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Abstract Despite a specific data assimilation method, data assimilation (DA) in general can be decomposed into components of
the prior information, observation forward operator that is given by the observation type, observation error covariances, and
background error covariances. In a classic Lorenz model, the influences of the DA components on the initial conditions (ICs) and
subsequent forecasts are systematically investigated, which could provide a theoretical basis for the design of DA for different
scales of interests. The forecast errors undergo three typical stages: a slow growth stage from 0 h to 5 d, a fast growth stage from
5 d to around 15 d with significantly different error growth rates for ensemble and deterministic forecasts, and a saturation stage
after 15 d. Assimilation strategies that provide more accurate ICs can improve the predictability. Cycling assimilation is superior
to offline assimilation, and a flow-dependent background error covariance matrix (Pf) provides better analyses than a static
background error covariance matrix (B) for instantaneous observations and frequent time-averaged observations; but the op-
posite is true for infrequent time-averaged observations, since cycling simulation cannot construct informative priors when the
model lacks predictive skills and the flow-dependent Pf cannot effectively extract information from low-informative observa-
tions as the static B. Instantaneous observations contain more information than time-averaged observations, thus the former is
preferred, especially for infrequent observing systems. Moreover, ensemble forecasts have advantages over deterministic
forecasts, and the advantages are enlarged with less informative observations and lower predictive-skill model priors.

Keywords Data assimilation, Atmospheric predictability, Background error covariances, Ensemble forecasts

Citation: Wang Z, Sun H, Lei L, Tan Z M, Zhang Y. 2024. The importance of data assimilation components for initial conditions and subsequent error growth.
Science China Earth Sciences, 67(1): 105–116, https://doi.org/10.1007/s11430-023-1229-7

1. Introduction

Advanced data assimilation (DA) has been a major con-
tributor to the improvements in numerical weather prediction
(NWP; e.g., Courtier et al., 1994; Whitaker et al., 2008;
Buehner et al., 2010; Bauer et al., 2015; Bannister, 2017) and
climate prediction (e.g., Meehl et al., 2009; Karspeck et al.,
2013, Massonnet et al.; 2013, Balsamo et al., 2012; Mochi-
zuki et al., 2016). Based on the knowledge of uncertainties in

the observation and prior information, DA seeks the best
estimate of the dynamic system, which is often used as the
initial condition (IC) for subsequent forecasts (e.g., Kalnay,
2002). Daily weather forecasts and Seasonal-Interannual (SI)
climate predictions like the El Nino-Southern Oscillation
(ENSO) forecasts can be seen as “initial value problems”,
but the importance of the initial value decays with forecast
lead times (Meehl et al., 2009).
The Earth system is characterized by interactive and

complex nonlinear dynamical and physical processes that
span a wide range of spatial and temporal scales (e.g., Lu-
carini et al., 2014). To capture the features of the Earth
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system, seamless prediction that requires forecasts across the
range of weather and climate time scales is required (Palmer
et al., 2008; Shapiro et al., 2010; Ruti et al., 2020), and the
ICs for predictions from days to decades are provided by DA
for coupled Earth system models (Brunet et al., 2010). To
predict the nonlinear dynamical and physical processes
across time scales, coupled DA has been applied, especially
for the significantly under-observed non-atmospheric com-
ponents of the Earth system (e.g., Zhang, 2011; Yang et al.,
2013; Jung et al., 2016; Laloyaux et al., 2016; Penny and
Hamill, 2017). Tardif et al. (2014, 2015) showed that as-
similating time-averaged atmospheric observations could
improve the Atlantic meridional overturning circulation
(AMOC), especially with insufficient oceanic observations.
Lu et al. (2015a, 2015b) and Sun et al. (2020) proposed a
leading averaged coupled covariance (LACC) method to
effectively incorporate the observed fast atmospheric vari-
ables into the update of the oceanic variables. But research
on how the observations from the components with slow
time scales influence the atmosphere with fast time scales is
limited.
Despite the challenge of seamless prediction from decadal

to SI and then subseasonal-to-seasonal (S2S) predictions,
NWP has the challenge to maintain the skill of weather
forecasts and extend the skill to longer timescales. Lorenz
(1969a, 1969b) demonstrated that the IC error in small scales
induced error growth in large scales and the predictability
depended on the equilibrium energy spectrum. The rapid
upscale growth of IC errors through moist processes can
limit the predictability of severe weather (Tan et al., 2004;
Zhang, 2005), and the upscale error growth undergoes three
stages with different characteristics from small scales to
large scales (Zhang et al., 2007). There is evidence of pre-
dictability for some extreme weather events about 7–10 days
in advance (Hamill et al., 2006), and also latitude-varying
error growth characteristics that are consistent with the un-
derlying dynamics of tropics, midlatitudes and polar regions
(Judt, 2020). Zhang et al. (2019) showed that for the mid-
latitude weather, a skillful deterministic forecast lead time
can be extended up to 15 d by reducing an order of the
current IC error.
DA has been devoted to providing the most accurate IC for

