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Abstract The latest Coupled Model Intercomparison Project Phase 6 (CMIP6) proposes new shared pathways (SSPs) that
incorporate socioeconomic development with more comprehensive and scientific experimental designs; however, few studies
have been performed on the projection of future multibasin hydrological changes in China based on CMIP6 models. In this paper,
we use the Equidistant Cumulative Distribution Function method (EDCDFm) to perform downscaling and bias correction in
daily precipitation, daily maximum temperature, and daily minimum temperature for six CMIP6 models based on the historical
gridded data from the high-resolution China Meteorological Forcing Dataset (CMFD). We use the bias-corrected precipitation,
temperature, and daily mean wind speed to drive the variable infiltration capacity (VIC) hydrological model, and study the
changes in multiyear average annual precipitation, annual evapotranspiration and total annual runoff depth relative to the
historical baseline period (1985–2014) for the Chinese mainland, basins and grid scales in the 21st century future under the
SSP2-4.5 and SSP5-8.5 scenarios. The study shows that the VIC model accurately simulates runoff in major Chinese basins; the
model data accuracy improves substantially after downscaling bias correction; and the future multimodel-mean multiyear
average annual precipitation, annual evapotranspiration, and total annual runoff depth for the Chinese mainland and each basin
increase relative to the historical period in near future (2020–2049) and far future (2070–2099) under the SSP2-4.5 and SSP5-8.5
scenarios. The new CMIP6-based results of this paper can provide a strong reference for extreme event prevention, water
resource utilization and management in China in the 21st century.
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1. Introduction

The Sixth Assessment Report of the Intergovernmental Panel
on Climate Change (IPCC AR6) indicates that the Earth’s
mean temperature has increased by 1.1°C relative to the
preindustrial revolution period of 1850–1900 and that the
rate of increase in global surface temperature in the period of
1970–2020 is greater than that in any 50-year period prior to
2000. Large amounts of greenhouse gases emitted by human
activities are a primary cause of global warming (IPCC,
2021); furthermore, elevated CO2 concentrations cause plant
stomata to close, leading to reduced transpiration and thus
affecting river flows (Gedney et al., 2006). Studies have
shown (Skliris et al., 2016) that a 1°C increase will affect the
hydrological cycle, amplifying the ambient humidity at a rate
of 3–4%. Increasing temperature changes the total and sea-
sonal peak of streamflow, which is mainly from snowmelt
(IPCC, 2021) and in combination with abnormal weather,
leads to hazards such as ice-rock collapse (Zhou et al., 2021).
Global climate models (GCMs) can describe in detail the
changes in atmospheric motion, heat exchange, and sea-land-
air-ice interactions over time (Gleick, 1989) and are effective
tools for studying the effects of historical, present, and future
atmospheric changes on surface physical processes (Gon-
zalez et al., 2010; Sun et al., 2013; Guo et al., 2015). Coupled
Model Intercomparison Project Phase 6 (CMIP6) has im-
proved the simulation of temperature and precipitation in the
China region compared with Coupled Model Inter-
comparison Project Phase 5 (CMIP5) (Jiang et al., 2020);
specifically, the dry bias is significantly reduced in southern
China (Zhu et al., 2020). CMIP6 is based on the Re-
presentative Concentration Pathways (RCPs) of CMIP5 (van
Vuuren et al., 2011) and proposes the Shared Socioeconomic
Pathways (SSPs) (Riahi et al., 2017), which can reflect
newer and more diverse greenhouse gas concentration
changes under social development (O’Neill et al., 2016).
However, the spatial resolution of GCMs is coarse, and
downscaling bias correction is usually required for finer-
resolution basin-scale hydrological model simulations,
where statistical downscaling is more widely used than dy-
namical downscaling due to simpler calculations and more
reliable results (Ahmed et al., 2013).
Many studies have been done regarding the impact of

future climate change on hydrology in China. At the single
basin scale, Zhao et al. (2020) used 10 CMIP5 GCMs after
statistical downscaling from the NEX-GDDP dataset
(Sheffield et al., 2006) and two hydrological models, in-
cluding variable infiltration capacity (VIC) (Liang et al.,
1994), the study showed that runoff in the Xijiang River
Basin increase in all seasons under the RCP4.5 and RCP8.5
scenarios, and the inter- and intra-annual variability of
runoff increased. However, the statistical downscaling of
NEX-GDDP is based on Princeton University’s global da-

