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A perturbation-incremental scheme for studying Hopf 
bifurcation in delayed differential systems 
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A new method, called perturbation-incremental scheme (PIS), is presented to investigate the periodic 
solution derived from Hopf bifurcation due to time delay in a system of first-order delayed differential 
equations. The method is summarized as three steps, namely linear analysis at critical value, perturba-
tion and increment for continuation. The PIS can bypass and avoid the tedious calculation of the center 
manifold reduction (CMR) and normal form. Meanwhile, the PIS not only inherits the advantages of the 
method of multiple scales (MMS) but also overcomes the disadvantages of the incremental harmonic 
balance (IHB) method. Three delayed systems are used as illustrative examples to demonstrate the 
validity of the present method. The periodic solution derived from the delay-induced Hopf bifurcation is 
obtained in a closed form by the PIS procedure. The validity of the results is shown by their consis-
tency with the numerical simulation. Furthermore, an approximate solution can be calculated in any 
required accuracy. 
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1  Introduction 

Dynamics of systems with time delay is of interest since 
time delay is ubiquitous in nature, science and engi-
neering. A general mathematical model can be written as  
 ( ) ( ) ( ) ( ( ) ( ) )t t t t tτ ε τ= + − + , − ,Z CZ DZ F Z Z  (1) 

where ( ) nt ∈ RZ , C and D are n n×  real constant ma-
trixes, ( )⋅F  is a nonlinear function of its variables with 

(0 0) 0, =F , ε is a parameter representing the couple 

degree between nonlinearities, τ is the time delay, and 
n  is a positive integer. Eq. (1) may model many real 
systems, such as neural[1,2], ecological[3], biological[4], 
mechanical[5―8], controlling[9], secure communication 
via chaotic synchronization[10,11] and other natural sys-
tems suject to finite propagation speeds of signals, finite 
reaction times and finite processing times[12]. It has been 
shown that the time delay in various systems has not 
only quantitative but also qualitative effects on dynam-
ics even for small time delays[13,14].  

As a result, various qualitative and quantitative theo-
ries for delayed differential equations (DDEs) are de-
veloped and extended in recent years. Eq. (1) has been 
used as a mathematical model for the investigation of 
stability of systems with time delay. The delay-induced 
Hopf bifurcation may be the most simple but basic bi-
furcation on stability analysis.  

In the qualitative treatment of Hopf bifurcation, many 
authors[1,2,15―17] suggested a center manifold reduction 
(CMR) then a normal form procedure to classify stabil-
ity of the periodic solution derived from the Hopf bifur-
cation. The main steps of the analysis are schemed as 
follows: (i) To consider an equilibrium at a critical pa-
rameter; (ii) to solve the eigenvalue problem for this 
equilibrium to find its linear stability; (iii) to localize the 
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critical point in parameter space where bifurcation oc-
curs; (iv) to calculate the eigenvalues and eigenfunctions 
at the bifurcation point and reduce DDEs on the center 
manifold; (v) to compute the appropriate normal form 
coefficients.   

In the quantitative treatment of Hopf bifurcation, in-
teresting attentions are focused on the analytical expres-
sion of the periodic solutions derived from the Hopf bi-
furcation. Periodic solutions can be obtained through 
Hopf bifurcation of a steady state solution by means of 
the center manifold theory. However, it is in general te-
dious to reduce a given DDE to a finite dimensional 
system. Instead of the center manifold reduction, Das 
and Chatterjee[18] employed the method of multiple 
scales (MMS) to obtain analytical solutions of bifurca-
tion parameters close to Hopf bifurcation point for 
DDEs. It should be noted that Das’ version is somewhat 
different from that proposed by Nayfeh et al.[5] The 
MMS can bypass the explicit center manifold and nor-
mal form calculation. For those values closed to the 
Hopf bifurcation point, analytical approximations from 
Das’ version are in good agreement with the numerical 
solutions. However, the method is invalid for values far 
away from the bifurcation point. For this case, the IHB 
method can be employed to express periodic or even 
doubling periodic solutions analytically[7]. The key tech-
nique for IHB is to find an initial value for iteration, 
which is difficult in general. Moiola et al.[19] have pre-
sented a so-called domain approach to analyze graphi-
cally the structure of degenerate Hopf bifurcation and to 
recovery the continuation of the bifurcated periodic 
paths for the single-input single-output (SISO) feedback 
systems with odd nonlinearities and time delays. The 
method is valid for bifurcation parameter close to the 
Hopf bifurcation point, but is invalid for those far away.  

Motivated by the above problems, we will consider 
eq. (1) as a mathematical model to propose a new 
method called the perturbation-incremental scheme (PIS) 
and extend it to investigate delay-induced Hopf bifurca-
tion and periodic solution in the present paper. The paper 
is organized as follows. Firstly, the PIS is described in 
section 2. In sections 3―5, three systems are considered 
as illustrative examples to demonstrate the validity of 
the PIS by comparing with results from MMS, CMR and 
numerical simulation.  

It will be seen that the PIS avoids tedious computations 
which one quite often comes across in center manifold 

reduction. The obtained results from the perturbation 
step can be used as an initial guess for incremental itera-
tion. Through continuation step, periodic solutions at 
bifurcation parameter far away from the bifurcation 
point can be determined in any desired accuracy. There-
fore, the PIS not only inherits the advantages of MMS 
and Moiola’s method, but also efficiently overcomes the 
disadvantages of MMS and IHB. 

2  Perturbation-incremental scheme  

The perturbation-incremental scheme (PIS) has been 
used to study nonlinear oscillations without time de-
lay[20,21]. In this section, we will outline a procedure of 
the PIS for eq. (1). Without loss of generality, we as-
sume that the trivial equilibrium of eq. (1) without time 
delay is not saddle-type. Then, the procedure of the PIS 
is divided into three steps.  