NWP. There have been dedicated efforts to assimilate var-
ious types of observations, including the satellite radiances
(e.g., Geer et al., 2018; Li et al., 2021), GPS radio occultation
(e.g., Cucurull et al., 2007; Poli et al., 2010), aircraft data (e.
g., Cardinali et al., 2003; Tong et al., 2018), radar observa-
tions (e.g., Zhang et al., 2009; Zeng et al., 2021), etc. These
advanced observations differ in local/non-local observed
quantities, spatial coverages, and available frequencies.
Meanwhile, the DA strategies have been vastly advanced,
from the variational methods (e.g., Courtier et al., 1998;
Rawlins et al., 2007) and ensemble Kalman filters (e.g.,

Whitaker et al., 2008; Houtekamer and Zhang, 2016) to the
hybrid variants (e.g., Hamill and Snyder, 2000; Bannister,
2017). To capture the error statistics from small to large
scales, multi-scale DA methods that often implement itera-
tive assimilation or scale-dependent treatment for back-
ground error covariances have been developed (e.g., Xie et
al., 2011; Li et al., 2015; Huang et al., 2021). However, there
is a lack of knowledge for DA strategies that interact with
observation types and influence subsequent error growths.
Different from most previous studies that mainly con-

centrate on the role of background error covariances for DA,
this study decomposes the DA components into a broader
view to investigate the influences of DA components on the
IC error and subsequent error growth. No matter a variational
method or an ensemble Kalman filter is used, there are
mainly four DA components for obtaining the assimilated
posterior, which are the prior information, observation for-
ward operator that is given by the observation type, ob-
servation error covariances, and background error
covariances. By designing different types of DA compo-
nents, the influences of the DA components on the assimi-
lated analysis and associated error growth are systematically
analyzed within a coherent ensemble framework, based on
the classic Lorenz (2005) model. The understanding of the
importance of DA components on different scales could give
a theoretical basis to design the appropriate DA strategy for
the scales of interests.

2. Data assimilation components

Given the prior of state vector xf and observation y, the best
estimate of state vector xa has the equivalent form of

Hx x K y x= + [ ( )]a f f , by applying either the three-dimen-
sional variational method (3DVAR; Courtier et al., 1998) or
ensemble Kalman filter (EnKF; Whitaker et al., 2008). H is
the observation forward operator that transforms state vari-
ables to the observed quantities. The gain matrix K has the

form of ( )K P H HP H R= +f fT T 1
, where Pf is the back-

ground error covariance matrix, R is the observation error
covariance matrix, and H is the Jacobian matrix of ob-
servation forward operator that is the partial derivative of the
forward operator with respect to the state variable.
Lei et al. (2021) showed that the ensemble Kalman filter

(EnKF; Whitaker et al., 2008), three-dimensional variational
method (3DVAR; Courtier et al., 1998), and hybrid en-
semble-variational methods (Hamill and Snyder, 2000;
Penny, 2014) can be implemented in an ensemble frame-
work. This is done by separating the ensemble mean and
perturbations and then sampling the static background error
covariances through a large size of climatological ensemble
perturbations. Let x f denotes the control prior information,
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which can be a deterministic simulation or an ensemble mean
from ensemble forecasts. A group of prior ensemble per-

turbations x x x, , … ,f f
N
f

1 2 where N is the ensemble size, can

be generated by either sampling the climatological pertur-
bations or performing short-term ensemble forecasts with
subtraction of the ensemble mean. By adding the ensemble
perturbations to the control prior, N prior ensemble members
can be created, x x x= +i

f f
i
f (i=1,…, N). In the ensemble

framework, an EnKF that incorporates observations y into
the prior ensembles, gives the posterior ensemble mean and
perturbations,
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1 2 is the square root of the

background error covariance matrix Pf, since the multi-
plication of X and its transpose gives XXP =f T. Given the
Jacobian matrix H, HX gives the normalized ensemble per-
turbations in the observation space.
Therefore, the DA given by eq.(1) and eq.(2) can be di-

vided into four components: the prior information (xf), ob-
servation forward operator (H and H), observation error
covariances (R), and background error covariances (Pf).
Different from previous studies that independently apply one
DAmethod, the DA components can be mixed to provide the
assimilation analyses, like building blocks. Thus the impact
of each DA component on the analyses and subsequent
forecasts can be independently and systematically examined.
NWP is an IC problem, since it relies on the accurately

estimated current state to initialize the forecast (Kalnay,
2002). Thus the control prior x f is often generated from a
cycling DA. That is, a short-term deterministic / ensemble
forecast is performed from the posterior(s) obtained at the
previous DA cycle. Thus the control prior contains in-
formation of all past observations, model dynamics, and
physics (e.g., Kalnay, 2002; Bauer et al., 2015), which also
indicates that the model has high predictive skills. But for
climate simulations that have low predictive skills, especially

