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Abstract To improve soil carbon sequestration capacity, the full soil carbon cycle process needs to be understood and
quantified. It is essential to evaluate whether water erosion acts as a net source or sink of atmospheric CO2 at the basin scale,
which encompasses the entire hydrological process. This study introduced an approach that combined a spatially distributed
sediment delivery model and biogeochemical model to estimate the lateral and vertical carbon fluxes by water erosion at the
basin scale. Applying this coupling model to the Dongting Lake Basin, the results showed that the annual average amount of soil
erosion during 1980–2020 was 1.33×108 t, displaying a decreasing trend followed by a slight increase. Only 12% of the soil
organic carbon displacement was ultimately lost in the riverine systems, and the rest was deposited downhill within the basin.
The average lateral soil organic carbon loss induced by erosion was 8.86×1011 g C in 1980 and 1.50×1011 g C in 2020, with a
decline rate of 83%. A net land sink for atmospheric CO2 of 5.54×10

11 g C a−1 occurred during erosion, primarily through
sediment burial and dynamic replacement. However, ecological restoration projects and tillage practice policies are still sig-
nificant in reducing erosion, which could improve the capacity of the carbon sink for recovery beyond the rate of horizontal
carbon removal. Moreover, our model enables the spatial explicit simulation of erosion-induced carbon fluxes using cost-
effective and easily accessible input data across large spatial scales and long timeframes. Consequently, it offers a valuable tool
for predicting the interactions between carbon dynamics, land use changes, and future climate.
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1. Introduction

Enhancing the ability of terrestrial ecosystems to act as
carbon sinks is a crucial strategy for slowing down global
climate change (Friedlingstein et al., 2022). Traditionally, the
estimation of terrestrial ecosystem carbon at the global scale

has relied on the residual term of the carbon balance equation
(Schimel et al., 2001; Wang J et al., 2020). However, this
method is unsuitable for the region scale due to the rapid
mixing of CO2, which cannot be accurately monitored (Piao
et al., 2022). Hence, it is essential to quantify each compo-
nent of the terrestrial carbon cycle and simulate its spatial
and temporal distribution. Since the 1990s, extensive re-
search has been carried out to estimate terrestrial carbon
sinks at the regional scale, with ecosystem process models
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being the most popular and fastest-developing type of
method for carbon sink assessment in terrestrial ecosystems
(Sitch et al., 2008; Baatz et al., 2021). However, these
models tend to make a lot of abstractions and simplifications
of ecosystem processes for the sake of model efficiency,
resulting in significant uncertainty in the simulation results
(Doetterl et al., 2016; Li et al., 2022).
Soil is the largest organic carbon pool and a critical

component of terrestrial ecosystems (Lal, 2004). However,
there have been great differences in estimating soil organic
carbon (SOC) storage over the past few decades. Global
SOC storages in 1 m depth were estimated to range from 504
to 3400 Pg C, with a median of 1500 Pg C (Scharlemann et
al., 2014; Tifafi et al., 2018). Water erosion is the most active
process controlling soil formation and evolution, which can
affect the redistribution of carbon between terrestrial, aqua-
tic, and atmospheric ecosystems (Borrelli et al., 2017).
Erosion-induced organic carbon dynamic process should not
be missing in terrestrial carbon cycle simulations. Soil ero-
sion can affect SOC through lateral replacement and vertical
turnover (Doetterl et al., 2016). On the lateral way, erosion
redistributes soil particles and organic matter, leading to
deposits in the lower parts of the landscape or eventually
delivered to aquatic ecosystems (Regnier et al., 2022). On
the vertical way, the exposure of deep SOC due to erosion of
surface soil and the introduction of labile carbon sources can
stimulate the decomposition of SOC at eroded sites (Fon-
taine et al., 2007; de Nijs and Cammeraat, 2020). In addition,
most research agrees that erosion reduces plant productivity
by weakening the capacity of soil to hold water and nutrients
with feedback to the soil carbon balance (Quinton et al.,
2010; Kirkels et al., 2014). During sediment transport, the
breakdown of aggregates can enhance soil mineralization,
while selective transport and deposition increase SOC burial.
At deposited sites, efficiently buried SOC establishes large
carbon sinks, but the rate and nature of sedimentation, en-
vironmental factors, and the time since burial might influ-
ence the amount and stability of buried SOC (van Oost et al.,
2012; Chaopricha and Marín-Spiotta, 2014).
Although the interactions between SOC dynamics and

erosion are still not completely unraveled (Stallard, 1998;
Lal, 2003; van Oost et al., 2007; Lal and Pimentel, 2008),
various researchers have attempted to model this complex
process. The CENTURY model was one of the earliest to
account for organic matter dynamics in soil erosion (Parton
et al., 1987). However, it only addressed SOC turnover
without considering redistribution. Other models, like the
Erosion Deposition Carbon Model (EDCM) and In-
troductory Carbon Balance Model (ICBM), were also de-
veloped based on flat terrain assumptions (Andrén and
Kätterer, 1997; Liu et al., 2003). Some studies have at-
tempted to integrate soil turnover models with soil erosion
models. van Oost et al. (2005) developed the SPEROS-C

model, which incorporated ICBM into the spatial re-
presentation of soil redistribution processes (SPEROS). This
model was widely used at the field and small basin scale and
has recently been modified to adapt it for regional-scale
applications (Nadeu et al., 2015; Yue et al., 2016). Borrelli et
al. (2016) coupled the Revised Universal Soil Loss Equation
(RUSLE) with the CENTURY model to quantify the SOC
storage response to water erosion. Zhang et al. (2022) de-
veloped the ORCHIDEE-Clateral model, which added lateral
carbon transport to the ORCHIDEE model and led to a 4.5%
increase in simulated annual net terrestrial carbon uptake
over Europe. However, these models still have significant
uncertainties due to (i) the generalization of model para-
meters, such as sediment delivery ratio (SDR) and sediment
transport coefficient (KTC) (Yue et al., 2016; Borrelli et al.,
2018), (ii) the non-connected grids, which simplified the
reception or transmission process of SOC from one gird to
another (Teng et al., 2022), and (iii) missing process simu-
lation (Doetterl et al., 2016). A model is needed to ensure
data availability on a larger scale while reducing assumptions
on soil erosion and deposition dynamics.
Due to an insufficient transfer of knowledge regarding soil