2.1  Linear analysis ( 0ε = ) 

To determine the stability of the trivial solution for 
0τ ≠ , one linearizes eq. (1) around Z=0 and obtains the 

characteristic equation  
 det( e ) 0,λτλ −− − =I C D  (2) 
where I is the identity matrix and 0.τ >  

The roots of the characteristic eq. (2) are commonly 
called the eigenvalues of the equilibrium point of eq. (1). 
The stability of the trivial equilibrium is changed when 
the eigenvalues of eq. (2) have zero or imaginary pairs. 
The former may lead to a static bifurcation of equilib-
rium points such that the number of equilibrium points 
changes when the bifurcation parameters vary. The latter 
deals with a Hopf bifurcation such that dynamical be-
haviors of the system change from a static stable state to 
a periodic motion or vice versa. Especially, if there is 
only a pair of purely imaginary eigenvalues given by 

iω±  at cτ τ=  and 0λ =  is not a root of eq. (2), then 
a Hopf bifurcation may occur in eq. (1). We will con-
centrate on this case in the subsequent discussion.  

For n≤2, the explicit expression of the critical stabil-
ity boundaries for the trivial equilibrium is easily deter-
mined in one-dimensional parameter space, such as τ , 
by solving eq. (2) and using the Hopf bifurcation theo-
rem. For n >2, it is very difficult to find the explicit ex-
pression since there are infinite roots to be examined in 
eq. (2). Fortunately, Olgac and Sipahi[22] have proposed 
a novel treatment yielding a practical and structured 
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methodology to obtain the critical boundaries. To pro-
ceed to the next step, we assume that the critical values 
of a Hopf bifurcation in τ are found.  

2.2  Perturbation method at a critical value (small 
ετε) 

The second step deals with the problem of calculating an 
approximation of a small-amplitude periodic solution 
near a Hopf bifurcation point. We first consider the 
value of time delay close to a Hopf bifurcation point. A 
perturbation to one of the critical values, ,c ετ τ ετ= +  
of eq. (1) yields  

 
( ) ( ) ( ) 

           ( ( )  ( )  ( ) )
c

c c

t t t

t t t ε

τ

τ τ ετ ε

= + −

+ , − , − − , ,

Z CZ DZ

F Z Z Z
 

(3)
 

where  

 [ ]
 ( ( ) ( ) ( ) )

( ) ( )
 ( ( ) ( ) )

c c

c c

c

t t t
t t

F t t

ε

ε

ε

τ τ ετ ε

τ ετ τ

ε τ ετ

, − , − − ,

= − − − −

+ , − − ,

F Z Z Z
D Z Z

Z Z
 

(4)
 

and τc is a critical value or a Hopf bifurcation point. It 
follows from section 2.1 that eq. (3) undergoes a Hopf 
bifurcation when 0ε = . Consider the equation given by  

 T T( ) ( ) ( )ct t t τ= − − + .W C W D W  (5) 
Suppose that the periodic solution of eq. (5) with pe-

riod 2 ωπ/  is expressed as  
 ( ) cos( ) sin( )t φ φ= + ,W p q  (6) 
which results in  
 ( ) cos( ) sin( )c ct τ φ ωτ φ ωτ− = − + − ,W p q  (7) 

where T T
1 2 1 2( ) , ( ) ,n

n np p p q q q= , ,..., = , ,..., ∈ Rp q φ =ωt, 

τc and ω are determined by eq. (2). Substituting eqs. (6) 
and (7) into eq. (5) and using the harmonic balance, one 
may obtain  
 T T ,=Μ p N q  (8) 
and  
 T T= − ,M q N p  (9) 

where sin( )cω ωτ= +M I D and cos( )cωτ= +N C D . 
Obviously, there are only two independent constants in 
the periodic solution eq. (6) arising from the Hopf bi-
furcation. If p1 and q1 are chosen to be independent, then 
pi and qi ( 2i n= , ,… ) can be determined by eqs. (8) and 
(9) in terms of p1 and q1. Similarly, for 0ε = , the peri-
odic solution of eq. (3) with period 2 ωπ/  can be ex-
pressed as  
 ( ) cos( ) sin( )t φ φ= + ,Z a b  (10) 

where T
1 2( )na a a= , , ,…a , T

1 2( ) n
nb b b= , , , ∈ R…b , a1 

and b1 are independent, ai and bi ( 2i n= , ,… ) are func-
tions of a1 and b1, given by  
 ,=Mb Na  (11) 
and  
 .− =Ma Nb  (12) 

Eq. (10) in a polar coordinate system can be given by  
 ( ) cos( )t φ θ= + ,Z r  (13)  

where T
1 2( )nr r r= , , ,…r  and ir ( 2i n= , ,… ) are line-

arly represented in r1. Therefore, for a small ε , the so-
lution of eq. (3) may be considered as a perturbation of 
eq. (13), given by  
 ( ) ( )cos(( ( )) )t tε ω σ ε= + ,Z r  (14) 

where (0) ,r r= (0) 0,σ = and 1( ) ( ( ))i ir r rε ε= ( 2i n= ,.., ). 

To obtain 1( )r ε  and ( )σ ε , multiplying both sides of 

eq. (3) by T[ ( )]tW  from eq. (6) and integrating with 
respect to t from zero to 2 ωπ/ , we obtain  

 

2 / T
0
2 / T

0

   [ ( )] ( )d

[ ( )] [ ( ) ( )

 ( ( ) ( ) ( ) )]d

c

c c

t t t

t t t

t t t t

ω

ω

ε

τ

τ τ ετ ε

π

π
= + −

+ , − , − − , .

∫

∫

W Z

W CZ DZ

F Z Z Z

   

(15)

 

Eq. (15) yields that  

      
T2 T T

0
( ) ( ) ( ) ( )dct t t t t

ω
τ

π/
⎡ ⎤+ + +⎣ ⎦∫ W C W D W Z  

 
[ ]0 TT ( ) ( 2 ) d[ ( )]

[ (0)] [ (2 ) (0)]
c

c

T

t t tt
τ

π ωτ

ω

−
+ − + /+

− π/ −

∫ Z ZD W

W Z Z
 

 
2

0
[ ( )] ( ( ) ( )

 ( ) )d 0.