for time scales longer than the temporal resolution of ob-
servations, the prior from the cycling DA might not be su-
perior to those randomly drawn from climatological samples
(e.g., Matsikaris et al., 2015; Sun et al., 2022). Thus the
offline DA utilizes the prior that samples the climatological
distribution of the state variable, which requires much less
computational costs than the cycling DA since no model
advances are needed after each assimilation. The prior choice
of cycling (Cyc) and offline (Off) in Table 1 indicates a
weather-/climate-type assimilation.
Similarly, the ensemble perturbations X can be generated

from short-term ensemble forecasts that are launched from
the ensemble posteriors, which provides the flow-dependent
background error covariance matrix Pf. The ensemble per-
turbations can also be created by sampling the climatological
perturbations, and they approximate the static background
error covariance matrix B that is often used by variational-
based DA methods. Therefore, through the ensemble DA
given by eq.(1) and eq.(2), a deterministic forecast x f and
climatological ensemble perturbations X provide an
equivalent solution to 3DVAR. If the control prior x f and
ensemble perturbations X are obtained from the same en-
semble forecasts, the solution of the traditional EnKF is
obtained. A hybrid background error covariance matrix that
is a combination of B and Pf is adopted by the hybrid DA
methods. For simplicity, the choice of background error
covariance matrix shown in Table 1 is either the static B (B)
or flow-dependent Pf (Pb). As shown by eq.(1) and eq.(2),
the assimilation increment is influenced by the relative
weight of the background error covariance matrix compared
to the observation error covariance matrix, and thus with an
emphasis on the background error covariance matrix, the
sensitivity of the observation error covariance matrix on DA
and forecasts is not discussed here.
No matter whether the control prior is from a cycling or an

offline DA, the control prior can be either a deterministic one
or an ensemble mean from ensemble members. Meanwhile,
when the state update is accomplished, forecasts can be
launched from the posteriors produced by DA. If a de-
terministic control prior is applied, a deterministic forecast
can be launched from the posterior; otherwise, ensemble
forecasts can be launched from the ensemble analyses. Two
forecast kinds, deterministic (Det) and ensemble (Ens), are
shown in Table 1. Ensemble forecasts of the assimilation
experiments with cross components (e.g., ensemble cycling
assimilation with static B and ensemble offline assimilation
with flow-dependent Pf) are not conducted, since it is un-
likely to use full static B if an ensemble forecast is available
and also it is impractical to launch an ensemble forecast from
an offline assimilation.
To examine the observations with different scales, two

sets of observation types are designed. One set is in-
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stantaneous observations that observe the gridded values at a
given time, which are analogous to conventional weather
observations. The other set is time-averaged observations
that observe the temporally averaged grid values over a
certain time window, which simulate the observations with
longer time scales than the instantaneous ones, like the sea
surface temperature. The observation forward operator and
its Jacobian for the instantaneous ones are a spatial inter-
polation, and for the time-averaged ones are a spatio-tem-
poral interpolation. The observation types of instantaneous
(Inst) and time-averaged (Tavg) in Table 1 indicate atmo-
spheric-/oceanic-type observations. The time-averaged ob-
servations approach to the instantaneous ones as the
observation frequency increases.

3. Experimental design

The one-scale model II of Lorenz (2005) model is adopted to
examine the impacts of DA components on the analyses and
forecasts. It simulates the behavior of a scalar atmospheric
quantity at one level and one latitude with well represented
atmospheric wavelengths and error-growth rates, and has
been widely used for DA developments (e.g., Brajard et al.,
2020; Lei et al., 2021). The one-scale model II of Lorenz
(2005) with 960 grid points is governed by

X
t X X X Fd

d = [ , ] + , (3)n
K n n,

where the subscript n indexes the grid point, K and F are
constant parameters that are set to 32 and 16, respectively.
The advection term X X[ , ]K n, is formulated by

X X W W W X K[ , ] = + / , (4)K n n K n K
j J

J

n K j n K j, 2
=

+ + +

where W X K= /n
i J

J

n i
=

with J=K/2 when K is even and

W X K= /n
i J

J

n i
=

with J=(K−1)/2 when K is odd. The special

sum is the same as the ordinary sum except that the first
and last terms are divided by 2.
The observing simulation system experiments with a per-

fect-model assumption are conducted, in which the same
model configurations are used for the nature run and simu-
lations. ICs of the nature run, deterministic and ensemble
simulations are randomly drawn from a large set of in-
dependent states. Synthetic observations are created by
adding random perturbations drawn from a normal dis-
tribution N(0, R) to the true values from the nature run. Two
sets of observations are generated, and both have the ob-
serving network of every 8 grid points and observation error
variance R of 2.0. The instantaneous observation observes
the gridded value at the middle of an assimilation window,
and the time-averaged observation observes the temporally
averaged value over an assimilation window. The observa-
tion density and error variance are chosen as an intermediate
range for the observing networks of weather and climate.
The observing frequencies vary from 6 h, 1 d, 5 d, to 10 d,
respectively. Note that for the dimensionless time unit of the
Lorenz (2005) model, 0.05 is approximately 6 h. The as-
similation window is set to the same as the observing fre-
quency, so that more observations are assimilated when the
observing frequency increases, which would directly reduce
the analysis error.