erosion and carbon dynamics from smaller to larger scales,
existing models at a large temporal and spatial scale present
conflicting views on whether the net impact of erosion on
carbon cycling acts as a carbon source or sink. To investigate
the role of erosion in the carbon cycle, we simulate the
spatial characteristics of erosion-induced SOC loss in the
Dongting Lake basin from 1980 to 2020. Estimating erosion-
induced soil carbon processes at a large basin scale can in-
tegrate intricate land use patterns and hydrological processes
encompassed within the basin. It could not only link terres-
trial and aquatic realms but also facilitate incorporation into
ecosystem process models. Our hypothesis is that soil ero-
sion can induce a net terrestrial sink for atmospheric CO2 at
the basin scale. To test this hypothesis, we estimated net soil
erosion and deposition rates by combining the Chinese soil
loss equation (CSLE) with the transport-limited sediment
delivery (TLSD) model. The lateral loss of SOC detached by
water erosion was calculated on its founders. The vertical
CO2 fluxes during the erosion process were also quantified
by a modified ICBM model. This coupling model holds the
potential to quantify the essential role of human activities,
including ecological projects and economic construction, to
estimate the size of regional land carbon sinks and mitigate
climate change.

2. Model development and evaluation

2.1 Study area

The Dongting Lake Basin is located in the center of the
Yangtze River basin (24.64°N–30.41°N, 107.28°E–114.25°
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E), covering approximately 2.67×105 km2 (Figure 1). The
Dongting Lake receives water predominantly from the
Yangtze River and four upstream tributaries (Xiang River, Zi
River, Yuan River, and Li River) and discharges into the
Yangtze River through a northern outlet. Correspondingly,
the basin can be divided into four river sub-basins and the
Dongting Lake Plain. The Dongting Lake basin is char-
acterized by a subtropical monsoon climate with a mean
annual temperature of 16–19°C and a mean annual pre-
cipitation of 1200–1400 mm. The basin has complex topo-
graphy sloping from the south to the center and northeast
with hills, low mountainous, and plains. According to the
Chinese Soil Taxonomy, soil in the Dongting Lake Basin can
be classified into six orders, namely Anthrosols, Cambosols,
Argosols, Ferrosols, Primosols, and Gleysols, more than
one-third of which are Ferrosols. The predominant land use
types in the basin are forest (hardwoods, conifers, and
mixed) and farmland (rice, vegetation, and rapeseed). Due to
its strong spatial heterogeneity of climate, terrain, soil, and
vegetation, SOC storage and erosion intensity exhibit sig-
nificant spatial variability, resulting in different SOC dy-
namic processes in different regions. Over the past 20 years,
large-scale ecological restoration projects have successfully
reduced soil erosion intensity in most areas of the basin
(Wang et al., 2021; Wang L et al., 2022). Conversely, ex-
treme climatic events and cropland and cash forest con-
struction have led to increased soil erosion intensity in a few
areas.

2.2 Soil loss and sediment transfer

The CSLE and TLSD models were selected to model the
three sub-processes of the soil erosion process, namely soil
loss, sediment transport, and sediment deposition (Jain and
Das, 2009; Lin et al., 2020). Based on USLE, the CSLE
model was proposed to reflect the terrain features and soil
conservation measures in China (Duan et al., 2020). The
TLSD model adopted a grid-based procedure for the dis-
cretization of the basin. The eroded sediment from each cell
follows a specific route formed by the topography and finally
sinks at the outlet of the basin. This method is suitable for
complex landscapes with gullies and hills, like the Dongting
Lake basin, to estimate net fluxes of erosion and deposition
(Verstraeten et al., 2007). The simulation equations of the
three sub-processes of the soil erosion process are as follows.
(i) Sub-process 1. Soil erosion
The soil erosion is estimated by the CSLE (eq. (1)),

R K L S B E TSE = × × × × × × , (1)2D

where SE is the soil erosion modulus (t ha−1a−1); R is the
rainfall intensity factor (MJ mm ha−1 h−1 a−1); K is the soil
erodibility factor (t ha h ha−1 MJ−1 mm−1); L and S2D are the
two-dimensional slope length and steepness factors, re-

spectively; B, E, and T are the dimensionless factors of
biomass-control, engineering-control, and tillage practices,
respectively. The estimation method of parameterization of
the CSLE model can be referred to Wang L et al. (2020)
(Appendix S1, https://link.springer.com/). We used the
Mann-Kendall (MK) test to analyze annual soil erosion
trends from 1980 to 2020. The MK test is non-parametric,
meaning it does not assume a specific distribution for the
observed data and is particularly suitable for non-normally
distributed data.
(ii) Sub-process 2. Sediment transport
The Sediment transport capacity was calculated by the

equation proposed by Verstraeten et al. (2007).

