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Abstract Hydrological modeling, leveraging mathematical formulations to represent the hydrological cycle, is a pivotal tool in
representing the spatiotemporal dynamics and distribution patterns inherent in hydrology. These models serve a dual purpose:
they validate theoretical robustness and applicability via observational data and project future trends, thereby bridging the
understanding and prediction of natural processes. In rapid advancements in computational methodologies and the continuous
evolution of observational and experimental techniques, the development of numerical hydrological models based on physically-
based surface-subsurface process coupling have accelerated. Anchored in micro-scale conservation principles and physical
equations, these models employ numerical techniques to integrate surface and subsurface hydrodynamics, thus replicating the
macro-scale hydrological responses of watersheds. Numerical hydrological models have emerged as a leading and predominant
trend in hydrological modeling due to their explicit representation of physical processes, heightened by their spatiotemporal
resolution and reliance on interdisciplinary integration. This article focuses on the theoretical foundation of surface-subsurface
numerical hydrological models. It includes a comparative and analytical discussion of leading numerical hydrological models,
encompassing model architecture, numerical solution strategies, spatial representation, and coupling algorithms. Additionally,
this paper contrasts these models with traditional hydrological models, thereby delineating the relative merits, drawbacks, and
future directions of numerical hydrological modeling.
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1. Introduction

Scientific modeling is a mathematical method of calculating
unknown variables through known variables based on un-
derstanding the laws of nature. Hydrological models re-
present state-of-art understanding of the hydrological
processes and express the spatial and temporal laws of hy-
drological processes through mathematical formulas. Model
combined with observational data can be used to validate the
reliability and appropriateness of the theory as well as to
predict future changes, thus understanding and predicting
natural processes (Wagener et al., 2010; Ren et al., 2011;
Vallis, 2016; Fatichi et al., 2016; Duffy, 2017; Peel and
McMahon, 2020). Presently, as efficient and economical
scientific experimental tools, hydrological models are in-
dispensable in supporting decisions in agricultural produc-
tion, water resource management, disaster prevention and
mitigation, pollutant control, and socio-economic develop-
ment (Ren et al., 1996; Xu, 2010; Zheng et al., 2010; Fatichi
et al., 2016; Tang et al., 2019; Yu et al., 2020). It has also
been used to validate water cycle theories and guide the
layout of scientific observation networks, etc. (Beven, 2012;
Li et al., 2018; Blöschl et al., 2019).
Hydrological models describe the fundamental processes

of the hydrological cycle, typically encompassing pre-
cipitation, interception, infiltration, flow through porous
media, evapotranspiration, and runoff. In cold regions, the
phase change induced by glaciers, permafrost, and snow
cover adds complexity, profoundly affecting the typical
hillslope hydrological processes (Wang et al., 2014; Yang et
al., 2018). Beyond natural hydrological processes, models
must also account for the anthropological impact on the
hydrological cycle. Figure 1 illustrates the entire process of
watershed hydrology and its various elements, such as pre-
cipitation, evaporation, snow melting, runoff generation,
routing, river runoff, infiltration, interflow, groundwater re-
charge, and baseflow. It also includes glacial, snow, perma-
frost, vegetation cover, land cover, lake, and other surface
hydrological processes. At the micro-scale, hydrological
processes exhibit high complexity and heterogeneity. At the
macro-scale, due to the averaging of micro-scale features, the
complexity of hydrological processes is actually reduced,
and the description of streamflow in large-scale hydrological
models becomes more conceptualized, with relatively less
computational process and complexity (Wood et al., 1988;
Grayson et al., 1992; Blöschl et al., 1995; Savenije, 2001;
Sivapalan, 2003; Peel and McMahon, 2020).
Existing hydrological models have yet to fully meet the

complex and various needs of water-related research and
engineering applications. Peel and McMahon (2020) sum-
marized and compared 279 rainfall-runoff models, citing a
comment by Clark et al. (2011): “The current overabundance
of models is symptomatic of an insufficient scientific un-

derstanding of environmental dynamics at the catchment
scale, which can be attributed to difficulties in measuring
and representing the heterogeneity encountered in natural
systems.” Consequently, new hydrological models are con-
tinually emerging.
The development of hydrological models grapples with the

contradiction between reducing model complexity and finely
representing hydrological physical processes; therefore, that
has led to two divergent model development approaches:
top-down and bottom-up. These approaches focus on the
physical parameterization of hydrological processes, data
limitations, uncertainty, and computational resource con-
straints (Franchini and Pacciani, 1991; Ren et al., 1996; Si-
vapalan, 2003, 2018; Sivapalan et al., 2003; Wagener et al.,
2004; Savenije, 2010; Semenova and Beven, 2015; Vallis,
2016; Clark et al., 2017; Novotny, 2018).
The top-down modeling approach takes the long-term and

large-scale hydrological response of the watershed as a
starting point and progressively refine and complicate the
simulation of specific physical processes at small re-
presentative areas. Watershed/sub-watershed are con-
ceptualized as imaginary storage spaces—the “bucket
model”, where driving factors on the computational units or
watershed responses are expressed through simple empirical,
linear/non-linear, or multivariate collinear fitting relation-
ships. Hydrological models based on the bucket concept
focus on how surface and subsurface processes form hy-
drographs at river outlets. They simplify the flow processes
on slopes and river channels, and the bidirectional exchange
between surface and groundwater; hence, their descriptions
of runoff and baseflow processes are distinctly con-
ceptualized. However, in natural watersheds, surface water
and groundwater interactions are frequent, and the direction
and intensity of fluxes at the interaction interface vary with
the dynamic hydraulic gradient (Winter, 1999; Levine and
Salvucci, 1999; Maxwell and Miller, 2005; Wang et al.,
2007; Sulis et al., 2012; Krause et al., 2014; Maxwell and
Condon, 2016; Mukherjee et al., 2018).
The bottom-up modeling approach starts from the micro-

scale Hydrological Computation Unit (HCU) and funda-
mental physical equations, aggregating the hydrological
processes of all HCUs to represent the long-term, macro-
scale hydrological response of the entire watershed. This
modeling type is also called a process-based or physics-
based model. The HCUs are small areas in the watershed
required to express spatial heterogeneity. Fundamental
governing equations are constructed based on conservation
principles (mass, energy, momentum). Micro-scale physical
equations describe hydrological processes, calculating water
and energy storage, movement, and phase-change in three-
dimensional space at high spatiotemporal resolution. These
models reflect watershed-scale hydrological responses by
aggregating micro-scale physical processes. It is important to
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emphasize that the foundational principles of these hydro-
logical models, such as mass/energy conservation principles
and hydraulic laws (e.g., Darcy’s Law), are universal. They
exist independently of any single model, can be validated in
laboratory and field experiments, and their parameters have
definite physical meanings (Beven, 1989; Fatichi et al.,
2016; Li et al., 2018; Ntona et al., 2022).
Figure 2, adapted from Hrachowitz and Clark (2017),

showcases different watershed hydrological models′ spatial
and process characteristics. In the two-dimensional con-
tinuum of “spatial resolution–process complexity”, the hor-
izontal axis reflects the spatial resolution of hydrological
models, i.e., the degree of detail in representing the spatial
heterogeneity of watersheds. The vertical axis indicates the
complexity of the physical processes. Traditional hydro-
logical models, exemplified by SWAT and VIC, tend to be

Figure 1 Schematic diagram of the hydrological cycle in the watershed.