Table 1 Configurations of the data assimilation experiments a)

Exp. Name DA cycle Background error covariance
matrix Observation type Forecast kind

Cyc_Pb_Ens_Inst_x Cycling Flow-dependent Pf Instantaneous Ensemble

Cyc_Pb_Det_Inst_x Cycling Flow-dependent Pf Instantaneous Deterministic

Cyc_B_Det_Inst_x Cycling Static B Instantaneous Deterministic

Off_Pb_Det_Inst_x Offline Flow-dependent Pf Instantaneous Deterministic

Off_B_Ens_Inst_x Offline Static B Instantaneous Ensemble

Off_B_Det_Inst_x Offline Static B Instantaneous Deterministic

Cyc_Pb_Ens_Tavg_x Cycling Flow-dependent Pf Time-averaged Ensemble

Cyc_Pb_Det_Tavg_x Cycling Flow-dependent Pf Time-averaged Deterministic

Cyc_B_Det_Tavg_x Cycling Static B Time-averaged Deterministic

Off_Pb_Det_Tavg_x Offline Flow-dependent Pf Time-averaged Deterministic

Off_B_Ens_Tavg_x Offline Static B Time-averaged Ensemble

Off_B_Det_Tavg_x Offline Static B Time-averaged Deterministic

a) The x in the experiment name indicates the observing frequency, including 6 h, 1 d, 5 d, and 10 d
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The ensemble size of ensemble-based DA and ensemble
forecasts is 40. To combat sampling errors resulting from a
limited ensemble size, covariance inflation and covariance
localization are applied for assimilation experiments with
flow-dependent background error covariance matrix Pf. The
constant multiplicative inflation (Anderson and Anderson,
1999) is applied to enlarge the ensemble spread and prevent
filter divergence. The Gaspari and Cohn (GC; Gaspari and
Cohn, 1999) function is used to localize the impact of ob-
servations and mitigate the spurious error correlations be-
tween observations and state variables. The inflation and
localization parameters are tuned to be optimal for each as-
similation experiment. But no covariance inflation and lo-
calization are applied for the assimilation experiments with
static background error covariance matrix B, since suffi-
ciently large sizes of climatological perturbations are used to
estimate the static B. The sample sizes of climatological
perturbations for instantaneous observations with varying
frequencies and time-averaged observations with 6-hour and
1-day frequencies, are on the order of 104. For time-averaged
observations with 5-day and 10-day frequencies, the sample
sizes are on the order of 103 due to the time averaging.
DA experiments are conducted for 500 d, and the first 50-d

assimilations are discarded to avoid transients. The de-
terministic posterior or ensemble mean of the ensemble
posteriors from DA experiments of the remaining 450 d is
first verified relative to the natural run. To examine the im-
pact of DA components on forecasts, free forecasts are
launched from the assimilation analyses. To have the same
forecast samples for different DAwindows, the free forecast
is launched every 10 d from the middle of a DAwindow for
the remaining 450 d, and thus a single forecast period is half
a DAwindow plus 20 d. The schematic of DA experiments is
shown by Figure 1. The deterministic forecast or ensemble
mean of the ensemble forecasts is verified against the nature
run every 6 h. Spatially and temporally averaged root-mean-
square (RMS) error is computed for verification. To examine
the significance among the error differences, a paired sample
t-test is performed based on the 45 samples (every 10 d from
the 450-d verification period), and the error difference is
statistically significant given by the 99% confidence level.
Different DA experiments have forecast errors growing
differently, due to the different ICs provided by the DA
components. To fairly compare the error growth given dif-
ferent DA components, the starting point of each forecast
error curve is adjusted to the time at which the initial error is
closest to the error of the reference experiment. The groups
of DA experiments and the associated reference experiment
are introduced in the main text. The error growth is divided
into three stages: the first one is from 0 h to 5 d, the second
one is from 5 d to around 15 d, and the last one is the sa-
turation stage that is approximately longer than 15 d. The end
date of the second error growth stage is objectively given by

the smallest error of the linear regression.

4. Impacts of DA components on posteriors

Through deterministic or ensemble cycling assimilation of
the instantaneous observations with flow-dependent back-
ground error covariance matrix Pf (Cyc_Pb_Det_Inst and
Cyc_Pb_Ens_Inst), the posterior RMS errors increase with
decreased observing frequency, since less observation in-
formation is available when the observation becomes more
infrequent (Figure 2a and Table 2). The posterior errors of
deterministic cycling assimilation with static B (Cy-
c_B_Det_Inst) increase with decreased observing frequency.
The posterior errors of deterministic cycling assimilation
with static B are generally significantly increased compared
to those of deterministic cycling assimilation with flow-de-
pendent Pf, especially for frequent observations. For either
the cycling assimilations with flow-dependent Pf or offline
assimilations with static B, the posterior errors with en-
semble simulations are significantly smaller than those of
deterministic ones. Given each observing frequency, the
posterior errors of deterministic/ensemble offline assimila-
tion with static B (Off_B_Det_Inst/Off_B_Ens_Inst) are in
general slightly increased compared to those of deterministic
cycling assimilation with static B, while the differences are
statistically significant with frequent observations (6 h and
1 d). The posterior errors of deterministic offline assimila-
tion with flow-dependent Pf (Off_Pb_Det_Inst) are sig-
nificantly larger than the others, especially for frequent
observations. This is because the prior error is about the
climatological error due to the offline sampling, but the flow-