K R K A STC = × × × × , (2)TC s
1.44

3D
1.44

where TC is the sediment transport capacity (t ha−1a−1); KTC

is the transport capacity coefficient depending on land use
and cover types (dimensionless); As is the specific catchment
area contributed by the upslope per unit contour length (hm2

hm−1); S3D is the local slope for three-dimensional landscapes
(hm hm−1). The spatial pattern of KTC was estimated by the
exponential function of NDVI (eq. (3)) (Jain and Das, 2009),

K = × exp NDVI
1 NDVI , (3)TC

where β is the calibration coefficient, which is used to adjust
the error between the observed and predicted sediment yield.
(iii) Sub-process 3. Sediment deposition

( )T T= min SE + , TC , (4)out in

T TSD = SE + , (5)in out

Figure 1 Map of the study shows the terrain, river system, and sediment
monitoring station.
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where Tin is the sediment inflow in the current cell from
upstream cells; Tout is the sediment outflow from the current
cell; SD is sediment deposition modulus in the current cell
(t ha−1a−1). The net erosion map is calculated as the differ-
ence between the soil erosion modulus and deposition
modulus for each grid cell. Positive values on the net erosion
map are net erosion modulus (netSE, t ha−1a−1), whereas
negative values represent net deposition modulus
(netSD, t ha−1a−1).

2.3 Lateral and vertical carbon fluxes

Yue et al. (2016) proposed a modified model to assess ero-
sion-induced SOC fluxes at a large scale based on the study
of van Oost et al. (2007) and successfully applied it in China.
However, this model used the SDR to model sediment sup-
ply, which did not consider the spatial variability of sediment
delivery and deposition. Therefore, the gird cells simulated
carbon fluxes were actually non-connected units, which
could not reflect the inflow and outflow of SOC from one to
another. Here, we used the TLSD model to further modify
this model to predict SOC delivery to bridge the gap (Figure
2 and Figure S1).
(i) Lateral carbon fluxes (FL)

F A= SOCC × (SE SD) × , (6)L top

where FL is the total amount of lateral carbon induced by
erosion (kg a−1); SOCCtop is the SOC content (g kg−1) in the
topsoil, which dominates erosion; A is the current cell area
(ha).
(ii) Vertical carbon fluxes (FV)

F F F F= + + , (7)V V-E V-T V-D

where FV is the total amount of vertical carbon induced by
erosion (g a−1); FV-E, FV-T, and FV-D are the components of FV
during erosion, transport, and deposition, respectively.

F C C A= ( ) × , (8)V-E e

where C is carbon fluxes without the impact of erosion (g
m−2 a−1); Ce is carbon fluxes with the impact of erosion (g
m−2 a−1). The differential equations describing the carbon
flux dynamics are:

C
t I K Cd

d = × , (9)O

C
t I K K Cd

d = ( + ) × + SOCC × netSE, (10)e
O E e bottom

where I is the carbon input to the soil, which was assumed to
be equal to the net primary production (NPP, g m−2 a−1); KO is
the turnover rate of SOC with respect to decomposition
without erosion; KE is the erosion rate of SOC, which can be
calculated by dividing the ratio of soil erosion rate by the
depth of carbon in top soil layer; SOCCbottom is the SOC
content (g kg−1) at the bottom of the top soil layer.
FV-T is the FV during sediment transport, which was as-

sumed to be 63% of the in-situ organic carbon decomposi-
tion, referring to Yue et al. (2016) and Guenet et al. (2013)

F K A= 0.63 × SOCC × netSE × × , (11)V-T top O

F K A= SOCC × netSD × × , (12)V-D top O-s

where KO-s is the turnover rate of the subsoil layer.

2.4 Model parameterization and calibration

The model was implemented using ArcGIS10.6 and the
Terrain Analysis Using Digital Elevation Models (TauDEM)
on the basis of the remote sensing image of the Dongting
Lake Basin. Table 1 summarizes the input data required for
the model and its description and source. Since the hydro-
logic information driving sediment transportation is calcu-
lated based on the digital elevation model (DEM), all space
parameters were resampled to the spatial resolution of DEM

Figure 2 Schematic showing discretized grid cells and all soil organic carbon fluxes in the basin.

2022 Wang L, et al. Sci China Earth Sci June (2024) Vol.67 No.6



(30 m) through the nearest neighbor method (discrete data,
such as land use) and the bilinear interpolation method
(continuous data, such as soil respiration).
In this study, the observed annual sediment discharges,

which were collected from the Xiangtan hydrological station
(Xiang River Basin), Taojiang hydrological station (Zi River
Basin), Taoyuan hydrological station (Yuan River Basin),
and Shimen hydrological station (Li River Basin) from1980
to 2020, were used to calibrate and validation the parameter β
within the CSLE-TLSD model. The Nash coefficient was
calculated to evaluate the accuracy of the model (Nash and
Sutcliffe, 1970),

( )

O P

O O
NSE = 1

( )
, (13)i

n
i i

i

n
i

=1

2

=1

2

where n is the observation frequency of sediment yield; Oi

and Pi are observed and estimated sediment yields, respec-
tively; O is an average value of observed sediment yields.
NSE∈[−∞, 1]. The efficiency of the model emulation in-
creases as NSE moves more in that direction.

3. Results

3.1 Model calibration

To calibrate the parameter β and assess model performance,
simulation results were compared with annual sediment yield
data observed at hydrological stations in four sub-basins
from 1980 to 2020. The observation data from Xiangtan and
Taoyuan stations were randomly selected to calibrate para-

meters, while the observation data from Taojiang and Shi-
men stations were used for model evaluation. The model was
looped 10 times with the β parameter, which was set between
0.05 and 0.15 with an interval of 0.01, to select the best
model with the highest NSE. When the calibration coeffi-
cient β is 0.1, the NSE of the model was the highest at 0.38.
Under this condition, the simulated and observed annual
sediment yields at the validation stations agreed well
(NSE=0.36). While the observed and simulated values of
Yuan River Basin and Zi River Basin displayed good linear
fitting (R2>0.6), those of Li River Basin and Xiang River
Basin showed underfitting (Figure 3). This is likely due to
river management practices, particularly reservoir trapping,
leading to lateral sediment flows from land to rivers that are
not strictly consistent with the observation data from hy-
drological stations. In the Xiang River basin, there are as
many as 51 dams (Wang X et al., 2022), which is sub-
stantially higher than other sub-basins, thereby reducing the
accuracy of verification using the observation data of the
hydrology station. In addition, a heavy rainstorm occurred in
the Li River Basin in 1980, resulting in the highest sediment
yield over the past 50 years. However, the CSLE model
struggled to identify this anomaly, leading to the reduced
prediction accuracy of the Li River Basin. Although the
model may not exhibit high predictive accuracy for certain
sub-basins or specific years, it still can reflect spatiotemporal
heterogeneity of soil erosion in the whole basin.