T
c

c

t t t

t t

ω

ε

τ

τ ετ ε

π/
+ , − ,

− − , =
∫ W F Z Z

Z
 

(16)
 

Since W(t) is a periodic solution of eq. (5) and 
2( )t t
ω
π⎛ ⎞= +⎜ ⎟

⎝ ⎠
W W , eq. (16) becomes  

0 TT [ ( ) ( 2 )]d[ ( )]
c

c t t tt
τ

ωτ
−

− + π/+∫ Z ZD W  

T[ (0)] [ (2 ) (0)]ω− π/ −W Z Z  
2 T

0
[ ( )] ( ( ) ( )

 ( ) )d 0
c

c

t t t

t t

ω

ε

τ

τ ετ ε

π/
+ , − ,

− − , = .
∫ W F Z Z

Z
     

(17)
 

Eq. (17) is a sufficient and necessary condition for eq. 
(14) to be the periodic solution of eq. (3), which is in-
duced from the trivial equilibrium by the Hopf bifurca-
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tion at τc. Substituting eqs. (6) and (13) into eq. (17) and 
noting the independence of p1 and q1 yields a set of al-
gebraic equations for the determination of 1( )r ε  and 

( )σ ε .  
It should be noted that eq. (17) is a set of explicit al-

gebraic equations in 1( )r ε  and ( )σ ε . The roots of eq. 
(17) cannot be expressed in a closed form since the 
equations contain transcendent functions. To obtain an 
analytical form in 1( )r ε  and ( )σ ε , the transcendent 
functions in eq. (17) are expanded in Taylor’s series in ε 
and then high-order terms in power ε are neglected. 
Thus, one may only obtain an approximate formula in 

1( )r ε  and ( )σ ε . Correspondingly, an analytical ex-
pression of the periodic solution derived from a Hopf 
bifurcation is approximately given by eq. (14). The ac-
curacy of the analytical expression strongly depends on 
the magnitude of ε. When the value of the time delay is 
very close to the Hopf bifurcation point (i.e., εετ  is 
very small), the approximation eq. (14) is accurate 
enough to describe the periodic solutions of eq. (3). 
However, when the value of the time delay is far away 
from the Hopf bifurcation point, such approximation is 
quantitatively invalid. However, the approximate ex-
pression can be modified to approach the exact solution 
by the incremental step as discussed in the following 
subsection. 

2.3  Parameter incremental method (large ετε) 

A time transformation is first introduced as  

 d ( )  ( 2 ) ( ),
dt
ϕ Φ ϕ Φ ϕ Φ ϕ= , + π =  (18) 

where ϕ is the new time, which is different from .tφ ω=  

In the ϕ domain, eq. (1) is rewritten as  
 ( , ),τ τΦ ε= + +Z CZ DZ F Z Z  (19) 

where prime denotes differentiation with respect to ϕ 
and c ετ τ ετ= + .  

If 1ϕ  is the new time corresponding to t τ− , it fol-
lows from eq. (18) that  

 1 1
1

1

d ddd ( ) ( ),
( ) ( ) d

t ϕ ϕϕ Φ ϕ Φ ϕ
Φ ϕ Φ ϕ ϕ

= = ⇒ =  (20) 

which yields that 1ϕ ϕ−  is a periodic function in ϕ 

with period 2π.  
If eq. (19) possesses a periodic solution at 0τ τ= =  

c ετ ετ+  by the second step and the expression in the 
form of eq. (14) provides a sufficiently accurate repre-
sentation for a small εε τ , then one can assume that the 
expression given by  

 
0

( ) ( cos sin )
m

j j
j

t j jϕ ϕ
=

= +∑Z a b  (21) 

is a periodic solution at 
0 ,τ τ τ= + Δ where , .n

j ja b ∈ R   

Initially, for 0,τΔ =  one can easily obtain that  

 
( ), 1,

      0  for any 
0, 1,j j

j
j

j
ε =⎧

= = .⎨ ≠⎩

r
a b  (22) 

Correspondingly, one has  

 
0

( ) ( cos sin ),
m

j j
j

p j q jΦ ϕ ϕ ϕ
=

= +∑  (23) 

where  
 0 ( ),  0,  0 for all  0.j jp p q jω σ ε= + = = >  (24) 

To consider the continuation with the delay τ as the 
bifurcation parameter, an increment of τ from τ0 to 

0τ τ+ Δ  corresponds to changes of the following quan-
tities: 

 
1 1 1and

τ τ τ

Φ Φ Φ ϕ ϕ ϕ
→ + Δ , → + Δ ,

→ + Δ → + Δ .

Z Z Z Z Z Z
 (25) 

Substituting eq. (25) into eqs. (19) and (20), and ex-
panding in Taylor’s series about an initial guess or solu-
tion (e.g. for 0τΔ = ), one can obtain linearized incre-
mental equations by ignoring all the non-linear terms of 
small increments as below: 
 ( ) ( ) τΦ ϕ Φ ϕ′ ′Δ + Δ − Δ − ΔZ Z C Z D Z  

 0 0

( , ) ( , )
  

( ) ( ) ,

τ τ
τ

τ

τ τ

ε

ε Φ ϕ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∂ ∂
− Δ − Δ

∂ ∂

= + + , −

F Z Z F Z Z
Z Z

Z Z

CZ DZ F Z Z Z

 
(26)

 

 1 1 1 1 1

1 1

  ( ) ( ) ( ) ( )
( ) ( ) ,

ϕ Φ ϕ Φ ϕ ϕ Φ ϕ Φ ϕ ϕ
Φ ϕ Φ ϕ ϕ

′Δ + Δ − Δ − Δ
= −

 
(27)