Figure 1 Schematic of DA experiments with observing frequencies of
6 h, 1 d, 5 d and 10 d, respectively. Solid gray lines denote the cycling
assimilation and forecast, and the dashed lines show the free forecast
launched every 10 d with a forecast lead time of 20 d plus half the DA
window.
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dependent Pf obtained from the cycling ensemble has a much
smaller spread than the climatological one, so that the in-
sufficient ensemble spread cannot accurately represent the

prior uncertainty and results in too small increments. Thus
for instantaneous observations with different observing fre-
quencies, ensemble simulations are beneficial compared to
deterministic simulations, and the cycling assimilation has
advantages over offline assimilation. And most importantly,
flow-dependent Pf has significant impacts on the analyses
compared to static B, especially for frequent observations.
Similar results to the assimilation of instantaneous ob-

servations are generally obtained for the assimilation of
time-averaged observations (Figure 2b and Table 2). For
each assimilation configuration, assimilating the time-aver-
aged observations generally has significantly larger posterior
errors than assimilating the instantaneous ones, especially
with infrequent observations. This indicates that time-aver-
aged observations contain less information than the in-
stantaneous ones, and the observation information is further
reduced with increased averaging length. The advantages of
ensemble simulations over deterministic simulations are
much enlarged by assimilating the time-averaged observa-
tions compared to the instantaneous ones with infrequent
observations (5 d and 10 d). This is consistent with Sun et al.
(2022), since the model has low predictive skills when the
forecast lead time is large and observations are infrequent,
and then ensemble averaging becomes essential for con-
structing an informed prior. When assimilating infrequent
time-averaged observations, using a static B instead of flow-
dependent Pf, and using offline assimilation instead of cy-
cling assimilation, result in significantly smaller posterior
errors, which is different from the previous assimilation of
frequent instantaneous observations. This is because when
the model lacks predictive skills and observations contain
information averaged over a relatively long time period,
cycling simulations cannot construct more informed priors
compared to random samples from the climatological dis-

Figure 2 The natural logarithm of the posterior errors from DA experi-
ments with different observing frequencies normalized by that of the re-
ference experiment Cyc_Pb_Ens_6h, for (a) instantaneous observations and
(b) time-averaged observations. Specific values of the posterior errors are
shown in Table 2.

Table 2 Posterior errors of each data assimilation configuration with different observing frequencies

Observing frequency 6 h 1 d 5 d 10 d

Cyc_Pb_Ens_Inst 0.1347 0.2717 0.9271 1.0942

Cyc_Pb_Det_Inst 0.1356 0.2768 0.9539 1.1995

Cyc_B_Det_Inst 0.9722 0.9782 1.0699 1.2029

Off_Pb_Det_Inst 8.6262 7.8057 2.1304 1.3742

Off_B_Ens_Inst 1.0615 1.0639 1.0519 1.0494

Off_B_Det_Inst 1.1371 1.1342 1.1219 1.1205

Cyc_Pb_Ens_Tavg 0.1910 0.6863 4.6809 6.2307

Cyc_Pb_Det_Tavg 0.1912 0.6904 6.4494 8.2697

Cyc_B_Det_Tavg 0.9923 1.0501 6.3407 7.8168

Off_Pb_Det_Tavg 7.8179 5.4851 6.0992 7.9959

Off_B_Ens_Tavg 1.0672 1.2390 4.6599 5.8193

Off_B_Det_Tavg 1.1420 1.3916 6.0949 7.7589

110 Wang Z, et al. Sci China Earth Sci January (2024) Vol.67 No.1



tribution, and also the sample-estimated flow-dependent Pf

cannot extract observation information as well as the static
B. Thus given an infrequent observing system, instantaneous
observations are preferred compared to time-averaged ob-
servations. To better extract information from the infrequent
time-averaged observations, ensemble priors are necessary,
and offline assimilation and static B have advantages over
cycling assimilation and flow-dependent Pf.