3.2 Soil erosion

The annual average soil erosion modulus during 1980–2020

Table 1 Summary of input data required for the modela)

Input data Spatial resolution Temporal resolution Source year Data source Equation

MAT, MAP P D: daily 1980–2020 120 meteorological stations (1), (2)

DEM G: 30 m S 2000–2009 ASTER GDEM. (1), (2)

LUC G: 30 m D: yearly 1980–2020
China Multi-Period Land Use Land Cover
Remote Sensing Monitoring Data Set (Xu et

al., 2018)
(1)

K G: 30 m S 2018 Grid Data on Soil Erodibility in China (Liu et
al., 2018) (1), (2)

SOCC P S: 2 years 1980s, 2010s The three-dimensional spatial distribution of
SOC (Appendix S2) (6), (8)–(12)

NDVI G: 250m D: yearly or 16 days 1980–2020 Global GIMMS NDVI3g v1 dataset and
MOD13Q1 data (1), (3)

NPP G: 0.0727° D: yearly 1981–2019 The dataset of simulated daily net primary
productivity over the globe. (9), (10)

Rs G: 1000 m S 2020 The global annual mean soil respiration
product (Huang et al., 2020). (9), (10)

a) MAT, mean annual temperature; MAP, mean annual precipitation; LUC, land use and land cover; K, soil erodibility factor; SOCC, soil organic carbon
content; NDVI, normalized difference vegetation index; NPP, net primary production; Rs, soil respiration; Spatial resolution: raster (G), station or profile (P);
Temporal resolution: static (S), interval (D)
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in Dongting Lake Basin was 5.09 t ha−1 a−1 (Figure 4a).
Areas classified as having no apparent erosion (Soil erosion
modulus<1 t ha−1 a−1) were about 65% of the total basin area.
The areas classified as having erosion in Dongting Lake
Plain were only 16% of the sub-basin area. The erosion
modulus showed an east-west oriented increasing gradient.
The land with exceeding the generic tolerable soil loss (Soil
erosion modulus >10 t ha−1 a−1) was distributed in north-
western, western, and southern hilly areas of the basin.
The soil erosion amount in Dongting Lake Basin showed

an overall decreasing trend during 1980–2020, with the
highest in 1980 at 2.00×108 t a−1 and the lowest in 2005 at
0.97×108 t a−1 (Figure 4b). It was noteworthy that the small
increase in erosion amount during 2005–2015 was not ac-
companied by an increase in apparently eroded areas. It in-
dicated a trend of further deterioration in areas where erosion
was already severe. From the MK test (Figure 4c), a spatially
heterogeneous mixture of positive and negative change
trends of soil erosion modulus was found, and the primary
trend was negative. Areas suffering significant erosion in-
crement were mainly found in regions around Dongting Lake
or cities with rapid economic development.
Eroded districts (SE>SD) accounted for 55% of the total

basin area, while 24% of land was a depositional district
(SE<SD). The positive value of the difference between po-
tential erosion and deposition is the net erosion, which re-
presents the actual amount of soil leaving the landscape and
entering the rivers. The sum of the net erosion of the basin is
the sediment yield. The average sediment yield predicted by
the model for Dongting Lake Basin totals 1.56×107 t a−1

during 40 years. The SDR was about 0.12, which is in good
agreement with the estimated results of Li et al. (1995).

3.3 Erosion-induced lateral carbon fluxes

This study investigates the erosion-induced FL in Dongting
Lake during the last 40 years (Table 2 andTable S1). The FL
is indicative of both the net loss of organic carbon into the
riverine system (FL>0) and the net redeposition of organic
carbon across the landscape (FL<0). Results indicated that
8.86×1011 g C would be lost in the riverine system in 1980,
accounting for 17.6% of the SOC displacement. While the
loss had fallen to 1.50×1011 g C in 2020, accounting for only
4.5% of the SOC displacement. Previous studies also re-
ported that 50%–95% of the eroded material would finally
deposit downhill (Stallard, 1998; Ran et al., 2014; Panagos et
al., 2015; Dialynas et al., 2016). The average FL of the Li
River Basin and the Yuan River Basin, both of which had
initial intensive erosion and high SOC content, were much
higher than that of other sub-basins (Figure S2a and S2b).
The lowest average FL of 0.63 g C m−2 a−1 was observed in
the Dongting Lake Plain.
From 1980 to 2020, the total carbon flowing into the river

decreased by 7.35×1011 g C in Dongting Lake Basin. Among
the sub-basins, the total amount of SOC loss decreased the
most in the Yuan River Basin, while the decline rate of SOC
loss was highest in the Li River Basin. The total amount of
net erosion decreased and SOC content increased in these
basins. The areas with reduced FL accounted for 60% of the
entire basin area, while the areas with increased FL ac-
counted for 20% (Figure S3). Within the regions where FL
increased, 68% were depositional districts. The reduction in
FL within these districts was primarily attributed to a de-
crease in netSD, while any impact resulting from changes in
SOC was not readily apparent. Conversely, within erosion
areas, the trends observed for netSE and SOC changes were
predominantly opposite. Combining these two factors ulti-
mately resulted in an overall increase in FL.
Regarding all land use types in the Dongting Lake Basin