Figure 2 Schematic representation of hydrological models in the space of spatial resolution versus process complexity (adapted from Hrachowitz and
Clark, 2017). The spatial resolution axis depicts the number and scale of HCUs in each model, while the process complexity axis represents the number of
processes within a single HCU. The shading indicates the transition from bucket models (white) to spatiotemporally continuum-based models (gray), with red
dots marking the two extremes of resolution and process complexity. The models in the figures are: 1, unit hydrograph (Sherman, 1932); 2, HBV (Bergström,
1992); 3, SUPERFLEX (Fenicia et al., 2011); 4, FLEX-Topo (Gharari et al., 2014); 5, mhM (Samaniego et al., 2010); 6, mhM-topo (Nijzink et al., 2016); 7,
SWAT (Arnold et al., 1998); 8, NWS-Sacramento (Burnash and Singh, 1995); 9, GR4J (Perrin et al., 2003); 10, HYPE (Lindström et al., 2010); 11, VIC
(Liang et al., 1994); 12, TOPMODEL (Beven and Kirkby, 1979); 13, CRHM (Pomeroy et al., 2007); 14, TACD (Uhlenbrook et al., 2004); 15, WASIM-ETH
(Schulla and Jasper, 1998);16, DHSVM (Wigmosta et al., 1994); 17, MIKE-SHE (Refsgaard and Storm, 1996); 18, ParFlow (Kollet and Maxwell, 2008); 19,
CATFLOW (Zehe et al., 2001); 20, HYDRUS-3D (Šimůnek et al., 2008); 21, CATHY (Camporese et al., 2010); 22, HydroGeoSphere (Jones et al., 2006); 23,
PIHM/SHUD (Qu and Duffy, 2007; Shu et al., 2020).
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positioned in the lower-left corner. These models, char-
acterized by their lower spatial resolution and simplified
hydrological processes, utilize sub-watersheds or hydro-
logical response units as HCUs. Therefore, they are classi-
fied as the top-down category. In contrast, integrated surface-
subsurface numerical hydrological models, represented by
MIKE-SHE, ParFlow, and PIHM/SHUD, occupy the upper-
right corner. These bottom-up models imply a higher spatial
resolution and physical continuity, offering a more refined
depiction and expression of physical processes.
Integrated Surface-Subsurface Numerical Hydrological

Models (referred to simply as Numerical Hydrological
Models) are based on a bottom-up modeling approach and
form a unique category within distributed hydrological
models (Figure 3). They mathematically couple surface and
subsurface hydrological processes using numerical methods.
They differ from numerical solution-based groundwater
models like MODFLOW (McDonald and Harbaugh, 1984;
Niswonger et al., 2011) and traditional hydrological models
conceptualizing surface-subsurface processes. Groundwater
models, often employing numerical methods, focus on

spaces tens to hundreds of meters below the surface, en-
compassing processes like flow in low-permeability layers
and fractures, extending beyond the “rainfall-runoff” scope
of hydrological models. Groundwater models treat surface
water processes as boundary conditions instead of directly
coupled processes. In conceptual hydrological models, the
groundwater module lacks a realistic depiction of depth,
instead using conceptual bucket models to reflect ground-
water recharge-storage-release processes with their release
curves (Savenije, 2001), as seen in models like the Xi-
n’anjiang model (Zhao and Wang, 1988), VIC (Liang et al.,
1994), and the WRF-Hydro model (Gochis et al., 2018).
Numerical hydrological models offer universal descriptions
of physical processes, more accurately reflect human activ-
ities′ impacts, and provide a scientific basis for coupling with
other physical processes (hydrothermal coupling, pollutant
transport, vegetation dynamics), which has become an
emerging and important direction in hydrological modeling
in recent decades (Hu et al., 2007; Wang et al., 2008; Max-
well et al., 2014; Paniconi and Putti, 2015; Hrachowitz and
Clark, 2017; Peel and McMahon, 2020; Shu L C et al., 2022;

Figure 3 Schematic diagram of hydrological model classification (blue italicized text in the diagram represents representative models of each category. The
models included are Xin’anjiang (Zhao and Wang, 1988), unit hydrograph (Sherman, 1932), HBV (Bergström, 1992), FLEX (Gharari et al., 2014),
TOPMODEL (Beven and Kirkby, 1979), SWAT (Arnold et al., 1998), VIC (Liang et al., 1994), PRMS (Leavesley et al., 1983), WRF-Hydro (Gochis et al.,
2018), WEP (Jia et al., 2001), GBHM (Yang et al., 1998), GSFlow (Markstrom et al., 2008), HEIFlow (Tian et al., 2018; Zheng et al., 2020; Han et al., 2021),
GSFLOW-SWMM (Tian et al., 2015), SWAT-MODFLOW (Park et al., 2019), FEFLOW-3D (Hu et al., 2020), SHUD (Shu et al., 2020), PIHM (Qu and
Duffy, 2007), MIKE-SHE (Refsgaard and Storm, 1996), HMS (Yu et al., 1999, 2006; Yu, 2000), ParFlow (Kollet and Maxwell, 2006), PAWS (Shen and
Phanikumar, 2010), HydroGeoSphere (Aquanty, 2013), CATHY (Bixio et al., 2002; Camporese et al., 2010)).
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Ntona et al., 2022). Mainly since 2000, global hydrologists
have developed over 20 significant new numerical hydro-
logical models, considerably propelling the field’s ad-
vancement.

2. Brief discussion of numerical hydrological
models

Numerical hydrological modeling originated in the 1970s.
Freeze and Harlan (1969) proposed a modeling method
based on hydrodynamic partial differential physical equa-
tions and a unified model blueprint for surface and subsur-
face hydrological processes (Freeze and Harlan, 1969;
Cooley, 1971). However, due to the limitations of compu-
tational capacity at that time, it wasn’t until the 1980s, with
the emergence of the SHE model (Abbott et al., 1986), that
numerical hydrological models began to gain prominence.
Beven (2012, Figure 1.2) summarized the five fundamental
steps of hydrological modeling: conceptual modeling,
mathematical modeling, process modeling, model calibra-
tion, and model validation.

2.1 Governing equation

Numerical hydrological models use the mass conservation
formula as their governing equation, explicitly describing the
relationship between surface and groundwater storage and
fluxes (eqs. (1) and (3)). Typically, the Saint-Venant equation
(eq. (1)) and the Richards equation (eq. (4)) are used to
calculate surface and subsurface flow processes (Freeze and
Harlan, 1969; Maxwell and Miller, 2005; Farthing and Og-
den, 2017; Singh, 2018; Haque et al., 2021). While the
governing equations of these models are basically the same,
their simplification and solution methods vary, applying
different one-, two-, and three-dimensional simplifications
for surface and subsurface processes.
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Eqs. (1) and (3) are the mass conservation governing equa-
tions for surface water and groundwater, respectively, while
Eqs. (2) and (4) are the calculation formulas for their flow. In
the formula, h is the groundwater hydraulic head, the water
content of an unsaturated layer, or the height of surface water
(L); t is the time (T); v is the horizontal mean flow rate of
surface water (L T−1); Qe is the surface-subsurface interac-
tion flow (L3 T−1), with positive surface-to-subsurface flow;

Qsu is the source-sink term or boundary condition for surface
water (L3 T−1), which may include precipitation, irrigation,
and water supply; A is the vertical projected area of the

control unit (L2); n is the Manning’s coefficient T L
1
3 ; R is

the hydraulic radius; Sf is the friction slope (L L
−1); Sw(h) is

the water storage coefficient (L3 L−3 L−1), which is the water
volume released per unit volume after unit head falls, and
includes the storage coefficient of groundwater (L−1) and the
water content of the unsaturated soil layer (L L−1); q is the
groundwater flux (L3 L−2 T−1), which is a function of head
height or water content and is calculated using Darcy’s law
or Richards’ equation (eq. (4));Qss is the source/sink term for
groundwater or soil water (L3 T−1), including percolation,
injection, extraction, and evapotranspiration rates per unit
area in practical computation; V is the volume of the control
unit (L3); Ke(h) is the effective hydraulic conductivity (L
T−1), a function of soil moisture content or matric potential;
and z represents the vertical distance from a datum (L). The
calculations of q and v are based on Manning’s equation (eq.
(2)) and the Richards equation (eq. (4)), respectively. The
coupled computation of surface and subsurface processes at
the watershed scale hinges on the continuity of the hydraulic
head and the exchange of water volumes Qe between them.
Eq. (3) articulates the groundwater balance, positing the
change in the control volume resulting from a unit change in
water head on the left-hand side (LHS), while the right-hand
side (RHS) encompasses the divergence of percolation flux,
surface-subsurface interactions computed by Darcy’s Law
and the Richards equation, and source-sink terms.
Watershed hydrological models also require other surface

processes, such as snowmelt and evapotranspiration, which
are included as source-sink terms in the model. Glaciers,
snowpack, and evapotranspiration are usually loosely cou-
pled to surface and subsurface hydrological processes as
modules, i.e., computed at different time steps or without
iterative computation. Processes such as land cover, agri-
cultural activities, etc., are modeled to affect hydrological
and land surface processes through changes in plant phe-
nology and hydraulic parameters.