5. Impacts of DA components on error growth

5.1 Cycling assimilation with flow-dependent Pf

The spatially averaged forecast errors of DA experiments
with cycling assimilation of instantaneous observations
using the flow-dependent background error covariance ma-
trix Pf (Cyc_Pb_Ens_Inst and Cyc_Pb_Det_Inst) are shifted
to the time at which the posterior errors are closest to the
error of the reference experiment Cyc_Pb_Ens_Inst_6h,
since the posterior errors differ with various observing fre-
quencies. The spatially averaged forecast errors undergo
three typical stages (Figure 3a). Forecast errors for each
model grid point have similar patterns to the spatially aver-
aged ones, and consistent results are obtained with ensemble
mean errors and ensemble spread for the experiments with
ensemble forecasts (Figures are not shown). Given the 6-h
and 1-d observing frequencies, the ICs, i.e., posteriors, have
errors of O(10–1), and errors slowly grow at a rate of
0.0069 h-1 till 5 d. At 5 d, forecast errors of DA experiments
with 6-h and 1-d observing frequencies and IC errors of DA
experiments with 5-d and 10-d observing frequencies have
magnitudes of O(100); from 5 d to about 15 d, forecast errors
grow differently for deterministic and ensemble forecasts.
Ensemble forecasts have an error growth rate of 0.0238 h–1,
while deterministic forecasts have an error growth rate of
0.0318 h–1, which is 33.6% faster than that of ensemble
forecasts. The advantages of ensemble simulations over de-
terministic simulations are much more prominent for the
forecasts than the analyses. After about 15 d, forecast errors
of deterministic and ensemble forecasts gradually saturate,
approaching the climatological errors that are 8.55 and 6.16
for deterministic and ensemble forecasts, respectively. This
is as expected, since the variance of the ensemble mean is N
times smaller than that of one deterministic forecast, when
the error approaches saturation. Ensemble (deterministic)
forecasts have errors growing to 95% of the climatological
error at 384 h (432 h).
A similar three-stage error growth is shown by cycling

assimilation of time-averaged observations with flow-de-
pendent Pf (Cyc_Pb_Ens_Tavg and Cyc_Pb_Det_Tavg), as
shown by Figure 3b. The IC given a 6-h observing frequency
has an error of O(10–1), from which the forecast error slowly
grows at a rate of 0.0101 h–1 till 5 d. This error growth rate is

larger than that of assimilating instantaneous observations,
because the IC error with 6-h time-averaged observations is
slightly but significantly larger than that with 6-h in-
stantaneous observations. At 5 d, forecast errors of DA ex-
periments with 6-h and 1-d observing frequencies have
magnitudes of O(100); and from 5 d to about 15 d, forecast
errors of ensemble and deterministic forecasts grow at rates
of 0.0215 h–1 and 0.0299 h–1, respectively. The error growth
rates of the second stage from assimilating time-averaged
observations are smaller than those from assimilating in-
stantaneous observations, because the errors at 5 d from as-
similating time-averaged observations are larger than those
from assimilating instantaneous observations. The error
growth rate of deterministic forecast is 39.1% faster than that
of ensemble forecast. The advantages of ensemble simula-
tions over deterministic simulations are kept with assimila-
tion of time-averaged observations. After 15 d, the forecast

Figure 3 Forecast errors of cycling DA experiments with flow-dependent
Pf, using (a) instantaneous and (b) time-averaged observations. Solid and
dashed lines denote the ensemble and deterministic forecasts, respectively.
Blue, red, green, and black indicate the observing frequency of 6 h, 1 d, 5 d,
and 10 d, respectively. Thick orange lines are the linear regression with
slopes noted aside. Straight gray solid and dashed lines indicate the time at
which the mean error of DA experiments approaches 95% of the clima-
tological error of ensemble and deterministic forecasts, respectively. The
other straight lines label the time when the posterior RMS error of ac-
cording experiment is approximately the same as the error of the reference
experiments Cyc_Pb_Ens_Inst_6h in (a) and Cyc_Pb_Ens_Tavg_6h in (b).
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errors of deterministic and ensemble forecasts gradually
approach the climatological errors. At 390 h (426 h), forecast
errors of ensemble (deterministic) forecasts reach 95% of the
climatological error. Forecast errors saturate at similar lead
times for both instantaneous and time-averaged observations
with different observing frequencies.
Different from the instantaneous observations, cycling

assimilations of infrequent time-averaged observations (i.e.,
5-d and 10-d observing frequencies) with flow-dependent Pf

(Cyc_Pb_Ens_Tavg and Cyc_Pb_Det_Tavg) provide ICs
with errors much larger than those assimilating instantaneous
observations (Figure 4). Similar results are obtained for
different assimilation configurations with time-averaged
observations, including cycling assimilation with static B
and offline assimilation with either flow-dependent Pf or
static B (Figure 4). Due to the large IC errors by assimilating
the 5-d and 10-d time-averaged observations, forecast errors
quickly saturate to the climatological errors. Thus no matter
the assimilation strategy, forecast errors of assimilating time-
averaged observations with 5-d and 10-d observing fre-
quencies do not experience the first two error growth stages.