(Figure 5), grassland experienced the largest erosion-induced
FL (average FL of 8.70 g C m−2, and total loss of
1.30×1011 g), followed by cropland (average FL of
1.98 g C m−2, and total loss of 1.47×1011 g) and forest
(average FL of 1.53 g C m−2, and total loss of 2.42×1011 g).
Except for the unutilized land, the deposition area proportion
of other land use types increased from 1980 to 2020, espe-
cially forest and grassland. The erosion area proportion of
construction land increased significantly, while other land
used types decreased. Only the FL of construction land ex-
hibited an upward trend, while the corresponding expansion
of the construction land area resulted in a simultaneous in-
crease in organic carbon discharge into rivers. Specifically,
over 40 years, the organic carbon input from construction

Figure 3 Performance of the CSLE-TLSD model predicting sediment
yield in four sub-basins when β=0.1. The simulated and observed sediment
yields of the Li River Basin were represented on the top and right axes,
while the remaining sub-basins were represented on the bottom and left
axes.
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land amplified by 2.76×108 g.

3.4 Erosion-induced vertical carbon fluxes

Soil erosion consists of three phases: detachment, transport,
and deposition. Hence, this study conducted a simulation of
the impacts of erosion on land-atmosphere CO2 fluxes in

three parts, namely, eroded district, depositional district, and
transport process (Table 3).
The eroded carbon is replaced through photosynthetic

processes to achieve a new carbon cycle balance and finally a
net atmospheric carbon sink. Harden et al. (1999) first coined
this phenomenon as ‘dynamic replacement’. To estimate
erosional loss and concomitant replacement of organic car-

Table 2 The erosion-induced lateral carbon fluxes for each sub-basin from 1980 to 2020

Sub-basin
Mean FL (g C m−2) Total loss (1010 g C)

Decline rate
1980 2020 2020–1980 1980 2020 2020–1980

Dongting Lake Plain 0.88 0.38 −0.51 2.56 1.04 −1.52 59.5%

Xiang River Basin 1.47 0.36 −1.11 13.59 3.27 −10.32 76.0%

Zi River Basin 1.91 0.5 −1.41 4.86 1.27 −3.59 73.8%

Yuan River Basin 6.01 0.85 −5.16 53.64 7.53 −46.12 86.0%

Li River Basin 7.86 1.09 −6.77 13.9 1.91 −11.99 86.3%

Dongting Lake Basin 3.49 0.6 −2.89 88.55 15.01 −73.54 83.0%

Figure 4 Estimated annual average soil loss and deposition rate for Dongting Lake Basin based on CSLE-TLSD model. (a) Annual average soil erosion
modulus; (b) change of area proportion of soil erosion class and soil erosion amount during 1980–2020; (c) spatial pattern of MK test significance of soil
erosion modulus; (d) annual average net soil erosion modulus and deposition modulus.
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bon at eroded district, a model with a zero-order carbon
accumulation and first-order carbon loss was constructed and
modified based on the research of Yue et al. (2016), van Oost
et al. (2007), and Stallard (1998). This method simulates the
processes of SOC composition/decomposition and lateral
movement, respectively, based on the assumption that ero-
sion did not impact the original CO2 exchange process. The
difference in carbon storage with or without the impact of
erosion on CO2 emission/sequestration under the two con-
ditions is considered as the erosion-induced CO2 flux in the
eroded district. We modified this method by excluding
simple SDR obtained from regression analysis and replacing
it with the net erosion and deposition modulus. The results
showed that the CO2 uptake in the eroded district was
9.43×1011 g C in 1980 and 3.33×1011 g C in 2020, decreasing
by 64.71%. Spatial distributions of regions with high FL and
FV were similar (Figure 6 and Figure S4). Severely eroded
areas in the Yuan River Basin significantly contributed to the
recovery CO2 sink. Table 3 shows that the erosion-induced
carbon sink contributed by Li River Basin is two times that of
Zi River Basin, although the erosion areas of these two sub-

basins are similar. This discovery aligned with the view of
Stewart et al. (2007) that soils further from carbon saturation
might experience the highest level of efficiency in SOC se-
questration.
During sediment transport, the breakdown of aggregates

leads to an increase in organic carbon mineralization. This is
because the intra-aggregate pores are the preferred sites of
sorption for SOC. Hence, this easily mineralizable carbon
gets quickly released into the atmosphere upon the break-
down of aggregates (Ananyeva et al., 2013). Yue et al. (2016)
relied on the microcosm experiment conducted by Guenet et
al. (2013) and utilized 63% relative to the fluxes of the re-
ference source soil to represent the CO2 flux induced by
erosion during sediment transport. We adopted this method
and found that the flux component in the transport process
resulted in a CO2 source of 9.83×1010 g C in 1980 and
1.26×1010 g C in 2020, indicating a decline of 8.57×1010 g C.
However, Doetterl et al. (2016) have pointed out that in-
creased mineralization differs significantly during the
transport process, ranging from 0% to 100% of the in-situ
organic carbon decomposition, which might be influenced by
rain intensity and land cover. Given the limited theoretical
understanding and data availability, a relatively median and
widely used coefficient of 0.63 was used to estimate the CO2

flux during sediment transport. The results only reflect the
general change trend, and their quantity may not be com-
pletely accurate. Despite this, the CO2 release induced by
erosion during the transport process is relatively small
compared to the CO2 uptake caused by erosion in the eroded
district. Therefore, the uncertainty associated with this
component would not significantly affect the overall results
of vertical flux.
The decomposition of newly buried carbon-rich soil and

the resulting emission of additional CO2 into the atmosphere
within the depositional district can diminish the effectiveness
of the soil carbon sink (Hoffmann et al., 2013). Assuming
minimal changes to the deposited soil during transport, it can
have a similar concentration as the previous topsoil. Gen-
erally, the subsoil layer has a slower carbon turnover rate
compared to the topsoil (Schmidt et al., 2011). The buried
soil with an equivalent amount as the net deposited soil

Figure 5 The erosion-induced lateral carbon fluxes in different land use
types and its area proportion of eroded districts (potential erosion amount >
potential deposition amount) and deposited districts (potential erosion
amount < potential deposition amount).