2.2 Boundary condition

Boundary conditions (BCs) in hydrological modeling are
typically categorized into Dirichlet and Neumann. The Di-
richlet boundary condition (DBC) represents the first type of
boundary condition for partial differential equations, also
known as a prescribed boundary condition, which prescribes
a constant value for the target variable at a specific location.
For instance, in groundwater flow problems, the Dirichlet
condition sets a fixed groundwater head. The Neumann
boundary condition (NBC), also referred to as the second
type of boundary condition for partial differential equations,

1463Shu L, et al. Sci China Earth Sci May (2024) Vol.67 No.5



specifies the first-order derivative of the target variable at a
specific location. This might involve assigning a prescribed
flux, such as the water injection or extraction rate. In three-
dimensional numerical hydrological models, boundary con-
ditions can be applied in any direction at any location. Nu-
merical hydrological models incorporate common boundary
conditions or assumptions, which include:
(1) Watershed’s impervious bottom boundary. It is char-

acterized as an NBC, assuming a zero flux, which is an
assumption widely applicable in hydrological studies of
many watersheds. When it is crucial to reflect the influence
of deep groundwater on the simulation system, non-zero
bottom boundary conditions can be adaptable to enable in-
teraction with this deeper groundwater.
(2) Closed watershed boundaries. There is neither influx

nor outflow of water from external sources or to the exterior
in the horizontal direction at the hillslope units. Namely, the
flow across the boundary for the HUCs is zero. This as-
sumption is valid when the simulated boundary aligns with
the actual watershed boundary and when the surface and
groundwater boundaries coincide. If the simulation domain
encompasses only a portion of the watershed (e.g., for ri-
parian zone studies), specific DBCs or NBCs must be set to
maintain the water balance. However, boundary conditions
are often challenging to ascertain via observation in practical
applications. Thus, an alternative approach is to expand the
simulation domain to the zero-flux watershed boundaries. By
employing fine grids in focal research areas and coarser grids
from surrounding areas to the watershed boundary, the model
ensures reasonable boundary conditions without the con-
straints of lacking boundary data.
(3) Top boundary. The upper boundary of a watershed is

subject to precipitation and irrigation, which are applied as
NBCs. Evapotranspiration is typically treated as an NBC
affecting both the surface and subsurface. However, unlike
precipitation or irrigation, evapotranspiration is not an ex-
ternal input but is computed based on meteorological data
and soil temperature and moisture content.
(4) River outlet boundaries. The river outlet is the only

horizontally oriented outlet of water from the watershed, so
hydrologic models are consistent with the law of conserva-
tion of mass or the water balance equation: ΔS=P−ET−Q, the
∆S is the water storage in the watershed, and P is the amount
of precipitation, and ET is evapotranspiration, and Q is the
amount of runoff.

2.3 Numerical solution

It is evident from the governing equations ( eqs. (1) and (3))
that the target variable h is a function of both time and space,
necessitating the discretization of the subject matter in both
temporal and spatial dimensions. Discretization of the wa-
tershed in three-dimensional space, both horizontally and

vertically, is a critical step in numerical hydrological mod-
eling. An efficient spatial discretization scheme must not
only satisfy the simulation accuracy required for the study
area and comply with boundary condition constraints but
also optimize the number of discretization units to lessen the
dependency on computational resources. Horizontal spatial
discretization approaches are typically categorized into
structured and unstructured schemes, which will be dis-
cussed in detail in the model comparison section. Vertically,
the focus is primarily on partitioning soil layers from the
surface down to the impervious bottom boundary. The ver-
tical discretization scheme is flexible, and layering of iso-
tropic, isoparametric, or arbitrary division exists. It can also
be divided into saturated or unsaturated layers.
Numerical methods can also be categorized into explicit

and implicit methods: an explicit method directly calculates
the variables at the next time step from those of the previous
step, while an implicit method derives the variables at the
next time step through a series of formulas, matrices, or
iterative algorithms. Under the same spatiotemporal resolu-
tion, explicit methods offer significantly faster computa-
tional performance than implicit methods. However, implicit
methods ensure the computational stability of numerical
solvers, allowing for larger time steps. In contrast, explicit
methods must adhere to the Courant-Friedrichs-Lewy (CFL)
condition, a necessary (but not sufficient) criterion for the
convergence and stability of numerical methods (Courant et
al., 1928). The CFL condition stipulates that the time step in
numerical methods must be sufficiently small to guarantee
computational accuracy, as larger time steps may result in
non-convergence or instability in the outcomes.
Temporal discretization refers to the time step in a model.

The time step and spatial resolution combination sig-
nificantly influence the stability and convergence of nu-
merical solutions constrained by the CFL condition. A higher
spatial resolution necessitates a correspondingly higher
temporal resolution to ensure stability in numerical methods.
A direct proportional relationship exists between temporal
resolution and spatial resolution, often expressed as a power
(first or higher order) of the spatial resolution.

3. Comparison of numerical hydrological
models

The following section compares major numerical hydro-
logical models based on various criteria, including numerical
methods, spatial grid structures, coupling mechanisms,
variable transfer, river channel topology, and the availability
of source codes (Table 1).

3.1 Numerical methods

The primary numerical techniques include Finite Difference
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(FD), Finite Element (FE), and Finite Volume (FV) methods.
The FD method, known for its simplicity, clear physical in-
terpretation, and ease of programming, is the most widely
used in hydrology and meteorology (Paniconi and Putti,
2015). The FE method ensures global mass balance but may
not maintain local balance. The FV method addresses this
limitation of the FE method, ensuring both global and local
water balance. While there is no clear superiority among
these three methods, their mathematical implications slightly
differ: the FD method calculates approximated values at
specific points in space, the FE method approximates fitting
curves within an HCU, and the FV method, a particular case
of the FE method, computes the mean value within the
HCUs. Therefore, the interpretation of results from these
three methods should differ slightly, although model users in
practical applications often treat them as equivalent mean-
ings.

3.2 Spatial decomposition

Horizontal grids in the spatial representation of hydrological
models are primarily categorized into structured and un-
structured types. HCUs with uniform geometric shapes and
areas characterize structured grids. These grids offer several
advantages: (1) The solution is intuitive and logical; (2) They
are conducive to programming, offering simplicity and ef-

ficient parallel computing; (3) Data input and output can be
expressed in matrix structures, facilitating efficiency and
intuitiveness in data preprocessing, postprocessing, and vi-
sualization. Although rectangular structures are most com-
mon in structured grids, equilateral triangles, and hexagons
are also viable options.
In contrast, unstructured grids (or irregular grids) exhibit

the following distinct advantages: (1) They provide a more
effective representation of complex three-dimensional ter-
rain; (2) They offer higher adaptability to irregularly shaped
research areas, and ensure that boundary conditions align
closely with the theory of numerical simulations (Beven,
2012); (3) They allow for the dynamic adjustment of HCU
size, enabling finer or coarser resolution in specific areas
while maintaining overall boundary conditions. Therefore,
the use of unstructured grids not only ensures high-resolution
simulation in focal areas but also maintains stability in
boundary conditions without significantly increasing the
HCU numbers. This achieves a balance between simulation
accuracy and computational expense.
Figure 4 demonstrates the watershed’s spatial discretiza-

tion using regular rectangular grids and irregular triangular
grids (Figure 4a–4d). Under a roughly equivalent average
HCU area, the number of units in the rectangular grid is close
to that of the unstructured grids. However, the rectangular
grid carries the burden of inactive units (blank cells outside

Table 1 Comparison of major numerical hydrological models regarding model structure, solution algorithms, spatial characteristics, etc

Model Numerical
method Grid River

topology Coupling Variable passing Source
code Literature Country

SHUD FV Unstructured Cross Global implicit Pressure continuity Yes Shu et al. (2020,
2024a, 2024b) China/USA

PIHM FV Unstructured Touch Global implicit Pressure continuity Yes Qu and Duffy (2007) USA

CATHY FE Unstructured No channel Sequential
iteration BC switching No

Bixio et al. (2002);
Camporese et al.

