figure 7  SNR of noise-reduced signal with different parameters k. 
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Figure 8  The time-domain curve and spectrum of a vibration signal from 
rotor-stator of aero engine with slight rubbing fault. 

means the rubbing fault features are unobvious. In order to 
extract the fault feature, we used the proposed MVU-based 
method to reduce the noise contained in the vibration sig-
nal. Among the method parameters, the embedding di-
mension m, delay time τ and the number of nearest neigh-
bors k were set to 8, 1 and 5, respectively. Figure 9 shows 
the time-domain curve and spectrum of the noise-reduced 
vibration signal. From the spectrum, we can find the triple, 
fourfold, fivefold and fractional frequencies which repre-
sent the fault characteristic of slight rotor rubbing. Thus it 
can be seen that the proposed MVU-based method can 
reduce the noise in the nonlinear rotor rubbing vibration 
signal effectively, which is helpful to improve the accura-
cy of fault diagnosis. 

Moreover, we computed the autocorrelation coefficient 
of the vibration signal to evaluate the performance of 
MVU-based method. The noise makes the autocorrelation 
coefficient decrease, so if the autocorrelation coefficient is 
larger, it means the noise is suppressed more efficiently. 
The autocorrelation coefficients of the neighbor two sam-
pling moment are shown in Table 2. It can be seen that the 
autocorrelation coefficient of the noise-reduced vibration 
signal increased, which means the noise was eliminated 
efficiently. Compared to the KPCA-based method, the au-
tocorrelation coefficient of noise-reduced signal by 
MVU-based method was larger, and the autocorrelation 
coefficient of reduced noise was smaller, which illustrates 
our proposed MVU-based noise reduction method has better 
performance. 

6  Conclusion 

A new noise reduction method for nonlinear signal based on 
maximum variance unfolding (MVU) was proposed. The  

 

Figure 9  The time-domain curve and spectrum of the noise-reduced 
vibration signal. 

Table 2  The autocorrelation coefficients of the neighbor two sampling 
moment 

Noise redution 
method 

Autocorrelation coefficient 

Noisy signal 
Noise-reduced 

signal 
Eliminated 

noise 

KPCA 0.8852 0.9224 0.0542 

MVU 0.8852 0.9436 0.0218 

 
noisy signal is firstly embedded into a high-dimensional 
phase space, and then the manifold learning algorithm 
MVU performs nonlinear dimensionality reduction on the 
data of phase space in order to separate low-dimensional 
manifold representing the attractor from noise subspace. 
Finally, the noise-reduced signal is obtained through recon-
structing the low-dimensional manifold. Simulation results 
have shown that the proposed MVU-based noise reduction 
method outperforms the KPCA-based method and has the 
advantages of simple parameter estimation and low param-
eter sensitivity. The proposed method was applied to fault 
detection of a vibration signal from rotor-stator of aero en-
gine with slight rubbing fault. The denoised results have 
shown that the slight rubbing features overwhelmed by 
noise can be effectively extracted by the proposed noise 
reduction method. 
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