Table 3 The erosion-induced vertical carbon fluxes for each sub-basin from 1980 to 2020

Sub-basins
FV-E (10

10 g) FV-T (10
9 g) FV-D (109 g) FV (1010 g)

1980 2020 1980 2020 1980 2020 1980 2020 2020–1980

Dongting Lake Plain 2.23 1.74 3.43 0.80 1.71 0.36 1.72 1.63 −0.09

Xiang River Basin 16.67 6.48 18.14 3.24 9.62 1.68 13.89 5.98 −7.91

Zi River Basin 7.20 2.55 5.82 1.06 3.08 0.51 6.31 2.40 −3.92

Yuan River Basin 51.76 17.99 56.94 5.85 29.48 2.88 43.12 17.11 −26.00

Li River Basin 16.41 4.51 13.97 1.59 7.51 0.84 14.27 4.27 −10.00

Dongting Lake Basin 94.28 33.27 98.29 12.55 51.40 6.27 79.31 31.39 −47.92
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mineralized at the turnover rate of deep SOC is the newly
added FV in the depositional district. In 1980, this flux
component was 2.87 g m−2, while it decreased to 0.2 g m−2

over four decades, indicating a decline of 4.51×1010 g C.
Although the area of the CO2 source decreased and increased
due to erosion almost equally in the depositional district, the
decrease rate was 30 times faster than the increase rate.
However, more easily decomposable carbon fractions of
buried soil might significantly degrade during sediment
transport, deposition, and burial in reality. The FVD in this
study might be overestimated. Our hypothesis is acceptable
for short timescales, but the rate of soil burial, the amount
and nature of mobilized carbon, and environmental condi-
tions jointly influence the amount of buried carbon as time
passes (Doetterl et al., 2016). When the time scale is ex-
tended to the centennial scale, environmental conditions
become the dominant factor (van Oost et al., 2012).

4. Discussion

4.1 Soil organic carbon dynamics in eroding land-
scapes

This study examines the carbon loss caused by erosion using
an integrated sediment delivery-biogeochemical model that
integrates various datasets. The annual average lateral SOC
loss modulus at the topsoil was evaluated as 2.05 g C m−2.
Yue et al. (2016) reported it was 7.44 g C m−2 in central
China and 24.51 g C m−2 in Southwest China. These two
regions contained part of the Dongting Lake Basin and had
higher lateral SOC loss induced by erosion than our study.

This might be because the different sources of SOC maps
were used to model carbon erosion. Yue et al. (2016) used the
Global Soil Dataset with a resolution of 1 km, which might
underestimate the actual values and ignore the interannual
variation of SOC. Moreover, the SDRs, which were used in
the erosion model of Yue et al. (2016), increased the un-
certainty of the results. Yang et al. (2020) estimated that the
redistribution rate of SOC caused by erosion was 2.1 g C m−2

in the midstream of the Yangtze River Basin from 1992 to
2013, which agreed well with our study.
The annual average erosion-induced vertical SOC sink

modulus at the topsoil was evaluated as 5.54×1010 g in this
study. Dialynas et al. (2016) conducted a study on the Ma-
meyes and Icacos basins and reported that the basin-in-
tegrated carbon exchange with the atmosphere ranged from
−18.3–+21.5 g m−2 and −14.9–+17.1 g m−2 (−, carbon sour-
ces; +, carbon sinks), respectively. This work stressed the
role of erosion in the carbon cycle depending on the forest
type and land use. Izaurralde et al. (2007) compared the soil
carbon balance in three basins with different management
practices and found that the conventional till continuous
basin acted as a carbon source for atmospheric CO2, while
the no-till system basins were sinks of carbon to the atmo-
sphere. In the studies above, different scenarios were set up,
which were directly related to anthropogenic disturbances,
such as agricultural practices. In this study, the organic car-
bon lost to riverine systems exceeded the recovery CO2 sink
in 1980, but this trend was reversed by 2020. Yue et al.
(2016) also confirmed this rising trend of erosion-induced
carbon sink in the Southeast region of China. It implied an
increasing trend of soil carbon retention capacity in the

Figure 6 The spatial pattern of erosion-induced vertical carbon fluxes in the eroded district (FV-E) and depositional district (FV-D). (a) 1980; (b) 2020; (c) its
change during 40 years.
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Dongting Lake Basin during the 40 years.
It is widely accepted that the allocation and management of

land use determines whether erosion will act as a source or
sink of atmospheric carbon (Lal, 2004). Over the past
40 years, the Grain for Green Project has been one of the most
critical ecological restoration projects in the Dongting Lake
Basin. This project has demonstrated substantial synergistic
benefits in carbon sequestration by enhancing plant growth,
carbon input to soils, and reducing lateral carbon replacement
and decomposition during sediment transport (Zeng et al.,
2020; Wang L et al., 2022). Without land use type change,
most land management practices with less anthropogenic
disturbance can also improve SOC accumulation. Forest and
cultivated land are the primary land use types where man-
agement policies are implemented in Dongting Lake Basin.
The adoption of no-tillage farming practices can effectively
reduce SOC redistribution and surficial SOC loss, thereby
reducing the impact of erosion on the carbon cycle (Izaurralde
et al., 2007; Amelung et al., 2020; Kwang et al., 2023). SOC
storage in forests, on the other hand, is more susceptible to
CO2 emissions from sources such as forest fires, biomass
burning, and rotational farming, and the reduction of organic
matter input due to removing litter, harvesting, and applying
lime fertilizer (Ramesh et al., 2019). These examples col-
lectively highlight the negative impact of anthropogenic
disturbance on SOC storage. In the short term, implementing
hillside closure for erosion control can enhance soil carbon
storage. However, it is essential to note that undisturbed
mature forests eventually reach a state of relative carbon
balance (fixation rate=decomposition rate), limiting the long-
term sustainability of this effect (Jiang et al., 2020). There-
fore, identifying appropriate land use strategies and effective
management practices is paramount in mitigating climate
change through enhanced carbon sequestration in soil.