taset of meteorological forcing (Sheffield et al., 2006),
which is less accurate in China than the China meteor-
ological forcing dataset (CMFD) (He et al., 2020), and it
lacks the wind speed variables necessary to drive the VIC
model. Wang et al. (2019) used three downscaled CMIP5
GCMs data that were based on the Equidistant Cumulative
Distribution Function method (EDCDFm) to drive the VIC
model, found that EDCDFm could better capture the ex-
tremes and spatial distribution of climate elements, and
under the RCP4.5 and RCP8.5 scenarios, projected a slight
increase in precipitation slightly increase and runoff in-
crease in the upper Yangtze River Basin in the near future
(2010–2039) and mid future (2040–2069), exceeding 95%,
and in the far future (2070–2099), exceeding 78%. Sun et al.
(2019) used 10 CMIP5 GCMs statistically downscaled data
based on the observation data from China Meteorological
Administration to drive the SWAT model (Arnold et al.,
2012) and found that under the RCP4.5 and RCP8.5 sce-
narios, future precipitation and runoff project increased in
the Yangtze River Basin. However, the future scenarios of
these studies are RCPs, and the latest SSP scenarios con-
sidering socioeconomic development are not used. Yao et al.
(2021) used statistically downscaled CMIP6 GCMs data
based on CMFD to drive the VIC model, and found that the
precipitation in the Huai River Basin is projected to increase
in the future, the interannual variation in evapotranspiration
and the seasonal variation in runoff are similar to the cor-
responding time scale variation in precipitation; however, its
statistical downscaling method is a simpler linear scaling,
and the correlation between the corrected variables and the
measured values is weak.
Some scholars have also conducted national-scale studies

of future hydrological changes. The results of Cook et al.
(2020) based on the CMIP6 multi-GCM ensemble mean
showed that under the SSP2-4.5 and SSP5-8.5 scenarios,
annual precipitation projected increase in the vast majority
of China in 2071–2100 relative to 1985–2014, and the
runoff increased significantly in northern China; but they
used coarse-resolution runoff from the GCMs themselves
and performed only national-scale analyses. Gu et al.
(2020) used 31 CMIP5 GCMs and four medium- and small-
scale hydrological models to project future runoff changes
in 151 small- and medium-sized basins in China, found that
relative to 1961–2005, most GCMs project a reduction in
annual runoff depth in the upper and middle Yellow River,
upper Yangtze River, Heilongjiang River, Pearl River, and
Southeastern River basins in 2011–2055 and 2056–2100
under the RCP8.5 scenario; however, this study does not
give the macroscopic variation in runoff at the first-level
basin scale in China. Based on five downscaled CMIP5
GCMs data from the Inter-Sectoral Impact Model Inter-
comparison Project (ISIMIP) (Warszawski et al., 2014) and
VIC model, Leng et al. (2015) showed that the annual
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runoff depths in 1971–2099 were reduced under the RCP8.5
scenario in the Chinese mainland and most basins, using
1971–2000 as the baseline period; but the ISIMIP bias
correction for the GCMs was based on a global reanalysis
dataset (Frieler et al., 2017; Cucchi et al., 2020), the limited
inclusion of Chinese real site observations may lead to bias
in the corrected data in China. Therefore, it is still necessary
to combine more station observations, adopt a more rea-
sonable statistical downscaling approach, reduce the spatial
resolution of projected data, and use the latest and more
reliable CMIP6 GCMs and large-scale hydrological models
to make more comprehensive and detailed projections and
analyses of future basin-scale hydrological changes in
China.
In this study, the computationally simpler and more ac-

curate statistical downscaling method EDCDFm (Teutsch-
bein and Seibert, 2012) with the CMFD as the gridded
observation reference data was used to downscale six
CMIP6 GCMs data for two mid-high warming scenarios,
SSP2-4.5 and SSP5-8.5. The downscaled bias-corrected six
GCMs data are used to drive the VIC model to simulate the
daily and gridded evapotranspiration and runoff depths in
China in 1985–2099; using 1985–2014 as the historical
baseline period, we analyze the changes in major basins and
grid-scale hydrological situations in the 21st century in
China relative to the historical period and provide references
and comments for future water resource management,
drought and flood prevention, and basin-specific responses
in China.

2. Materials and methods

2.1 Introduction to the study area

The area of this study is located 73.25°–135.25°E and 18.5°–
53.75°N in the Chinese mainland and includes 11 major river
basins (Figure 1): the Pearl River (PR), Yangtze River
(YZR), Yellow River (YR), Huai River (Huai), Hai River
(HR), Yarlung Zangbo River (YZ), Lancang River (LCR),
Nujiang River (NR), Hei River (Hei), Liao River (LR), and
Songhua River (SR). These basins are divided into southern
and northern China: the PR, YZR, Huai, YZ, LCR, and NR
are in southern China, and the YR HR, Hei, LR, and SR are
in northern China (Leng et al., 2015).