(2010)
Italy

HydroGeoSphere FE Unstructured No channel Global implicit First-order exchange No Aquanty(2013) Canada

OpenGeoSys FE Unstructured Touch Sequential
iteration First-order exchange Yes Delfs et al. (2009,

2012) Germany

ParFlow FD Structured Cross Global implicit Pressure continuity Yes Kollet and Maxwell
(2006) USA

PAWS FD Structured Cross Asynchronous
linking First-order exchange No Shen and Phaniku-

mar (2010) USA

tRIBS FE Unstructured Touch Asynchronous
linking First-order exchange No Ivanov et al. (2004) USA

inHM FE Unstructured No channel Sequential
Iteration First-order exchange No VanderKwaak and

Loague (2001) USA

MIKE SHE Structured Structured Cross Asynchronous
linking BC switching No Abbott et al. (1986) Denmark

GEOtop FV Structured No channel Global implicit Pressure continuity Yes Rigon et al. (2006);
Endrizzi et al. (2014) Swiss/Italy
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the watershed), and its boundary representation significantly
deviates from the actual boundary (Figure 4c). When local
refining of the watershed is required (area outlined in dark
red dashed lines), the number of HCUs in the rectangular
grid increases substantially, whereas the increase is much
smaller in the unstructured grids (Figure 4e–4h). The main
drawbacks of unstructured grids are: (1) The computation is
relatively complex, compatible only with FE and FV meth-
ods; (2) Data interpretation and visualization are somewhat
more complicated, necessitating specialized pre- and post-
processing software.

3.3 Variable coupling

The coupling of surface and subsurface hydrological pro-
cesses represents a significant technical difference among
models and is one of the challenges in model development.
Figure 5 illustrates three different coupling methods: The
asynchronous linking method calculates the surface and
subsurface hydrological processes separately with different

time steps, then exchanges variables to form new boundary
conditions in the following step. The sequential iteration
method is similar to asynchronous linking, but after ex-
changing boundary conditions, it requires further iteration to
find a convergent state for both surface and subsurface water.
The global implicit method solves all variables within a
unified set of nonlinear equations and time steps (Panday and
Huyakorn, 2004; Furman, 2008; Maxwell et al., 2014). The
computational difficulty and complexity increase with each
method. Due to the significant difference in water movement
rates between surface and subsurface processes and the
iterative time step constrained by the CFL condition (often
subjected by surface and river fluxes), the global implicit
method is the least efficient under similar conditions. How-
ever, this method more accurately depicts the continuous
movement of water in natural spaces and ensures global
water balance.
Variable exchange refers to the transfer of key variables

between different governing equations. A typical example of
variable exchange is the infiltration rate, a crucial variable

Figure 4 Differences in watershed, river (blue lines), watershed boundary (red solid line), and focal area (red dash line) as described by structured and
unstructured grids (irregular triangles). Unstructured grids not only better represent the irregular boundaries of a watershed at the same resolution but also
enable local densification of the watershed without a significant increase in the total number of hydrological computation units.
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for the interaction between surface and subsurface water,
which determines surface runoff and soil moisture content.
In first-order variable exchange methods, the infiltration flux
is computed in the surface process module and then passed
on to the soil water calculation module. In the boundary
condition exchange approach, the infiltration is treated as a
boundary condition for the deeper soil layers. The method of
variable exchange is closely related to the coupling strategy
of surface and subsurface processes.

3.4 River channel coupling

River runoff is a crucial variable in watershed simulation.
Numerical models employ various topological solutions to
describe river channels, compute streamflow, and calculate
the exchange relationships between river channels and hill-
slope units (Figure 6). Some models lack explicit river
channel units, treating all HCUs as hillslope units. However,
when water on the HCU surface exceeds a threshold, it is
considered a river channel unit and calculated using the
particular formula for river channels, as seen in models like
inHM (VanderKwaak and Loague, 2001), CATHY (Bixio et
al., 2002), and GEOtop (Rigon et al., 2006). Other models
incorporate explicit river channel units, where the model
solves for both hillslope and river channel units, each with
distinct geometric shapes and calculation methods.
The spatial topological relationship between river channels

and hillslope units can be crossed or touched in different
models. For example, in the PIHM model, the hillslope units
are triangular in plane view, while the river channels are
rectangular (defined by the length and width of the channel),
sharing one edge with adjacent hillslope triangles. Hence, in

such a touch relationship, the river channel only exchanges
water with the two units on either side. The advantages of
touch are simplicity in spatial relationships and the ability to
calculate water fluxes on either side of the river. However, its
drawbacks include (1) numerically inefficient obtuse trian-
gles along winding rivers; (2) a dependency between the
detail of the river channel discretization and the size of the
HCUs, requiring oversimplification of the river for compu-
tational efficiency; (3) potential formation of sink units at
river start points, where excessive accumulation of water
may lead to instability in a numerical solver. Cross re-
lationship between river channels and hillslope units avoids
these issues but requires predefined spatial topological re-
lationships and circumspect vertical matching between river
and hillslope topographies. The solution matrix formed from
the cross relationship is no longer a regular diagonal or
sparse matrix, which challenges the solver.

3.5 Open source code

Although the open source code is not a requirement of sci-
entific models, its availability is significant for numerical
hydrological models due to the models’ high development
complexity. Open-source code enables users to understand
the internal formulas and solving processes. Additionally,
open-source models facilitate user engagement in model
enhancements and are advantageous for coupling studies
with other related scientific models, thereby enhancing the
reproducibility of scientific experiments (Yu et al., 2013,
2016). On the other hand, proprietary models often achieve
commercial success, as seen with MIKE SHE and Hydro-
GeoSphere. Currently, the development and application of
numerical hydrological models in research and commercial
spheres are predominantly led by developed countries in
Europe and North America.

4. Characteristics of numerical hydrological
models

The summary of the characteristics of numerical hydro-
logical models is based on a comparison with other non-
numerical hydrological models.

4.1 Advantages

Strong Physical Process Description: Numerical hydro-
logical models use physical equations (such as the Darcy-
Richards equation, Saint-Venant equation, Green-Ampt
equation, etc.) to describe watershed hydrological processes.
Their parameters are often based on measurable or derivable
hydraulic properties like soil hydraulic conductivity, poros-
ity, surface roughness, etc. These models utilize fundamental

Figure 5 Conceptual structures of the three main methods for coupling
and variable transfer among surface and subsurface processes. In the dia-
gram, variables x and y represent the values of surface and subsurface
variables at times t and t+1, respectively.
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mass and energy conservation principles to solve for the
overall watershed response, representing a bottom-up ap-
proach and a mathematical depiction of objective natural
processes. Regarding physical process representation and
spatial structure, physically-based numerical hydrological
models surpass conceptual and lumped models. They are not
only beneficial for breakthroughs in ungaged watersheds but
also provide reliable physical insights for hydrological re-
search under historical and climatic changing conditions
(Abbott et al., 1986; Vertessy et al., 1993; Wagener et al.,
2004; Held and Soden, 2006; Todini, 2007; Milly et al.,
2008; Peel and McMahon, 2020). Lumped and semi-dis-
tributed models often use abstract parameters to represent
hydrological, physical processes; for instance, the runoff
process in SWAT is determined by the Curve Number (CN),
which integrates multiple hydrological factors such as soil,
land cover, agricultural management, and slope (Bartlett et
al., 2016).
High Temporal Resolution: Due to the high resolution and