4.2 Process-oriented modeling of carbon redistribution

A well-designed model for SOC redistribution should ef-
fectively address the spatial and temporal discrepancies be-
tween local processes with short-term and long-term effects
at the landscape scale. Several process-oriented water ero-
sion models have been developed. Specifically, Doetterl et
al. (2016) reported eight coupled soil erosion and SOC
turnover models, mainly applied at soil profiles and local
scales. However, recently developed models have expanded
their application to much larger scales and have sought to
integrate with existing Earth System Models (ESM). For
instance, Tan et al. (2020) coupled a newly developed event-
based soil erosion model with the US Department of En-
ergy’s Energy Exascale ESM to estimate the impact of soil
erosion on carbon cycling over the continental United States.
Additionally, Zhang et al. (2022) incorporated the fluvial
transfer of sediment and organic carbon into the ORCHIDEE

land surface model. While at the local scale, more recent
models have been predominantly used to predict SOC dy-
namics across a large variety of settings and scenarios, such
as erosion intensity, climate conditions, or tillage practices
(Nadeu et al., 2015; Dialynas et al., 2016). We updated the
overview of coupled soil erosion and SOC turnover models
(Table 4). Most models coupling erosion to SOC turnover are
predominantly based on the Universal Soil Loss Equation
(USLE) family models and the SPEROS-C model. These
models were designed in an annual time step, making col-
lecting input spatial data at large scales easy. Furthermore,
existing models are gradually taking more carbon processes
into account. For example, whereas previous models usually
solely focused on particulate organic carbon (POC) fluxes,
Zhang et al. (2022) took leaching of soil dissolved organic
carbon (DOC) into their model, resulting in promising ad-
vancements in estimating carbon cycling in dynamic land-
scapes. Nevertheless, as computing power and data
availability improve, it is still necessary to constantly refine
the carbon dynamic process and enhance the generalization
of model parameters.
Since the basin is the basic hydrologic unit, systematically

simulating water erosion-induced carbon fluxes at the basin
scale is a key link for simulating the terrestrial ecosystem
carbon cycle. The expression of the erosion process varies
across different scale models. Due to limitations in the
availability of input data and the requirements of computing
power, a bottom-up series of models is necessary to isolate
key environmental factors affecting SOC. Specifically, the
models at the micro-scale (particle, aggregate, and pedon)
are employed to investigate crucial physical, geochemical,
and biochemical mechanisms underlying carbon stabiliza-
tion. These findings can be extrapolated to the basin scale to
enhance our incomplete comprehension of carbon dynamic
processes. The models at the global scale provide a stronger
connection between carbon sequestration schemes and cli-
mate change policies but with notable uncertainty. To im-
prove the accuracy of SOC estimation at the global scale,
further development of large basin-scale models is still
needed to ultimately elucidate the interconnections between
lateral soil fluxes and terrestrial-aquatic carbon cycling.
Our method replaced the simple SDR with a sediment

dynamics model and estimated the continuous three-dimen-
sional spatial distribution of initial SOC, both of which
provided a better description of the spatial heterogeneity of
carbon dynamics induced by erosion. Although we focused
our analysis and modeling on the Dongting Lake Basin be-
cause of the data availability and our work foundation, this
model could be applicable to the rest of the world because the
Dongting Lake Basin already represents a key influence of
soil erosion in recent years, like extreme climatic, diverse
land management, and ecological restoration projects. Ac-
cording to Table 4, the application of SOC simulation
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Table 4 Summary of modeling C dynamics in eroding landscapes at different scales

Scale Extent Area (km2) Timescale Scenario
Carbon fluxes (g m−2)

Model References
Lateral Vertical

Global Global 1.49×108 / Current 33.56 6.71 / Lal, 2003

Regional

China 9.60×106
1995–1996

Current
11.98 5.25 modified

SPEROS-C Yue et al., 2016
2010–2012 5.29 4.25

European agricultural soils 1.87×106 2000–2010 Current 1.50 0.70 CENTURY
+USLE

Lugato et al.,
2016

Australia 7.69×106 1950s–1990 Current 0.53 0.21 / Chappell et al.,
2014

United States of America 7.42×106 1991–2012 Current 1.89 / ELM-Erosion Tan et al., 2020

China the Tibetan Plateau 2.50×106 2001–2017 Current 0.96 / RUSLE Teng et al.,
2022

China the Yellow River Basin 7.95×105 1950–2010 Current 22.43 6.06 / Ran et al.,
2014

China

the Yellow River Basin 7.95×105

1992–2013 Current

3.8 /

USPED Yang et al.,
2020the Yangtze River Basin 1.80×106 4.2 /

the Pearl River Basin 4.42×105 2.9 /

Europe the Rhine catchment 1.85×105
1851–1861

Current
0.0012 0.32

CE-DYNAM Naipal et al.,
20201995–2005 0.0009 0.73

Europe and parts of the Middle East 1.51×107 1901–2014 Current 3.14 3.78 ORCHIDEE-
Clateral