 

where the subscript 0 represents the evaluation of the 
relevant quantities corresponding to the initial solution. 
From eq. (21), the terms ΔZ  and ′ΔZ  are expressed 
respectively as 

 0

1

( cos sin ),   

( cos sin ).

m

j j
j

m

j j
j

j j

j j j

ϕ ϕ

ϕ ϕ

=

=

Δ = Δ + Δ

′Δ = Δ − Δ

∑

∑

Z a b

Z b a
 (28) 
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Since Φ and 1ϕ ϕ−  are both periodic functions in ϕ 

with period 2π, we write  

 
0

( ) ( cos sin ),
m

j j
j

p j q jΦ ϕ ϕ ϕ
=

= +∑  

 
0

( ) ( cos sin ),
m

j j
j

p j q jΦ ϕ ϕ ϕ
=

Δ = Δ + Δ∑  (29) 

 
1

( ) ( cos sin ),
m

j j
j

j q j p jΦ ϕ ϕ ϕ
=

′Δ = Δ − Δ∑   

and  

 1
0

( cos sin ),
m

j j
j

r j s jϕ ϕ ϕ ϕ
=

= + +∑  

 1
0

( cos sin ),
m

j j
j

r j s jϕ ϕ ϕ
=

Δ = Δ + Δ∑  (30) 

 1
1

( cos sin ).
m

j j
j

j s j r jϕ ϕ ϕ
=

Δ = Δ − Δ∑   

Similarly, for 0τΔ = , the initial guess of 1ϕ  can be 
chosen as  
 ( )0 ( ) ,  0 ( 0),  0 for any .c j jr r j s jω σ ε τ= − + = ≠ = (31) 

For the delay term τZ , we have  

 
1 1

0

1 1 1
0 1

( cos sin ),

( cos sin ) .

m

j j
j

m

j j
j

j j

j j

τ

τ
τ

ϕ ϕ

ϕ ϕ ϕ
ϕ

=

=

= +

∂
Δ = Δ + Δ + Δ

∂

∑

∑

Z a b

Z
Z a b

 (32) 

The integration constant of eq. (20) provides informa-
tion about the delay τ . Since 1ϕ  is the new time cor-
responding to t τ− , it follows from eq. (20) that  

 
1 1

1
d dd
( ) ( )

t

t
t

ϕ ϕ

τ ϕ ϕ

θ θτ
Φ θ Φ θ−

= ⇒ = .∫ ∫ ∫  (33) 

For a small increment of τ  to τ τ+ Δ , the lin-
earized incremental eq. (33) is given by  

 
1 1

1
2

1

( ) dd ,
( ) ( )( )

ϕ ϕ

ϕ ϕ

ϕΦ θ θθ τ τ
Φ ϕ Φ θΦ θ

ΔΔ
+ = − − Δ∫ ∫  (34) 

which implies, for 0ϕ = ,  

 
0 01

2
(0)( ) dd .

( ) ( )( )ξ ξ

ϕΦ θ θθ τ τ
Φ α Φ θΦ θ
ΔΔ

+ = − − Δ∫ ∫  (35) 

where 1(0)ξ ϕ= . The harmonic balance method is ap-
plied to eqs. (26), (27) and (35). Rewriting the linearized 
eq. (26) in terms of the increments jaΔ , jbΔ , jpΔ , 

jqΔ , jrΔ  and jsΔ , we have  

 1, 2, 3, 4,
0

5, 6, 1

[

 ] ,

m

j j j j j j j j
j

j j j j

p q

r s
=

Δ + Δ + Δ + Δ

+ Δ + Δ =

∑ a bΨ Ψ Ψ Ψ

Ψ Ψ Λ
 

(36)
 

where  

 
1 1

0 0 1

( )sin cos cos

          cos cos

j j j j j

j j
τ

Φ ϕ ϕ ϕ ϕ

ε ϕ ϕ

,

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

= − − −

∂ ∂
− | + | ,

∂ ∂

Ψ I C D

F F
Z Z

 

 2 1( )cos sin sinj j j j jΦ ϕ ϕ ϕ ϕ, = − −I C DΨ  

     0 0 1sin sin ,j j
τ

ε ϕ ϕ
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∂ ∂
− | + |

∂ ∂
F F
Z Z

 (37) 

 3 4cos ,  sin ,  j jj jϕ ϕ, ,= =Ψ ΨZ Z  

5
1 10

cos cos ,j j jτ τ

τ
ϕ ϕ

ϕ ϕ,
∂ ∂∂

= − −
∂ ∂ ∂

Ψ
Z ZFD

Z
 

6 0
1 1

sin sinj j jτ τ

τ
ϕ ϕ

ϕ ϕ,
∂ ∂∂

= − − | ,
∂ ∂ ∂

Ψ
Z ZFD

Z
 

 1 ( , ) ( ) ,τ τΛ ε Φ ϕ= + + −CZ DZ F Z Z Z   

Similarly, from eqs. (27) and (35), we obtain, respec-
tively,  

 7, 8, 9, 10, 2
0
[ ] ,

m

j j j j j j j j
j

p q r sΨ Ψ Ψ Ψ Λ
=

Δ + Δ + Δ + Δ =∑  (38) 

and 

 11, 12, 13, 3
0
[ ] ,

m

j j j j j j
j

p q rΨ Ψ Ψ Λ
=

Δ + Δ + Δ =∑  (39) 

where  
 7 1 1 8 1 1cos cos sin sin ,j jj j j jΨ ϕ ϕ ϕ Ψ ϕ ϕ ϕ, ,= − , = −  

 9 1( )sin ( )cos ,j j j jΨ Φ ϕ ϕ Φ ϕ ϕ, ′= − −  

 10 1( )cos ( )sin ,j j j jΨ Φ ϕ ϕ Φ ϕ ϕ, ′= −  (40) 