5.2 Offline assimilation with static B

Instead of having increased posterior RMS errors with lower
observing frequencies as in the cycling assimilation with
flow-dependent background error covariance matrix Pf

(Figure 3), offline assimilation experiments with static B
have similar posterior RMS errors for instantaneous ob-
servations with observing frequencies from 6 h to 10 d and
time-averaged observations with observing frequencies of
6 h and 1 d (Off_B_Ens_Inst and Off_B_Det_Inst), as shown
by Figure 5. By shifting the forecast errors of offline as-
similation experiments with static B to the time at which the
posterior error is closest to the RMS error of the reference
experiment Cyc_Pb_Ens_Inst_6h (Figure 5a) and Cy-
c_Pb_Ens_Tavg_6h (Figure 5b) respectively, the forecast
errors undergo the second and third stages, without the first
stage of the reference experiments (Figure 3). The ICs of
offline assimilation with static B for both instantaneous and
time-averaged observations have errors of O(100), which is
an order larger than the IC errors of cycling assimilation with
flow-dependent Pf. Thus forecast errors of offline assimila-
tion experiments with static B do not experience the first
error growth stage as shown in Figure 3. From 5 d to about
15 d, forecast errors grow differently for deterministic and
ensemble forecasts. By assimilating instantaneous observa-
tions, forecast error growth rates are 0.0268 h–1 and
0.0346 h–1 for ensemble and deterministic forecasts. By as-
similating time-averaged observations, forecast errors grow
at rates of 0.0296 h–1 and 0.0386 h–1 for ensemble and de-
terministic forecasts. The error growth rates of deterministic
forecasts are 29.1% and 30.4% faster than that of ensemble

forecasts for instantaneous and time-averaged observations,
respectively. Ensemble simulations are also beneficial com-
pared to deterministic simulations using offline assimilation
with static B. The error growth rates of the second stage from
offline assimilation with static B are larger than those from
cycling assimilation with flow-dependent Pf. Thus cycling
assimilation with flow-dependent Pf can better constrain the
error growth than offline assimilation with static B. Similar
to cycling assimilation with flow-dependent Pf, forecast er-
rors of offline assimilation with static B gradually saturate
after 15 d, approaching the climatological errors for de-
terministic and ensemble forecasts, respectively.

5.3 Assimilation with cross components

Compared to cycling assimilation with flow-dependent
background error covariance matrix Pf and offline assim-
ilation with static B, cycling assimilation can incorporate
static B, while offline assimilation can utilize flow-depen-
dent Pf. Forecast errors of deterministic cycling assimilation
with static B (Cyc_B_Det_Inst/Tavg) and deterministic off-
line assimilation with flow-dependent Pf (Off_Pb_Det_Inst/
Tavg) are shifted to the time at which the posterior error is
closest to the RMS error of the reference experiment Cy-
c_Pb_Det_Inst_6h (Figure 6a) and Cyc_Pb_Det_Tavg_6h
(Figure 6b) respectively. Forecast errors with cross assim-
ilation components are similar to those of deterministic
forecasts from offline assimilation using static B, except for
frequent instantaneous / time-averaged observations using
offline assimilation with flow-dependent Pf due to large IC
errors as previously discussed. Forecast errors undergo the
second and third growth stages. The ICs of DA experiments
with cross assimilation components have errors of O(100),

Figure 4 Forecast RMS errors of experiments assimilating time-averaged
observations for observing frequency of 5 d (solid) and 10 d (dashed), re-
spectively. The gray solid and dashed lines denote the reference experi-
ments of 6-h cycling experiments with flow-dependent Pf, using ensemble
and deterministic forecasts, respectively. The straight lines label the time at
which the posterior RMS error of according experiment is approximately
the same as the RMS error of the reference experiment.
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thus the first error growth stage of cycling assimilation with
flow-dependent Pf is not experienced. From 5 d to about
15 d, deterministic forecast errors grow at rates of 0.0334 h–1

and 0.0371 h–1 for instantaneous and time-averaged ob-
servations, respectively. The error growth rates are similar to
those of offline assimilation with static B. After 15 d, de-
terministic forecast errors of DA experiments with cross
assimilation components gradually saturate, approaching the
climatological error of deterministic forecasts.
DA experiments with offline assimilation using static B

and with cross assimilation components have IC whose er-
rors are at least an order larger than those with cycling as-
similation using flow-dependent Pf. Thus the first stage of
slow error growth from cycling assimilation using flow-de-
pendent Pf is not experienced by the other assimilation
configurations. DA experiments with offline assimilation
using static B and with cross assimilation components un-
dergo the second and third error growth stages similar to
those of cycling assimilation using flow-dependent Pf, and
the former has a larger error growth rate of the second stage
than the latter. Thus during the second stage, error growth
can be better constrained by using cycling assimilation with

flow-dependent Pf than the other assimilation configurations.

6. Discussions and conclusions

To understand the influences of data assimilation (DA) on
the analysis and subsequent error growth without the limit of
a specific DA method, the DA components are decomposed
in a broader review, including the prior information, ob-
servation forward operator, observation error covariances,
and background error covariances. The relative weight of the
background error covariances to the observation error cov-
ariances gives the magnitude of the assimilation increment,
and thus the background error covariances, along with the
prior information and observation forward operator, are
systematically investigated using the model II of Lorenz
(2005).
In the model II of Lorenz (2005), the forecast errors un-

Figure 5 Same as Figure 3, except for offline ensemble DAwith static B
using (a) instantaneous and (b) time-averaged observations. The gray solid
and dashed lines denote the reference experiments of 6-h cycling experi-
ments with flow-dependent Pf, using ensemble and deterministic forecasts,
respectively.