Zhang et al.,
2022

Local

the central Belgium 2.50×102 /

conventional
tillage 2.30 2.70

SPEROS-C Nadeu et al.,
2015

reduced tillage 2.30 2.50

reduced tillage
with additional
carbon input

1.20 11.20

Puerto Rico

the Mameyes watershed 17.8

/

maximum
source 14.90 −18.30

tRIBS-ECO Dialynas et al.,
2016

intermediate 25.30 6.00

maximum sink 39.20 21.50

the Icacos watershed 3.26

maximum
source 32.40 −14.90

intermediate 40.10 3.30

maximum sink 52.10 17.10

Germany
the arable catchment 1 3.70×10−2

1994–2001 Current
0.31 0.26

MCST-C Wilken et al.,
2017the arable catchment 2 7.80×10−2 0.13 0.58

Germany the Heiderhof test site 4.20×10−2 1950–2007 Current 7.70 0.90 SPEROS-C Dlugoß et al.,
2012

United States of America the Nelson
Farm 2.09×10−2 1870–1997

minimum
erosion 19.16 −13.00

EDCM Liu et al., 2003
maximum
erosion 34.40 −24.00

United
States of
America

the North Appalachian
Experimental
Watershed

W118 7.90×10−3 1951–1999 corn-soybean
no-till rotation 0.39 5.51

EPIC+USLE Izaurralde et
al., 2007

W128 1.08×10−2 1966–2001
conventional
till continuous

corn
0.82 −1.03

W188 8.30×10−3 1966–2001
under no-till
continuous

corn
1.31 6.02

2029Wang L, et al. Sci China Earth Sci June (2024) Vol.67 No.6



models, which consider the impacts of erosion, is uneven
across different world regions. The main focus is on the
global north (with a few exceptions), with severe under-re-
presentation of models suitable for ecosystems in Africa and
the Middle East, and to a lesser extent, central and South
America and Asia (except China). Notably, these regions are
at risk of increased erosion and contribute equally with de-
veloped regions to calculate the global climate change mi-
tigation potential of SOC sequestration. This study presents
an effective model with higher data availability at a regional
scale and more diverse spatial heterogeneity for these re-
gions. It can be used to assess changes in soil carbon storage
and land-atmosphere carbon exchange due to anthropogenic
influences on erosion.

4.3 Uncertainty and limitation

Despite the robust data sources and simulation methods
employed in this study, limitations still existed in estimating
the spatial distribution of erosion-induced FL and FV.
For FL, it was estimated based on a quantitative assessment

of soil loss and sediment transport from hillslopes to rivers.
However, due to the limitation of DEM accuracy, the phe-
nomenon of slope attenuation and slope length expansion
occurs, which makes the LS factor unable to express the
relationship between terrain and soil erosion accurately.
Furthermore, the prediction capacity of the sediment trans-
port model was significantly diminished when using ob-
served sediment yields of four sub-basins to calibrate a single
coefficient of transport capacity for the whole basin. This
finding was confirmed by de Vente et al. (2013) and Borrelli
et al. (2018). Additionally, the impact of river management
was ignored in this study, as mentioned in section 3.1, further
reducing the prediction accuracy. To better fit the simulated
sediment yields against observations, separate calibration of
transport capacity parameters for each basin or calibration of
parameters based on smaller basins without large-scale water
conservancy projects is necessary. However, due to the lack
of observation data in Dongting Lake Plain, it was challen-
ging to achieve separate calibration in this study. Establish-
ing more sediment monitoring sites for more and smaller
basins in the future could develop larger-scale models cap-
able of producing more accurate and realistic simulations of
sediment transport.
For FV, this study ignored the leaching of DOC, which was

considered another leak in the terrestrial carbon budget.
Zhang et al. (2022) showed that 0.3% of particulate organic
carbon decayed into DOC in Europe. Yue et al. (2016) also
roughly estimated that the DOC leaching potential accounted
for 0.02% of erosion-induced CO2 flux in the eroded area in
China. Since erosion had little effect on DOC, it was dis-
regarded in this study. Furthermore, Lal (2019) indicated that
other greenhouse gases, like CH4 and N2O, should be con-

sidered when exploring the impact of accelerated erosion.
These factors should be incorporated into future research.
Although this study had limitations, the results were obtained
from the most reliable publicly available datasets, and the
models implemented in this study promptly assessed carbon
loss caused by erosion at the basin scale.

5. Conclusions

This study simulated, to the best of our knowledge, the most
complete transfer processes of SOC based on the erosion
process model at the basin scale. This model estimates the
erosion-induced lateral transport of SOC from land to river
systems and the land-atmosphere CO2 fluxes in the eroded
district, depositional district, and transport process. Our
findings emphasize the need to simulate the spatial variation
of SOC dynamics and stratify calibration and validation.
Applying this model to the Dongting Lake Basin, the results
showed that 5.18×1011 g C a−1 would be lost in the riverine
system in 1980–2020, only accounting for 12% of the SOC
displacement. A large surplus was deposited downslope at
foot slopes and flood plains. The erosion-induced CO2 up-
take was 5.54×1011 g C a−1 in the Dongting Lake Basin
during the 40 years. The net influence of water erosion on
carbon cycling acts as a terrestrial sink for atmospheric CO2

at the basin scale. After large-scale ecological restoration in
Dongting Lake Basin, the recovery CO2 sink exceeded the
organic carbon lost to riverine systems. In particular, grass-
land showed the fastest improvement in soil carbon se-
questration capacity. Although the model still has limitations
on observed data, knowledge gaps in the mechanisms, and
scaling methods, this study is helpful in exploring natural
and anthropogenic factors affecting SOC dynamics and
further provides advice for land management and tillage
practices.
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