 
00

11 12 132 2
cos sin 1d ,  d ,  

( )( ) ( )j j j
j j

ξ ξ

θ θΨ θ Ψ θ Ψ
Φ ξΦ θ Φ θ, , ,= = = ,∫ ∫  

 
0

2 1 1 3
d( ) ( ) ,  .
( )ξ

θΛ Φ ϕ Φ ϕ ϕ Λ τ τ
Φ θ

= − = − − Δ∫  

Since (1 13 1 )i j i j mΨ , ,≤ ≤ ≤ ≤ and (1 3)k kΛ ≤ ≤  

are periodic functions in ϕ, they can be expressed in 
Fourier series in which coefficients can easily be ob-
tained by the method of fast Fourier transform (FFT). 
Let aij, ijb R∈  (1 0 )i n j m,≤ ≤ ≤ ≤  be the i-th ele-

ments in aj and bj, respectively. By comparing the coef-
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ficients of harmonic terms of eqs. (36), (38) and (39), a 
system of linear equations is thus obtained with un-
knowns ijaΔ , ijbΔ , jpΔ , jqΔ , jrΔ  and jsΔ  in the 

form  

 
, ,

1 0

, , , ,
0

( )

( ) ,

n m

k ij ij k ij ij
i j

m

k j j k j j k j j k j j k
j

A a B b

P p Q q R r S s T

= =

=

Δ + Δ

+ Δ + Δ + Δ + Δ =

∑ ∑

∑
 
(41)

 

where Tk are residue terms. The values of aj, bj, pj, qj, rj 
and sj are updated by adding the original values and the 
corresponding incremental values. The iteration process 
continues until 0kT →  for all k (in practice, kT| |  is 
less than a desired degree of accuracy). The entire in-
cremental process proceeds by adding the τΔ  incre-
ment to the converged value of τ , using the previous 
solution as the initial approximation until a new con-
verged solution is obtained.  

The stability of a periodic solution can be determined 
by the Floquet method[23,24]. Let n∈ Rζ  be a small 
perturbation from a periodic solution of eq. (1). Then,  

 2 2
1 1

d 1 [ ( , ) ( , ) ] ( , ),
d

Oτ τϕ ϕ ϕ ϕ
ϕ Φ

= + +
ζ ζ ζ ζ ζA B  (42) 

where 1
( , )

( , ) τΦ
ϕ ϕ ε

∂
= +

∂
Z Z

A C
Z

and 1( , )ϕ ϕ = +B D  

( , )τ

τ
ε

∂
∂

F Z Z
Z

. The entities of A and B are all periodic 

functions of ϕ with period 2π, which can be determined 
by using the incremental procedure. The time delay in-
terval 1 [ 0]I τ= − ,  corresponds to 2 [ 0]I α= ,  in the ϕ 
domain. Discrete points in I2 are selected for the com-
putation of Floquet multipliers.  

From the incremental procedure, the Fourier coeffi-
cients of 1ϕ  in eq. (30) are obtained. Assume that 

ϕ β=  when 1 0ϕ =  and let 3 [0 ]I β= , . For each 

3Iϕ ∈ , there is a unique 1 2Iϕ ∈ . We choose a mesh 

size 
1

h
N

β
=

−
 and discrete points ( ) (0i ih iϕ = ≤ ≤  

N−1) in I3, which correspond to ( ) ( )
11 ( )i iϕ ϕ ϕ=  in I2. 

Let ( )
1( )iζ ϕ  be the ( 1)i + -th unit vector in Rn. By ap-

plying numerical integration to eq. (42), we obtain the 
monodromy matrix M as  

 (0) (1) ( 1)
1 1 1[ ( 2 ), ( 2 ), ( 2 )].Nζ ϕ ζ ϕ ζ ϕ −= + π + π + πM  (43) 

The eigenvalues of M are used to determine the sta-
bility of the periodic solution. One of the eigenvalues or 
Floquet multipliers of M must be unity which provides 
a check for the accuracy of the calculation. If all the 
other eigenvalues are inside the unit circle, the periodic 
solution under consideration is stable; otherwise, it is 
unstable.  

It should be noted that the procedure of the PIS dis-
cussed in this section is proposed only for the space of τ. 
For other bifurcation parameter varying in one- dimen-
sional space, the present method can be formulated in a 
similar way. In the next three sections, we will study 
three examples and demonstrate the validity and advan-
tage of the PIS by comparing the obtained results with 
those from MMS, CMR and numerical simulation. 

3  First-order delayed differential equation 
with a limit cycle  

As the first example, we consider an autonomous equa-
tion with a limit cycle given by  

 3( ) ( ),x x t x tα τ ε= − − −  (44) 

where τ is the time delay and 0α > . Das and Chatter-
jee[18] showed that eq. (44) undergoes a Hopf bifurcation 
when 0ε = , 2τ = π/  and 1cα α= = . At the bifurca-
tion point, there is a pair of purely imaginary roots, 

iλ ω= ± . Substituting 1α ε= +  and 2τ = π/  into eq. 
(44) yields  

 3 ( ) .
2 2

x x t x t x tεπ ⎡ π ⎤⎛ ⎞ ⎛ ⎞= − − − − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (45) 

For a small ε, eq. (45) was investigated by Das and 
Chatterjee[18] with the method of multiple scales. How-
ever, the method is invalid for a large ε. We use the PIS 
proposed in the last section to obtain the approximate 
solution in a closed form for a large ε.  