2.2 VIC model and parameter settings

2.2.1 VIC model
The VIC model is a semi-distributed macroscale land sur-
face hydrological model (Liang et al., 1994, 1996), which
can simultaneously consider the water balance and energy
balance between the land surface and atmosphere and use
meteorological data, including precipitation, temperature,
wind speed, radiation, humidity and water vapor pressure as
forcing, combined with soil parameters, vegetation para-
meters and other subsurface parameters to simulate eva-
potranspiration, soil water content, surface runoff depth,
baseflow depth, snow water equivalent, etc. As a mature
time-step-by-time step, grid-by-grid simulation hydro-

Figure 1 Spatial distribution map of 11 major basins and hydrological stations in the study area. 1, Wuzhou; 2, Luning; 3, Cuntan; 4, Yichang; 5, Hankou;
6, Datong; 7, Tangnaihai; 8, Lutaizi; 9, Luanxian; 10, Nuxia; 11, Jiuzhou; 12, Yunjinghong; 13, Daojieba; 14, Chifeng; 15, Jiangqiao; 16, Yingluoxia.
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logical model, the VIC model has been successfully applied
in many large and medium-sized basins worldwide (Wu et
al., 2017; Liu et al., 2018; Wang et al., 2018; Bohn and
Vivoni, 2019; Yang et al., 2019, 2021). The VIC model
establishes a set of empirical relationships that can be used
to derive radiative variables by daily precipitation, daily
maximum temperature, and daily minimum temperature
(Liang et al., 1994); it can be enabled to perform water
balance calculations only, using four variables: precipita-
tion, maximum temperature, minimum temperature, and
wind speed for hydrological simulations when the remain-
ing meteorological or radiative variables are difficult to
obtain.

2.2.2 VIC model parameter settings
In this study, VIC model version 4.06 (https://vic.read-
thedocs.io/en/master/) was used, with a simulated grid size
of 0.25° and a time step of one day. The surface cover types
in the model soil parameters were obtained from the Uni-
versity of Maryland Global Vegetation Classification dataset
(Hansen et al., 2000), and the leaf area index was a climatic
state value that varied from month to month (Maurer et al.,
2002; Zhang et al., 2014); the shape parameters of the in-
filtration curve, depth per soil layer, and baseflow parameters
were consistent with Zhang et al. (2014). This parameter was
calibrated using the natural streamflow at representative
hydrological stations in several basins in China and was
successfully validated. Since snow and permafrost are not
the subjects of interest in this study, only the water balance
module of the VIC model is used for hydrology simulation.
The daily evapotranspiration (Evap), surface runoff (SurR)
and baseflow (Baseflow) were simulated by four climate
variables: precipitation (P), near-surface air temperature
maximum (Tmax), near-surface air temperature minimum
(Tmin), and near-surface wind speed (Wind). The total runoff
(R) is obtained by summing the surface runoff and baseflow.
In this study, the warm-up period of the VIC model is set to
five years (1979–1984), and the simulation period is 1985–
2099.

2.2.3 Routing method
In this study, the global hydrodynamic model Catchment-
based Macroscale Floodplain (CaMa-Flood) was used for
river routing; CaMa-Flood routes input runoff generated
by the hydrological model to oceans or inland seas along a
prescribed river network map and calculates river and
floodplain water storage, river discharge, water depth, and
inundated area for each grid point (Yamazaki et al., 2011);
it is easy to implement, has more reliable results than other
models, and is widely used in flood analysis worldwide
(Lim et al., 2018). The CaMa-Flood model grid resolution
used in this study is 0.25° with a temporal resolution of
one day.

2.3 Model input data

2.3.1 CMFD dataset
The CMFD dataset spans 1979–2018 and includes seven
elements: near-surface air temperature, surface pressure,
specific humidity, wind speed, downward shortwave ra-
diation, downward longwave radiation and precipitation
rate, with a temporal resolution of 3 h and a spatial re-
solution of 0.1°. Its accuracy for China is better than that of
the internationally available reanalysis data (Yang et al.,
2010; He et al., 2020). The daily precipitation rate, daily
near-surface maximum temperature, daily near-surface
minimum temperature, and daily near-surface wind speed of
CMFD in 1979–2014 were interpolated to 0.25° by the bi-
linear interpolation method and as the measured information
for the VIC model atmospheric drive and GCM bias cor-
rection. Previous studies have shown that wind speed has a
small effect on VIC model hydrological simulations (Wu et
al., 2011; Wang et al., 2012; Livneh et al., 2013) and that
only the precipitation and temperature of GCMs are gen-
erally statistically downscaled when studying the impact of
future climate change on the water cycle (Wang et al., 2019;
Wang et al., 2021); therefore, bias correction for the inter-
polated wind speed of GCMs was not performed in this
study.