constraints of the CFL condition, numerical hydrological
models operate at a temporal resolution ranging from sec-
onds to hours. This feature provides a significant advantage
in describing rapid processes like flood, inundation, and
hydrochemical processes. Some models feature adaptive
time stepping—where the algorithm automatically adjusts
the time step based on the rate of change and systematic
convergence—thus significantly enhancing overall model
efficiency while meeting the requirements for numerical
convergence. In the comparative study of numerical hydro-
logical models, many models operate with time steps ranging
from 0.001 s to 30 min due to the smaller scale of simulation
targets (Kollet et al., 2017).
High Spatial Resolution and Continuity: High spatial re-

solution means the model can better represent the natural
heterogeneity of the watershed (McDonnell et al., 2007;
Maxwell and Kollet, 2008; Mirus et al., 2011; Mascaro et al.,
2015; Fatichi et al., 2016). Spatial continuity is manifested in
the continuous process of hydrological variables within a
discretized space of higher resolution, such as the tracking of
water flow along the surface/subsurface paths from “ridge-
midslope-slope bottom-river channel-river outlet” in nu-
merical hydrological models. In contrast, SWAT computes
runoff generation and routing based on Hydrological Re-
sponse Units (HRUs) but cannot describe the process of
water traveling from the furthest point of an HRU to a river,
nor can it track the path of pollutant dispersion within an
HRU.
Surface-Subsurface Process Coupling: Numerical hydro-

logical models more accurately represent the interaction
between surface and sub-surface processes, enhancing the
model’s applicability across various watersheds. For ex-
ample, most conceptual models fix the direction of ground-
water flow towards rivers from the hillslope to the river
channel; they fail to uniformly represent processes such as
river seepage replenishing groundwater in arid areas during
dry seasons and groundwater feeding rivers in wet seasons.
In the tightly coupled surface-subsurface approach of nu-
merical hydrological models, the direction of interaction
between groundwater and rivers is determined by real-time
hydraulic gradients, allowing for bidirectional water flow.
Traditional models divide the watershed into sub-water-
sheds, directly drain sub-watershed groundwater to local
runoff, and then route to the outlet. This approach may not
adequately reflect scenarios in mountainous areas where
high-altitude groundwater contributes to downstream flow
through deep groundwater pathways. In contrast, numerical

Figure 6 Various spatial topological relationships between river channels and hillslope units.
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models that couple surface and subsurface hydrological
processes are well-suited for such complexities.
Hydraulic Representation of Climate Change and Human

Activities: Physical models inherently can represent en-
vironmental dynamics, as they are based on the laws of
conservation of mass and energy rather than relationships
fitted to observations specific to a time and space (Fatichi et
al., 2016). The primary impacts of human activities on the
hydrological cycle of watersheds include (1) changes in land
cover (e.g., deforestation); (2) hydraulic engineering (e.g.,
dams, levees); (3) water extraction and irrigation (Peters and
Meybeck, 2000; Ntona et al., 2022). Numerical hydrological
models reflect land cover through four aspects: evaporation,
surface resistance for runoff, phenological patterns of ve-
getation, and changes in soil characteristics, effectively re-
presenting the hydraulic characteristics of land cover (Ewen
and Parkin, 1996; Shu et al., 2020, 2024a). In contrast, in the
SWAT model, the experiential CN represents land cover
characteristics, which lack sufficient physical basis and are
impossible to measure. The CN value encompasses soil
permeability, roughness and impervious area, and struggles
to represent phenological characteristics, leading to sig-
nificant uncertainties in the model structure (Singh, 2018).
More Computable Spatial Variables: Numerical hydro-

logical models discretize space in horizontal and vertical
dimensions, resulting in numerous HCUs and three-dimen-
sional computational outcomes. The data volume generated
by these models is significantly larger than that of lumped
and semi-distributed models. The high-resolution outputs of
these models are advantageous for comparison with ob-
servations and provide valuable guidance for future ob-
servational system.
Tight Coupling with Disciplinary Models: Numerical hy-

drological models lay a solid theoretical foundation for
coupling with other disciplinary models, thanks to their clear
physical mechanisms, rich computable variables, adherence
to mass and energy conservation constraints, and capability
to track material transport in space (Ewen et al., 2000; Fa-
tichi et al., 2016). The spatial continuity mentioned earlier is
conducive to multidisciplinary coupling studies. For in-
stance, the models′ detailed descriptions of water pathways
from hillslopes facilitate integration with land surface pro-
cesses (Shi et al., 2015; Kuffour et al., 2020), geochemistry
(Shi et al., 2018), reaction transport (Bao et al., 2017; Li et
al., 2017), agricultural economics (Cobourn et al., 2018),
lake dynamics (Ladwig et al., 2021, Shu et al., 2024b), soil
erosion and geomorphic changes (Zhang et al., 2016), coastal
groundwater interactions (Yu et al., 2021), and coupling with
cryospheric processes (Endrizzi et al., 2014). Examples of
typical model couplings include CLM-PAWS (Shen et al.,
2013), CLM-ParFlow (Kuffour et al., 2020), ATS (Painter et
al., 2016), Flux-PIHM (Shi et al., 2013), LE-PIHM (Zhang et
al., 2016), and tRIBS-VEGGIE (Ivanov et al., 2008).

4.2 Disadvantage

High Parameter Requirements: Numerical hydrological
models face challenges due to the high number of parameters
required, the need for reliable and physically-based para-
meters, and the difficulty in calibration (Maxwell and Miller,
2005; Ampadu et al., 2013). Lumped models need only 3–6
parameters to accurately simulate the “rainfall-runoff” pro-
cess (Ye et al., 1997; Perrin et al., 2001; Wagener et al., 2004;
Beven, 2010, 2012; Peel and McMahon, 2020), but numer-
ical hydrological models, due to the number of governing
equations and the complexity of watershed hydrological
processes, require a larger number of parameters. Taking
hydraulic conductivity (K) as an example, models like SWAT
need only one representative K value for an HCU, but the
SHUD model (Shu et al., 2020, 2024a) requires at least three
K values for the surface vertical infiltration, subsurface
vertical and horizontal directions; more Ks in three dimen-
sions are needed for multi-layer groundwater processes.
SWAT uses the CN value to express soil hydraulic char-
acteristics, land cover, and agricultural management, but
numerical hydrological models typically require more than
10 parameters to represent these features. The parameters in
numerical hydrological models usually have specific physi-
cal meanings and are highly sensitive; thus, parameter re-
liability directly impacts simulation outcomes. The range of
physical parameters is limited to specific reasonable inter-
vals, and due to a large number of parameters, calibration is
challenging (Vertessy et al., 1993; Anderman and Hill, 1999;
Sivapalan, 2003; McDonnell et al., 2007; Keating et al.,
2010; Fatichi et al., 2016). Additionally, the increase in the
number of parameters leads to equifinality issues and para-
meter uncertainty (Savenije, 2001; Beven and Freer, 2001;
Ebel and Loague, 2006; Li, 2013).
Computational Efficiency: The advantage of high spatio-

temporal resolution in numerical hydrological models comes
at the cost of limited computational efficiency. The effi-
ciency of a minute-scale model with high spatial resolution is
significantly lower than daily-scale models with coarser re-
solution for the “rain-runoff” process. The primary reasons
for this low efficiency are (1) a large number of HCUs with
high resolution, (2) small computational time steps, and (3)
complex solution methods that require iteration for con-
vergent time steps. This efficiency constraint limits the ap-
plicability of the models, with typical applications ranging
from 10−6 to 106 km2 (Maxwell et al., 2014; Paniconi and
Putti, 2015; Kollet et al., 2017). When applying these mod-
els, enhancing solution efficiency through parallel comput-
ing is a significant challenge. While numerical hydrological
models have parallelization strategies, their computational
efficiency is still insufficient for extensive, long-term si-
mulations. The crux of parallelizing these models lies in the
direct spatial interdependence of HCUs, rendering HCU
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grouping the foremost challenge. Furthermore, the inter-
group computational dependencies within each time step,
often necessitating iterative exchanges, imply that synchro-
nization of inter-group data at each time step is essential,
with a significant computation resources being dedicated to
data synchronization. Therefore, extending the data syn-
chronization interval emerges as a pivotal technical strategy
in advancing parallel computation.
Complex Model Deployment: The complexity of the