It is easily seen that C=0 and D= −1 in eq. (5) and W(t) 
is determined by  

 ( ) .
2

W t W t π⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (46) 

1ω =  and 2τ = π/  yield M=N=0 in eqs. (8) and (9). It 
implies that  
 ( ) cos( ) sin( )W t p qφ φ= + ,  (47) 

where tφ = . It follows from the above steps of the PIS 
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that the periodic solution of eq. (45) is expressed as  
 ( ) ( )cos((1 ( )) ),x t r tε σ ε θ= + +  (48) 

where θ is an initial phase. From eq. (17), one has  

[ ]0

2
( ) ( 2 ) d

2
W t x t x t tω

−π/

π⎛ ⎞− + − + π/⎜ ⎟
⎝ ⎠∫

(0)[ (2 ) (0)]W x x− π −  

 
2 3
0

( ) ( ) d 0.
2

W t x t x t tε
π ⎡ π ⎤⎛ ⎞− − + =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫  (49) 

If one seeks an approximation at 2( )O ε  for eq. (45), 

then ( )r ε  and ( )σ ε  can be expanded in powers of ε, 
i.e.,  

 2
0 1 1 2( ) ,  ( ) .r r rε ε σ ε σ ε σ ε= + = +  (50) 

Substituting eqs. (47), (48) and (50) into eq. (49), 
noting the independence of p and q and using the sym-
bolic algebra package MATHEMATICA, one has a set 
of algebraic equations in r0, r1, σ1 and σ2 at 2( )O ε  as 
follows: 

 
3

1 0 0 0 0 0
22

0 1

8 ( 1 ) 6 (8 4(2 )

(4 3 ) 8 ) 0,

r r rε σ ε σ ε σ

ε σ ε σ

− − + − π + − +

+ + π − =
 

 
2 3

0 1 1 0 0 0
2

0 0 0 1

18 4 3 ( 2 )

2 ( 2( 1 ) 3 2 ) 0,

r r r r

r

ε ε σ ε σ

ε σ ε σ ε σ

− + π + − +

+ π − − + + + =
 

 3
1 0 0 0 0 08 ( 1 ) 6 (8 4( 2 )r r rε σ ε σ ε σ− − + − π + + − +  (51) 

  22
0 1( 4 3 ) 8 ) 0,ε σ ε σ+ − + π − =   

 
2 3

0 1 1 0 0 0
2

0 0 0 1

18 4 3 (2 )

2 ( 2( 1 ) 5 2 ) 0

r r r r

r

ε ε σ εσ

ε σ εσ εσ

− + π − +

+ π − − + + + = .
 

Eq. (51) yield that  

 
5
2 22( ) , ( ) 1 .

3 6 88 6
r εε ε σ ε ε

⎛ ⎞ ⎛ ⎞π π π π
⎜ ⎟= + − = −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 (52) 

The approximation represented in eq. (52) is completely 
the same as that from MMS[18] at O(1), but is distinct at 

( )O ε , as shown in Figures 1 and 2, where the thin solid 
line represents the approximate solution eq. (48) with eq. 
(52), dot-dashed line represents that obtained in ref. [18] 
by means of the MMS, and the crossing symbol is the 
result from numerical simulation.  

Figure 1(a) shows that the three solutions from eq. 
(48), the MMS[18] and numerical simulation are almost 
the same in the phase plane for a small ε, say ε =0.1. 
However, they are separated for a large ε, say ε =2, as 

 
Figure 1  Comparison between the approximate solution eq. (48) (thin 
solid), MMS solution[18] (dot-dashing), PIS solution (thick solid) and the 
numerical simulation (crossing symbol) in x  vs. x for the periodic solu-
tion of eq. (45) when ε is chosen as (a) ε =1.0, (b) ε =2.0, respectively. 

 
Figure 2  Comparison of bifurcation curves between the approximate 
solution eq. (48) (thin solid), MMS solution [18] (dot-dashed), PIS solu-
tion (thick solid) and the numerical simulation (crossing symbol) in Max (y) 

vs. ε for the periodic solution of eq. (45), where .y xε=  
 

shown in Figure 1(b). Their differences are more appar-
ent in Figure 2 with Max( ) ( )y y xε=  vs. ε. Figures 
1 and 2 suggest that both the perturbation method and 
the MMS are valid for small ε but invalid for large ε. 
Next, we implement the third step (see section 2.3) to 
update the approximate solution given by eq. (48) with 
eq. (52) for a large ε. The approximate solution is con-
sidered as an initial guess of the incremental method as 
it is closer to the numerical solution than that from 
MMS. If the periodic solution of eq. (45) is assumed as 

0
( ) ( cos sin ),

m

j j
j

x a j b jϕ ϕ ϕ
=

= +∑  
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 1 1
0

( ) ( cos sin ),
m

j j
j

x a j b jτ ϕ ϕ ϕ
=

= +∑  (53) 

corresponding to 0 1 ,ε ε= . + Δ  then the initial guess 
(or solution) for the increment of ε  is easily given by 

 

5
2

1
2(0.1) 0.1 ,
3 6 8 6

0 ( 1), 0 for any .j j

a r

a j b j

⎛ ⎞π π π
⎜ ⎟= = + −
⎜ ⎟
⎝ ⎠

= ≠ =

 (54)
 

From the incremental step, we obtain an expression of 
the periodic solution for ε =2, which is shown up to ten 
harmonic terms and is represented in thick solid line in 
Figure 1(b). Figure 2 shows the continuation of ε from 
0.1 to 2.0 with Max(y) vs. ε. All three approximate solu-
tions are plotted to compare with that from numerical 
simulation in Figures 1 and 2. It is seen that the PIS so-
lution is in a good agreement with the numerical solu-
tion. This suggests that the PIS is valid for eq. (45). A 
perturbation solution can be iteratively updated to reach 
any required accuracy by means of the incremental step. 
Such a conclusion is also seen in the following two ex-
amples. 