Figure 6 Forecast RMS errors of deterministic cycling assimilation with
cross data assimilation components using (a) instantaneous and (b) time-
averaged observations. Thick orange lines are the linear regression with
slopes noted aside. Straight gray lines indicate the time at which the RMS
error of deterministic cycling assimilation with static B (solid) and de-
terministic offline assimilation with flow-dependent Pf (dashed) approaches
95% of the climatological error. The other straight lines label the time when
the posterior RMS error of according experiment is approximately the same
as the RMS error of the reference experiment of 6-h cycling experiments
with flow-dependent Pf using deterministic forecast.
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dergo three typical stages with IC errors of O(10–1): from 0 h
to 5 d, forecast errors slowly grow at a rate less than 0.01 h–1;
from 5 d to about 15 d, forecast errors fast grow at a rate of
approximately 0.02 h–1 for ensemble forecasts and 0.03 h–1

for deterministic forecasts; after 15 d, forecast errors are
approaching saturate to the climatological errors. The pre-
dictability can be gained by the assimilation strategies that
provide more accurate ICs. With frequent observations, the
IC errors of cycling assimilation with flow-dependent Pf are
an order smaller than those of offline assimilation with static
B and cross assimilation components (cycling assimilation
with static B and offline assimilation with flow-dependent
Pf), thus the predictability of cycling assimilation with flow-
dependent Pf extends 5 d compared to the other assimilation
configurations. But with very low-informative observations
(e.g., 5-d or10-d time-averaged observations), there is nearly
no room for extending the predictability, since the ICs cannot
be well constrained by any assimilation configurations here.
Moreover, since the errors slowly grow during the first stage,
substantial achievement of predictability for short-term
forecasts can be expected by pushing the limit to improve the
IC accuracy.
The prior information can be constructed from a determi-

nistic simulation or ensemble ones, with a cycling or offline
configuration. No matter the other assimilation configura-
tions, ensemble simulations have advantages over determi-
nistic simulations for the analysis, and the advantages are
enlarged with less informative observations and lower pre-
dictive-skill priors. Ensemble forecasts also have advantages
over deterministic forecasts, while the advantages of fore-
casts are more prominent than those of analyses with the
maximum advantage approaches when the forecast error
saturates. Meanwhile, cycling assimilation is superior to
offline assimilation for frequent observations, but the op-
posite is generally true for infrequent observations. This is
because when the model lacks predictive skills with barely
informative observations, cycling simulation cannot con-
struct more informed priors compared to random samples
drawn from the climatological distribution. Thus the im-
portance of cycling assimilation decreases with increased
time scales of the dynamical system.
The background error covariances can be either the flow-

dependent Pf or static B. With cycling assimilation, i.e., more
informative priors, the flow-dependent Pf generally provides
better analyses than the static B, which indicates the sample
estimated flow-dependent Pf better extracting observation
information than the static B. But with offline assimilations,
i.e., less informative priors, the static B generally produces
better analyses than the flow-dependent Pf, which indicates
the static B better extracting observation information than
the sample estimated flow-dependent Pf. The forecast error
growth rates of the second stage are similar between offline
assimilation with static B and cross assimilation compo-

nents, while they are larger than those from cycling assim-
ilation with flow-dependent Pf. Thus cycling assimilation
with flow-dependent Pf can better constrain the error growth
than offline assimilation with static B and cross assimilation
components.
Regarding to the observation forward operator (i.e., the

observation type), time-averaged observations with temporal
averaging from 6 h to 10 d contain less information than
instantaneous observations. With an increased averaging
window, i.e., less observing frequency, the information loss
increases, as well as the loss of model predictability. The
forecast error growth rate for the second stage is decided by
the IC error at the beginning of the stage and the time
duration of the stage. Given different configurations of the
other assimilation components, time-averaged observations
either have larger IC errors at the beginning of the stage
(Figure 3) or have a shorter time duration of the stage
(Figures 5 and 6) than instantaneous observations. Thus in-
stantaneous observations are preferred compared to time-
averaged observations, especially for infrequent observing
systems. These results might not be suitable for situations
with much more frequent observations, e.g., from minutes to
seconds, in which high-frequent fluctuations could result in
large observation noises and contaminate the additional ob-
servation information gained by more frequent observing.
Besides the four DA components discussed here, model

error is also an important component for DA, whose impacts
on DA and subsequent forecasts need further investigation.
The influences of DA components on the analyses and
forecasts are associated with the model predictive skills, and
thus the importance of DA components on a coupled model
is worthwhile to explore. Moreover, a classic but simple
Lorenz model is used here, the importance of DA compo-
nents needs be examined for realistic models.
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