model deployment in numerical hydrological models is
manifested in several aspects: (1) Complex horizontal spatial
decomposition, where horizontal space division is com-
monly structured (rectangles, triangles, hexagons) or un-
structured (irregular triangles, quadrilaterals, or a hybrid);
(2) Complex vertical spatial discretization, which includes
fixed-depth layering, hydrologically characterized layering,
or dynamic layering; (3) Intricate spatial topological re-
lationships, primarily concerning the coupling relationships
between different HCUs. This includes the interaction be-
tween land and hydrological processes, as well as the inter-
play between explicit river channels and hillslope units. Such
complexities require a nuanced understanding of spatial in-
terdependencies and precision in modeling physical inter-
actions across the watershed.
Substantial Development Challenges: The development of

numerical hydrological models poses significant challenges
due to the multitude of physical processes involved, the
complexity of mathematical solutions, the abundance of
parameters, high computational resource demands, and in-
tricate model debugging. Most existing numerical hydro-
logical models culminate years of collaborative effort by
large research teams. For instance, despite building on
17 years of research accumulated from PIHM since 2004, the
SHUD model still underwent a 6-year development journey
(see https://github.com/shud-system/shud). Analysis of the
development history of ParFlow from its GitHub repository
(https://github.com/parflow/parflow) reveals that it took a
team of three scientists six years to release the first version of
ParFlow. Subsequent versions have been released over time,
with collaboration from renowned institutions such as Prin-
ceton University, Colorado School of Mines, Washington
State University, Syracuse University, Lawrence Livermore
National Laboratory in the U.S., University of Bonn, Jülich
Research Center, and the Centre for High-Performance Sci-
entific Computing in Terrestrial Systems in Germany, and
the French Institute of Environmental Geosciences. These
collaborations highlight the significance and complexity of
the research involved in developing such models (see https://
parflow.org/#team).

4.3 Spatial-temporal scale issue

The scale issues in hydrological modeling remain a crucial

and unresolved challenge. Blöschl et al. (2019) listed 23
unsolved problems in hydrology, many of which pertain to
the scale issues of hydrological laws and models, including
spatial parameters and the spatial heterogeneity of hydro-
logical responses. While the study scale of natural water
cycles spans frommolecular to planetary scales (10−2–107 m)
(Dooge, 1988), practical hydrological research, particularly
in modeling, primarily focuses on the range of 10−2–107 m.
The scale of hydrological models is interpreted in two

ways. (1) Granularity or spatial resolution, refers to the ob-
servation, summarization, or calculation of hydrological
laws or parameters for a specific spatial area. For example,
Figure 2 describes the basic computational units and cover-
age areas of hydrological models (Blöschl, 1999; Hrachowitz
and Clark, 2017), focusing primarily on granularity. (2)
Extent pertains to the spatial extension of the study object,
namely, a large-scale or small-scale research area (Becker,
1992; Su, 2001; Gao and Zhao, 2020; Gou et al., 2022). This
classification often involves various scales such as slopes,
watersheds, continents, etc., but there is a significant dif-
ference in HCU areas across these scales.
Granularity inevitably leads to issues like internal spatial

heterogeneity within units, optimal unit resolution, and re-
presentativeness of parameters. In fact, there is no perfect
unit (Blöschl, 1999). For instance, the HCUs in numerical
hydrological models are often smaller units, primarily be-
cause the formulas they rely on (like the Darcy-Richards
equation and Saint-Venant equation) originate from labora-
tory observations and theoretical studies on ideal slopes. As
the area of an HCU increases, its connection to these physical
formulas becomes more tenuous, trending more towards a
conceptual or statistical fitting framework. By integrating
these small-scale physical formulas, numerical hydrological
models attempt to simulate the hydrological cycle across
watersheds and even at planetary scales. Within their basic
HCUs, the models use a single set of hydrological para-
meters, so the spatial heterogeneity of a watershed is ex-
pressed by the variation of HCUs’ parameters. For example,
each HCU might have a unique value for soil hydraulic
conductivity (K), and a watershed with n HCUs would have
n different K values. Ideally, the K value for each HCU
should represent the actual soil hydraulic conductivity for
that specific unit. However, since the area of an HCU is
much larger than that of a sampling point, the derived K
value may not be consistent with K values measured at dif-
ferent locations within the HCU. Nevertheless, the spatial
trends exhibited by models in practice can largely be re-
presented by this simplified approach, such as the distribu-
tion of K values across multiple HCUs from upstream to
downstream, generally aligning with the actual distribution
in soil hydraulic conductivity (Yu et al., 2014). Parameter
optimization is still indispensable for numerical hydrological
models, while preserving the spatial heterogeneity of para-
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meters.
Although field hydrological observations are often based

on specific locations, the observational data reflect the hy-
drological response characteristics of a much larger area. For
instance, observations at the outlet of a watershed—an area
of only a few square meters, represent the cumulative effect
of numerous surface and subsurface hydrological processes
from various upstream contributing areas. Such measure-
ments, like water level, flow rate, and sediment content,
provide insights into the broader watershed dynamics. In
contrast, small-scale measurements typically focus on com-
pletely enclosed and controllable hydrological processes.
These include laboratory experiments like Darcy’s on satu-
rated soil and Vauclin’s experiments (Vauclin et al., 1979) on
water movement in saturated and unsaturated soils under
fixed boundary conditions. The relationships between pre-
cipitation and runoff observed at larger scales, such as in-
filtration-excess and saturation-excess conceptualization, are
often fitted using conceptual formulas or experimental
curves. In contrast, the description of small-scale hydro-
logical processes tends to utilize more physically reliable
formulas. These include physical equations such as the Saint-
Venant equation, Manning’s formula, Darcy-Richards
equation, and the Green-Ampt equation, which provide a
more detailed and physically accurate representation of wa-
ter movement at these finer scales.
Numerical hydrological models are applied across a broad

range of areas. When testing and releasing these models, they
are often simulated in the V-Catchment, Vauclin experi-
ments, and impervious slab test cases (with areas ranging
from 100 to 103 m2) to verify their algorithms. Subsequently,
these models are validated in smaller watersheds (approxi-
mately 104–108 m2). The application scope of these models
extends from individual watersheds to national and con-
tinental extents (Kollet and Maxwell, 2006; Shen and Pha-
nikumar, 2010; Paniconi and Putti, 2015; Shu et al., 2020;
Chen et al., 2023). Theoretically, numerical hydrological
models based on physical principles should not be limited by
geographical extent. However, in practical applications,
limitations mainly arise from data availability and compu-
tational resources. With the growth of global baseline geo-
graphic data, data limitations have significantly decreased
(Shu et al., 2024a), positioning computational resources and
the efficiency of model algorithms as the primary challenges
for numerical hydrological models.
Temporal resolution and period are also critical factors

when applying hydrological models. The time resolution or
time step of numerical hydrological models is constrained by
the CFL condition and is determined based on the spatial
resolution and flow velocity. As a result, most numerical
hydrological models do not have a fixed computational time
step. Instead, they dynamically adjust it based on whether
specific variables satisfy the CFL condition or whether the

error converges within a given time step. Typically, the finer
the spatial resolution and the higher the rate of change of
variables, the smaller the actual time step requires. Numer-
ical hydrological models are versatile, enabling not only
short-term simulations for hydrological events but also ex-
tensive applications in long-term water resource manage-
ment and climate change research. This flexibility allows
them to adapt to various research and practical applications,
from immediate hydrological responses to long-term en-
vironmental impacts.
Numerical hydrological models are sensitive to the tem-

poral resolution of forcing data. In these models, the runoff
generation is governed by the Saint-Venant equation, and the
infiltration process is governed by Darcy’s Law. The in-
tensity of rainfall significantly affects the water partitioning
between surface runoff and infiltration. For instance, it is
impossible to unevenly redistribute a daily rainfall of 24 mm
d−1 over 24-hour intervals. Therefore, it is typically averaged
to 1 mm h−1 (24 mm/24 h) or 0.167 mm min−1. Redistribut-
ing daily rainfall intensity evenly over hourly or minute in-
tervals significantly reduces the intensity at higher temporal
resolutions, directly impacting runoff generation. Similar
resolution requirements apply to other meteorological ele-
ments like radiation, temperature, and wind speed. Conse-
quently, numerical hydrological models typically demand
meteorological data with a resolution finer than daily (e.g.,
hourly or sub-hourly) to meet their theoretical and practical
requirements. This necessity arises from the models′ intrinsic
design to capture fine-scale hydrological dynamics, which
are strongly influenced by the temporal variability of me-
teorological conditions.