2.3.2 GCMs data
The GCMs are a powerful tool used by scientists to simulate
Earth’s climate change and project future climate change in
response to human activities and land, ocean and atmo-
spheric interactions. This study uses the historical scenario
data and combined scenarios (SSPs-RCPs) data for different
SSPs and RCPs (Eyring et al., 2016) from the latest CMIP6
GCMs (https://esgf-node.llnl.gov/search/cmip6/), as the VIC
model atmospheric forcing. Based on the variable’s com-
pleteness, representativeness, and usage frequency of GCMs
at the beginning of the study, six CMIP6 GCMs (CanESM5,
FGOALS-g3, GFDL-CM4, IPSL-CM6A-LR, MPI-ESM1-2-
HR, and MRI-ESM2-0) data from five countries and dif-
ferent research institutions were used to conduct this study.
Detailed information is shown in Table 1. The selected
periods are the historical period 1979–2014 and the future
period 2015–2099 under two scenarios, SSP2-RCP4.5
(SSP2-4.5) and SSP5-RCP8.5 (SSP5-8.5): the SSP2-4.5
scenario is a combination of middle-of-the-road future for-
cing SSP2 and RCP4.5 scenarios and reflects future climate
changes under nonextreme land use and aerosol scenarios;
the SSP5-8.5 scenario is a combination of the higher future
forcing SSP5 and RCP5.8 scenarios and accounts for the
only scenario among the SSPs that can produce a radiative
forcing of 8.5 W m−2 in 2100; both scenarios are in the Tier 1
experiments of CMIP6 (O’Neill et al., 2016).
The downscaling methods of GCMs mainly include dy-
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namic downscaling and statistical downscaling. Although
the former has clear physical meaning, it is more computa-
tionally intensive, while the latter is relatively easy to cal-
culate and can correct the statistical bias of the GCMs with
better results, so it is widely used in research regarding the
impact of climate change at the regional scale (Sun et al.,
2013; Zhang et al., 2016; Xu and Wang, 2019). Teutschbein
and Seibert (2012) used different statistical methods to cor-
rect the precipitation and temperature of regional climate
models for five mesoscale basins in Switzerland and found
that the method based on the cumulative distribution func-
tion (CDF) was the most effective. Based on this result, Li et
al. (2010) proposed the equidistant cumulative distribution
function method (EDCDFm), which corrects the CDF of the
GCM variables to be consistent with the measured data in the
historical period, and the GCM output of the future scenario
is corrected according to the difference between the CDF of
the GCMs historical period and the measured data. The study
shows that EDCDFm can effectively capture the extreme
values of climate elements and improve the accuracy of the
GCMs and model simulation after downscaling. Therefore,
this study used the EDCDFm method, CMFD and the six
GCMs, which were first downscaled (DS) to 0.25° spatial
resolution by bilinear interpolation; the daily Tmax, daily Tmax,
and daily P of each GCM grid were then biased corrected
(BC) based on the CDF of the corresponding grid series. The
CDF was calculated by referring to the paper (Watterson,
2008; Li et al., 2010), where the probability density function
(PDF) of temperature was estimated using a four-parameter
beta function, the PDF of precipitation was estimated using a
mixed gamma distribution function, and the parameters were
estimated using the 1979–2014 series for the historical per-
iod and the 2015–2100 series for the future period. The
calculations of the historical period and future period are
shown in eqs. (1) and (2), respectively.

( )x F F x= ( ) , (1)m-c,adjust o-c
1

m-c m-c

( ) ( )x x F F x F F x= + ( ) ( ) , (2)m-p,adjust m-p o-c
1

m-p m-p m-c
1

m-p m-p

where xm-c,adjust and xm-p,adjust are bias-corrected climate ele-
ment values for GCMs historical and future periods, re-
spectively; Fo-c

–1 and Fm-c
–1 are the quantile functions obeyed

for the measured data and GCMs data, respectively; Fm-c and

Fm-p are the cumulative distribution functions for GCMs
historical and future periods, respectively; xm-c and xm-p are
the meteorological element values for GCMs historical and
future periods, respectively.
Three indicators were used to evaluate the downscaling

bias-corrected GCMs data accuracy in monthly values: mean
absolute error (MAE), root mean squared error (RMSE), and
Pearson correlation coefficient (PCC). The smaller the value
ofMAE and RMSE is, the smaller the bias of the GCMs data
from the measured value. The value of PCC falls between −1
and 1; the closer it is to 1, the stronger the positive correlation
is between the GCMs and the measured data, and the closer it
is to −1, the stronger the negative correlation is between the
GCMs’ data and the measured data.