4  Second-order delayed differential eq- 
uation related to machining dynamics  

A dynamical model of machining with degrees of free-
dom is considered as our second example, as given by 
ref. [5]  

 
2 2 3

2 3
2 2 3

2 3

    2 ( )

[ ( ) ( ) ],

x x x x x

w x x x x x xτ τ τ

ξ γ β β

γ α α

+ + + +

= − − + − + −
 

(55)
 

where ( )x x tτ τ= − . Nayfeh et al.[5] used eq. (55) to 
investigate the impact of time delay and nonlinearity on 
cutting in the machine tool. It is known from ref. [5] that 
the trivial solution of eq. (55) undergoes a Hopf bifurca-
tion at τ =τc for any 22w ξω γ> /  with τ  varying, 

where τc is determined by  

 
2 2 2

2

(1 cos ) 0,  

2 sin 0,
c

c

w

w

γ ω γ ωτ

ξω γ ωτ

− + − =

+ =
 (56) 

where ω represents the chatter frequency and 0ω ≠ .  
We will present the procedure of the PIS and the 

continuation of the periodic paths bifurcated from the 
trivial equilibrium by delay-induced Hopf bifurcation 
for eq. (55). To this end, rescale x xε→  and perturb 

τc, say 2
c ετ τ ε τ= +  transform eq. (55) into the form 

of eq. (3), where  

 

2

2

2

( )
( ) ,  

( )

0 1
,  

(1 ) 2

0 0
,

0

x t
t

y t

w

w

γ ξ

γ

⎧ ⎫
= ∈⎨ ⎬

⎩ ⎭
⎡ ⎤

= ⎢ ⎥
− + −⎣ ⎦

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

RZ

C

D

 

(57)

 

2 2 2( , , ) ( , ),
c cc c cε ε ε

τ ττ ε τ τ ε τ τ ε τε
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦+ + +

= − +F Z Z Z D Z Z F Z Z

 2
2

2

2 2 3
2 3

2 2
2

3
3

0

( )
( ) ( ( )

( ) )

c
c

c

x x

w x x

x x

ε
ε

ε

τ ε τ
τ ε τ

τ ε τ

γ β εβ

γ α

εα

+
+

+

⎧ ⎫
⎪ ⎪

− +⎪ ⎪⎪ ⎪, = ,⎨ ⎬− −⎪ ⎪
⎪ ⎪+ −⎪ ⎪⎩ ⎭

F Z Z   

and 1088 56γ = .  rad/sec, 24792 ,ξ ω= / 2 479 3εβ = .  1/in, 
2

3ε β =264500 1/in2, 2εα =5.668 1/in, and 2
3ε α = −3715.2 

1/in2[5]. Since M and N are non-singular matrixes in eqs. 
(8) and (9), then W(t) in eq. (6) can be further simplified 
as  

2(2 )cos( ) ( 2 ) sin( )( ) ,
cos( ) sin( )
p q p qt

p q
ξ ω φ ξ ω φ

φ ω φ
⎧ ⎫− + +⎪ ⎪==⎨ ⎬

+⎪ ⎪⎩ ⎭
W (58) 

where tφ ω= , and p and q are independent. It is easily 
verified that W(t) given in eq. (58) is a periodic solution 
of eq. (5). Based on eq. (58), the periodic solution of  
eq. (3) with eq. (57) can be expressed as 

 

1 T

1 T

( ) (( ) det( )cos( ( ) )
( )

          ( ) det( )sin( ( ) ))
( )

t t t
a

t t
b

ω σ ε
ε

ω σ ε
ε

−

−

= +

⎧ ⎫
+ + ⎨ ⎬

⎩ ⎭

Z N N

M M
 

(59)
 

for small values of ε. Substituting M and N into eq. (59) 
and letting ( ) ( ) sina rε ε ω θ= −  and ( ) 2 ( )b aε ξ ε= −  

( )cosr ε θ− , one has  

 
( )cos( ( ) )

( ) .
( ) sin( ( ) )

r t t
t

r t t
ε ω σ ε θ

ε ω ω σ ε θ
+ +⎧ ⎫

= ⎨ ⎬− + +⎩ ⎭
Z  (60) 

Letting 
0( ) ( )r r Oε ε= + and 2 3

2( ) ( )Oσ ε ε σ ε= + and 
substituting eqs. (58) and (60) into eq. (17), one can ob-
tain an approximation at 2( )O ε  as 

3 33 2 3 2 2 2 2
3 0 3 0 3

2
3 3 3

2 44
r r r

ww
ε ω α γ ε α γ ε α

ω ωγ
−

+ −  

3 32 2
0 3 0 33 3

2 2
r r

w
ε ω α ε ω α

− +  
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3 32 2 2 2
20 3 0 3

0 22
3 3

2
4

r r
r

w
π ε ξ ω α γ ε β

ε σ
ωγ

+ − +  

2 2
0 2 02 2 0,cr r εε ξ σ τ ε ξ ω τ+ + =  
3 32 2 2 2

0 3 0 3 0 2
2

3 3 2r r r
w w

ε ξ α ε ξ ω α ε ξ σ
ωγ

− +  

2 2 2 2
0 2 0 2c cr w rγ ε σ τ γ ε σ τ

ω ω
+ +  

2 2 2
0 2 0cr r εε ω σ τ γ ε τ− +  

 2 2 2 2
0 0 0.w r rε εγ ε τ ε ω τ+ − =  (61) 

Thus, the periodic solution of eq. (55) at 0 1w = .  
can approximately be given by eq. (60), where ( )r ε  
and ( )σ ε  are solved from eq. (61) as  

 0( ) ,r rε =  2
2( ) ,σ ε ε σ=  (62) 

and ω is determined from eq. (56) such that sω =  
1093.5427 (corresponding to the stable branches) and 

1187 88996uω = .  (corresponding to the unstable 
branches). Figure 3 shows an approximate prediction of 
the Hopf bifurcation from the trivial solution by using eq. 
(62) with τ varying, where thin solid line denotes stable 
periodic solution and thin dashed line denotes unstable 
solution, given by eq. (60) with eq. (62). Comparing 
with the numerical solution (symbol ”× ”) in Figure 3, 
one can see that the approximate solution eq. (60) with 
eq. (62) is not in a good agreement. This is more appar-
ent in Figure 4(a) and (b), in which the consistency with 
the numerical solution fails even for values of τ  close 
to τc. This is because eq. (55) includes quadratic stiff-
ness. In fact, the quadratic stiffness results in the un-
symmetrical nature of the system such that the periodic 
solutions should include the constant and second har-
monic terms. However, the approximate solution in the 
form of eqs. (60) and (62) contains only the first har-
monic term. Fortunately, it can be modified by the third 
step or incremental method of the PIS. Now, the solution 
represented in eqs. (60) and (62) is regarded as the initial 
guess. The PIS solution is assumed to be  