4.4 Uncertainty and parameter calibration

Uncertainty is a persistent and significant issue in hydro-
logical research, directly impacting the applicability and
credibility of model results, yet remains without definitive
resolution (Beven and Binley, 1992; Georgakakos et al.,
2004; Beven, 2006; Montanari, 2007; Pechlivanidis et al.,
2011). The uncertainties in hydrological models manifest in
data, model structure, parameters, and initial conditions
(Refsgaard et al., 2006; Clark et al., 2016). Reliance on data
such as precipitation, temperature, soil moisture, and runoff,
introduces uncertainties due to measurement errors, data
processing errors, and spatiotemporal variability. Structural
uncertainties in models arise from simplifications and as-
sumptions; no model can fully capture the complexity of
natural systems, leading to inherent structural uncertainties.
For instance, simplifying or omitting cryospheric processes
(glaciers, snow, and permafrost) in models hinders the ac-
curate representation of hydrological processes in cold re-
gions. Uncertainties introduced by initial conditions
generally dissipate after a certain simulation period, which is
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defined as the warm-up period. Reliable algorithms for es-
timating the length of the warm-up period are lacking; cur-
rent research relies on personal experience or identifies a
period when a variable stabilizes (Bernsen et al., 2008;
Rahman and Lu, 2015; Seck et al., 2015; Kim et al., 2018).
Parameter uncertainty in hydrological models manifests as

the equifinality phenomenon, which refers to multiple dif-
ferent parameter sets producing similar simulation results
within an acceptable accuracy threshold. However, not every
parameter set accurately reflects the actual hydrological
process (Beven and Freer, 2001; Savenije, 2001; Todini,
2007; McDonnell et al., 2007; Zehe et al., 2014). The para-
meter uncertainty issue is significant in numerical hydro-
logical models, primarily due to the large number and high
dimensionality of parameters (Orth et al., 2015). Through
parameter optimization methods, the results from different
parameter combinations can always approximate the ob-
served data. Parameter optimization often targets a single
variable (e.g., outlet streamflow). Using multiple observa-
tional variables with high spatiotemporal resolution as op-
timization targets can reduce parameter uncertainty (Aubert
et al., 2003; Camporese et al., 2009; Shi et al., 2013). Nu-
merical hydrological models can simulate more variables
with higher temporal and spatial resolutions than traditional
hydrological models, making multi-variable parameter op-
timization feasible (Maxwell et al., 2015; Hrachowitz and
Clark, 2017).
During the model parameter calibration/optimization pro-

cess, the selection of sensitive parameters, calibration
methods, and objective functions directly influences the re-
sults, leading to varying degrees of error and uncertainty
(Madsen et al., 2002; Cuntz et al., 2015; Flipo et al., 2023).
Numerical hydrological models feature a multitude of ad-
justable parameters, which often have non-linear relation-
ships with the objective functions used for model evaluation.
This complexity makes manual parameter adjustment im-
practical for calibration, rendering automated parameter
optimization almost the only viable approach. Given the
uneven distribution of effective parameters in parameter
space, their complex non-linear interrelationships, and the
low computational efficiency of numerical hydrological
models, enumeration and Monte Carlo sampling methods are
inefficient or are trapped in local optima. Consequently,
evolutionary optimization algorithms are commonly used in
practice (Vrugt et al., 2003; Tolson and Shoemaker, 2007;
Shen and Phanikumar, 2010; Razavi and Tolson, 2013; Shi et
al., 2014; Yu et al., 2014; Hansen, 2016).

5. Prospects

5.1 Universal datasets

Where complex models and their higher attention to spatial

and temporal details are required, the data resource re-
quirements also are increased. For numerical hydrological
models to demonstrate their adaptability across diverse wa-
tersheds, climatic conditions, and human activities and to
highlight the advantages of their physical structure, extensive
testing in various watersheds is necessary. However, pre-
paring model data is a bottleneck in the model application.
Therefore, establishing universal model datasets and data
preparation tools is of practical value for developing and
applying these models (Leonard and Duffy, 2013; Li et al.,
2021; Ntona et al., 2022). Before preparing a universal da-
taset, it is necessary to identify the essential data required for
constructing hydrological models. The three groups of es-
sential data needed for hydrological simulation are (1) Wa-
tershed geographic characteristics, including watershed
boundaries, elevation, slope, river networks, etc.; (2) Soil,
geology, and land use data, along with their physical para-
meters such as soil hydraulic properties, impervious area,
roughness, etc.; (3) Meteorological data, including pre-
cipitation, and data forcing energy transfer and evapo-
transpiration processes such as temperature, wind speed,
humidity, air pressure, and radiation (Leonard and Duffy,
2013; Peckham et al., 2017; Ntona et al., 2022).
Establishing a public platform that provides these three

groups of key data would not only lower the barriers to
learning, researching, and disseminating hydrological mod-
els but also facilitate scientists to conduct extensive, re-
producible, and comparative experiments. The Model
Integration (MINT) project (http://mint-project.info), funded
by the Defense Advanced Research Projects Agency of the
United States, has established a global dataset on a private
server, enabling rapid and reproducible model deployment
for any watershed globally. However, its services are not yet
public (Garijo et al., 2019; Gil et al., 2021). HydroTerre
(https://hydroterre.psu.edu) is a universal data platform for
hydrological models, but currently, it only supports data
sharing services for HUC12 (Hydrological Unit Code level
12) level within the United States, which averages about
100 km2 in area (Leonard and Duffy, 2013). The Global
Hydrologic Data Cloud (https://ghdc.ac.cn/) can provide
essential terrestrial data for model deployment in most global
watersheds and prepare input files for specified models (Shu
et al., 2024a).
Beyond the challenges of planning and constructing data

platforms, data availability poses a significant obstacle to
developing public data platforms. Data availability en-
compasses two aspects: (1) The existence of data or whether
its quality meets the required standards; (2) Open access to
data or permission for redistribution. Global watershed
boundary classification and river network data face the for-
mer issue, characterized by scarcity or inferior quality. Even
comprehensive global datasets like HydroSheds and Mer-
itHydro are insufficient to meet the quality demands for rapid
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model deployment. Some global datasets (e.g., ASTER
GDEM, USGS Global Land Cover, SoilGrids, GLDAS,
FLDAS) utilize public domain protocols, allowing for data
reorganization and redistribution on any platform. However,
certain datasets remain under private protocols, limiting data
sharing beyond their original platforms. For instance, nu-
merous datasets from the China Meteorological Data Service
Centre (http://data.cma.cn) and the Resource and Environ-
ment Science and Data Center of the Chinese Academy of
Sciences (https://www.resdc.cn) explicitly prohibit data
sharing or redistribution outside of their websites.

5.2 Multi-process coupling

The primary focus of numerical hydrological models re-
mains on the “rainfall-runoff” process, with a generally loose
coupling approach for processes that directly influence water
movement, such as evapotranspiration, vegetation dynamics,
spatiotemporal distribution of temperature/energy, and
cryospheric elements like glaciers, snowpack, and perma-
frost. The computation of potential evapotranspiration often
employs the Penman-Monteith equation, which is then
multiplied by a moisture stress coefficient derived from soil
moisture content to estimate actual evapotranspiration. Ve-
getation phenology influences hydrological processes uni-
directionally through a time series of parameters such as leaf
area index, stomatal conductance, and root depth, while soil
moisture fluctuation does not feedback into plant dynamics.
Glacial and snow processes are primarily modeled using
degree-day models, with ice and snowmelt treated as addi-
tional surface boundary conditions or precipitation in the
models. Due to the lack of coupled temperature and energy
calculations, these models fail to represent the impact of soil
freezing and thawing in permafrost regions on hydrological
processes (Wang et al., 2014; Sun et al., 2019, 2023). Current
land surface models provide a more detailed depiction of
these processes. Hence, coupling numerical hydrological
models with land surface models could enhance the re-
presentation of energy, phase change in water, and vegetation
dynamics.

5.3 Multidisciplinary coupling

Matter and energy have no boundaries, and models from
different disciplines address different processes but intersect.
The isolation of models is a byproduct of disciplinary divi-
sions and scientific questions. Facing rapid human activities
and climate change challenges, a systematic representation
of the synergistic effects of human activities and natural
processes requires coupling between multidisciplinary
models. This approach aims for a rational, comprehensive,
and systematic mathematical description of the laws gov-
erning the movement of matter and energy (Wagener et al.,

2010; Clark et al., 2015). The Heihe Watershed Allied
Telemetry Experimental Research (HiWATER) illustrates
that the watershed hydrological cycle is a complex mega-
system encompassing hydrology, meteorology, cryosphere,
geomorphology, ecology, and human activities, character-
ized as “intricate, overlapping, intertwined, and endless”
(Cheng and Li, 2015; Li et al., 2023).
Rapid development in coupling research across meteorol-

ogy, land surface processes, the cryosphere, agriculture,
ecology, environment, geomorphology, and oceanography
models is evident. For instance, significant progress has been
made in coupling numerical hydrological models with
landslides (Simoni et al., 2008), vegetation ecology (Bertoldi
et al., 2010; Chiesa et al., 2014), seawater intrusion (Mazzia
and Putti, 2005; Povich et al., 2013; Yu et al., 2021), and
cryospheric processes (Dall’Amico, 2010; Dall’Amico et al.,
2011; Endrizzi et al., 2014; Painter et al., 2013, 2016).
Maxwell and Condon (2016) revealed the strong influence of
lateral groundwater flow on large-scale evapotranspiration
by coupling the ParFlow and CLM models. The MINT
program has established an automated model coupling fra-
mework, integrating hydrological (SHUD and TopoFlow
(Peckham et al., 2017)), agricultural, and economic models
to address natural and socio-economic risks triggered by
climate change, providing rapid response and support for
governmental decision-making (Garijo et al., 2019; Gil et al.,
2021). The WRF-Hydro system (Gochis et al., 2018) suc-
cessfully coupled meteorological (WRF), land surface
(NOAH), and hydrological (Hydro) models, simulating en-
ergy and water in the earth system, though its hydrological
model component still has room for improvement. The
HEIFLOW, GBEHM, and other models focus on the “water-
soil-air-bio-human” coupling (Li et al., 2010; Yang et al.,
2015; Tian et al., 2015, 2018; Li et al., 2018) but also de-
veloped high-resolution ecohydrological products like pre-
cipitation, snow, evapotranspiration, soil moisture, and net
primary productivity. These developments are extensively
applied in critical process research, model development, and
validation in watershed ecohydrology, revealing the complex
hydrological cycle in the Heihe River Basin (Li et al., 2012,
2023).

5.4 Model testing and comparison

Numerical hydrological models have begun to take shape.
Each model differs in its foundational design, mathematical
methods, and solution algorithms, yet there is a notable lack
of targeted and systematic inter-model comparisons. This
paper provides a technical comparison of typical numerical
hydrological models in terms of design and structure, but this
is still insufficient compared to the inter-model comparisons
within traditional hydrological models (Maxwell et al., 2014;
Paniconi and Putti, 2015; Kollet et al., 2017; Newman et al.,
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2017; Haque et al., 2021).
Benchmarking is a starting point for model comparisons

and has garnered attention recently (Woods et al., 2003;
Smith et al., 2004; Sebben et al., 2013; Nearing and Gupta,
2015; Newman et al., 2017). Descriptive articles of several
numerical hydrological models (e.g., SHUD, Parflow,
PAWS) often include idealized experiments such as V-
catchments, Vauclin et al. (1979) experiments, and low-
permeability surface tests (Kollet and Maxwell, 2006; Pa-
niconi and Putti, 2015). The model descriptive articles (e.g.,
Kumar et al., 2009; Shen and Phanikumar, 2010; Shu et al.,
2020) compare different models against analytical solutions
and laboratory observations of surface water and ground-
water processes, effectively demonstrating the capabilities of
the models.
Comparisons among several numerical hydrological

models reveal that all tested models can complete the de-
signed tasks. In simple tasks, the differences between models
are less than 5%. However, for more complex hydrological
processes (such as intense surface-subsurface interactions,
strong spatial heterogeneity, rapid changes in groundwater,
etc.), significant discrepancies are observed among the
models′ results (Maxwell et al., 2014; Kollet et al., 2017;
Tijerina-Kreuzer et al., 2021). Preliminary comparisons
suggest that no single model is significantly superior or in-
ferior. These studies, focusing primarily on theoretical and
idealized experiments, lack comparative research on the si-
mulation effects in real watersheds.
Moreover, the comparisons are limited to surface and

groundwater hydrological variables without addressing other
hydrological processes like evapotranspiration or baseflow
partitioning. Comparisons using real watershed data should
include runoff observations and simulation results, spatial
soil moisture, groundwater, and evapotranspiration. Nu-
merical hydrological models provide high spatiotemporal
resolution hydrological variables, making the comparison of
model results with observations complex and varied, invol-
ving data comparisons at different spatial and temporal
scales. Reliable comparisons between models necessitate
support from universal datasets.

6. Conclusion

This paper summarizes the theoretical foundations of nu-
merical hydrological models and systematically compares
different numerical hydrological models′ computational
methods and surface-subsurface coupling techniques. It cri-
tically reviews the characteristics of numerical hydrological
models and clarifies their advantages and disadvantages, to
provide insights and methodological references for the future
development of these models.
Numerical hydrological models, grounded in the principles

of micro-scale conservation and physical equations, use
numerical methods to couple surface and subsurface water
flows, thus simulating watershed-scale hydrological re-
sponse. Their main advantages include strong physical pro-
cess description, high temporal and spatial resolution with
spatial continuity, coupling of surface-subsurface processes,
realistic representation of human activities in hydraulics, a
wealth of computational variables, and facilitating multi-
disciplinary model integration. Current developmental lim-
itations include high parameter demands, uncertainty, low
computational efficiency, complex modeling processes, and
significant development challenges. Future research in nu-
merical hydrological models should focus on constructing
universal datasets, multi-process coupling, interdisciplinary
coupling, and further enhancement of computational per-
formance to expand their application scope.
The integrated surface-subsurface numerical hydrological

model research represents one of the cutting-edge and
mainstream directions in hydrological model development
and is seen as “an opportunity not to be missed” (O’Connell
and Todini, 1996; Peel and McMahon, 2020). However, due
to constraints related to the openness of source code, data
preparation, and adaptability verification, the development
of the numerical hydrological model in China has yet to
manifest significant scientific influence. The scientific
community should support the development of new models
while also strengthening the global validation, promotion,
and improvement of existing numerical hydrological models.
This approach provides practical support for scientific re-
search and engineering applications and enhances under-
standing of the natural hydrological cycle (Shu L L et al.,
2022).
It is important to recognize that individual models, whether

complex or simple, are developed to support particular
physical predictions with limitations and strengths that must
be recognized when implemented. This paper focuses on
watershed-scale models centered on the core scientific issue
of “rainfall-runoff”. It does not delve into related aspects of
watershed hydrology, such as geomorphic evolution, soil
erosion, sediment transport, solute transport/reaction, water-
heat transfer/phase change, or climate change. Addressing
these topics requires a broader and more integrated approach,
recognizing the interconnectedness of these processes within
the watershed hydrological cycle.
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