 0

1 1
0

( ) ( cos sin ),

( ) ( cos sin ),

m

j j
j

m

j j
j

j j

j jτ

ϕ ϕ ϕ

ϕ ϕ ϕ

=

=

= +

= +

∑

∑

Z a b

Z a b
 (63) 

where 
x
y

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
Z , 

1

2
,

j
j

j

a

a

⎧ ⎫
,⎪ ⎪

⎨ ⎬
⎪ ⎪

,⎩ ⎭

=a  
1

2

j
j

j

b

b

⎧ ⎫
,⎪ ⎪

⎨ ⎬
⎪ ⎪

,⎩ ⎭

=b  and ( )Φ ϕ  

and ϕ1 are expressed in eqs. (29) and (30), respectively. 
One can compute the solution by the third step of the 
PIS starting from τc as shown in the previous section, as 
shown in Figures 3, 4 and 5. 

 
Figure 3  Comparison between the approximate solution eq. (60) with eq. 
(62) (thin), PIS solution (thick) and the numerical simulation (crossing 
symbol) in Max|x| vs. τ for the periodic solution of eq. (55), where w=0.1, 
solid line denotes stable periodic solution and dashed line denotes unstable 
periodic solution.  

 
Figure 4  Comparison between the approximate solution eq. (60) with 
eq. (62) (thin), PIS solution (thick) and the numerical simulation (crossing 
symbol) in phase plane for the periodic solution of eq. (55), where w=0.1, 
τc=0.0053509, ω =1093.5428. (a) τ =0.0052; (b) τ =0.004. 

5  Synchronization solution in a network 
of three identical neurons  

For our final example, we consider a network of three 
identical electronic (artificial) neurons interconnected 
through nearest neighborhoods. Dynamics of the system 
under consideration is governed by the Hopfield’s model 
with delay, given by[25]  

 1 1 1, 2, 3,( ) ( ) ( ) ,x f x f x f xx τ τ τα β ⎡ ⎤= − + + +⎣ ⎦  
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2 2 2, 1, 3,

3 3 3, 1, 2,

( ) ( ) ( ) ,

( ) ( ) ( ) ,

x f x f x f xx

x f x f x f xx

τ τ τ

τ τ τ

α β

α β

⎡ ⎤= − + + +⎣ ⎦
⎡ ⎤= − + + +⎣ ⎦

 (64) 

where ( )i ix x tτ τ, = −  ( 1 2 3i = , , ) ,  ( ) tanh( )f x x= =  
x x

x x
e e
e e

−

−

−
+

, α and β measure respectively the coupled 

strengths of self-connection and neighborhood- interac- 
tion, and τ is time delay due to the finite switching 
speed of amplifiers. Using the CMR, Wu et al.[25] ap-
proximately obtained a synchronization solution of  
eq. (64), which bifurcates from the trivial solution by a 

Hopf bifurcation at 
1

2

cos (1 2 )

( 2 ) 1
c

α βτ τ
α α

−π − / | + |
= =

+ −

 when 

( ) Dα β, ∈  and 0,β < where {( , ) : 1,D α β α β= − < −  
2 1}α β+ < − . Following the PIS in section 2, we can 

obtain the synchronization solution of eq. (64) and 
compare it with that from the CMR and the numerical 
simulation, as shown in Figure 5.  

 
Figure 5  Synchronization solution derived from Hopf bifurcation in 
Max(x) vs. τ for eq. (64) when α = −2 and β = −0.5, where thin solid line 
denotes perturbation solution, dot-dashed line CMR solution from  
ref. [25], thick solid line the PIS solution and crossing symbol the nu-
merical simulation. 

6  Conclusions  

A semi-analytical/numerical method, called perturba-
tion-incremental scheme (PIS), has been developed to  

investigate the periodic solution derived from Hopf bi-
furcation due to time delay in a system of first-order 
delayed differential equations by three steps. The main 
attention is focused on representing the continuation of 
the bifurcated periodic solutions in a closed form with 
the quantitatively high accuracy. Three delayed systems 
are introduced as illustrative examples. The validity of 
the results is shown by their consistency with the nu-
merical simulation.  

The results obtained in this paper suggest that the PIS 
can be considered as an effective approach to investigate 
delayed differential equations (DDEs) when the time 
delay is the bifurcation parameter. Firstly, the periodic 
solution obtained from the perturbation step of the PIS 
has higher accuracy than that from both the method of 
multiple scales and the center manifold reduction for 
values of the parameter close to the Hopf bifurcation 
point. Therefore, the perturbation step can provide an 
appropriate initial guess to accelerate the convergence to 
the solution when the PIS is applied. Secondly, the PIS 
not only inherits the advantages of the method of multi-
ple scales (MMS), but also overcomes the disadvantage 
of the IHB method. It has a very clear procedure such 
that some symbolic algebraic packages, such as 
MATHEMATICA, can easily be programmed to com-
pute the solution. Thirdly, the delayed differential equa-
tions can also be reduced on center manifolds by using 
the PIS rather than the CMR. Using the PIS can avoid 
the tedious computation often encountered in the CMR. 
Thus, the PIS can easily be extended to the study of 
high-codimension DDEs[26]. Finally, the periodic solu-
tion arising from a Hopf bifurcation due to the time de-
lay can be calculated in any desired accuracy even for 
values of the parameter far away from the Hopf bifurca-
tion point by using the PIS. 
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