2.4 Streamflow simulation validation

Measured streamflow was used as references to evaluate the
monthly simulation performance of the VIC and CaMa-
Flood model; these measurements represented 15 hydro-
logical stations in ten major river basins of China based on
data from the Ministry of Water Resources and the Yin-
gluoxia hydrological station (Figure 1 and Table 2) in the Hei
Basin based on data from the National Tibetan Plateau Data
Center (Liu et al., 2016a, 2016b; Xie, 2016). Three error
evaluation indicators were used: mean relative error (MRE),
PCC and Nash-Sutcliffe efficiency coefficient (NSE) (eq.
(3)). Generally, a value of NSE closer to 1 indicates that the
simulation results are better, and an NSE less than 0 indicates
that the simulation results are unreliable.

( )
NSE

X S

X X
= 1

( )
, (3)i

n
i i

i

n
i i

=1

2

=1

2

where Si is the simulated value, Xi is the measured value, and
n is the number of months.

3. Results

3.1 Accuracy of model-simulated streamflow

CMFD was applied as the atmospheric forcing; the monthly

Table 1 Basic information of six CMIP6 GCMs

No. Name Abbreviation Nation Resolution (km)

1 CanESM5 Can Canada 500

2 FGOALS-g3 FGO China 250

3 GFDL-CM4 GFDL U.S. 100

4 IPSL-CM6A-LR IPSL U.S. 250

5 MPI-ESM1-2-HR MPI Germany 100

6 MRI-ESM2-0 MRI Japan 100
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hydrographs of the VIC and CaMa-Flood model-simulated
and observed streamflow at the hydrological stations are
shown in Figure 2. The NSE of monthly streamflow between
simulations and observations is at or above 0.60 at each
station (Table 2), suggesting that the VIC model is more
applicable to hydrological simulations in China. The accu-
racy of the simulated monthly streamflow is best in the PR,
YZR and Hei basins, with NSEs of 0.90, 0.70–0.80, and
above 0.80, respectively. The stations with relatively poor
simulation results are mainly located in the YR and HR
basins, with NSEs of 0.60, which may be related to the fact
that YR and HR basins are more influenced by human ac-
tivities. The MRE of simulated monthly streamflow is rela-
tively small in the PR, YZR, Hei, NR and LCR basins, with
15–30%, while it is relatively large in the HR, SR, and YR
basins, which may be related to the drier northern region with
smaller streamflow and larger human water consumption
(Table 2). The PCCs between the simulated and measured
monthly streamflow at all basin stations are approximately
0.9 except for the HR basin, and in the PR and YZR basins,
the PCCs are approximately 0.97. In summary, the hydro-
logical station monthly streamflow based on CMFD and VIC
model simulations had small errors and strong correlations
with the observation streamflow in all basins, and the VIC
model and CMFD driver used in this study performed well in
the Chinese mainland (Table 2).

3.2 Effects of GCMs data downscaling bias correction

3.2.1 GCMs data accuracy changes in the historical period
After downscaling bias correction, the GCMs for the his-

torical period (1985–2014) and the CMFDmultiyear average
monthly precipitation (P), monthly mean daily maximum
(Tmax), and minimum (Tmin) temperature are consistent in
spatial distribution (Appendix Figures S1–S3, link.springer.
com), and the RMSE of Tmax and Tmin are below 3°C month−1

for most of the grids. The RMSE of P is basically in the range
of 2–180 mm month−1, decreasing gradually from the
southeast coast to the northwest inland (Appendix Figures
S4–S6). The grid MAEs of P, Tmax, and Tmin before (DS) and
after (BC) downscaling bias correction for each GCM data
are shown in Figure 3. After bias correction, theMAEs of the
three variables for single GCM data are
0.4–4.6 mm month−1, 0.06–0.1°C month−1, and 0.06–
0.08°C month−1, respectively, which are much smaller than
those before bias correction of 18.3–28.8 mm month−1,
1.7–3.3°C month−1, and 2.0–4.3°C month−1 (Figure 3a).
After bias correction, the RMSEs of P, Tmax, and Tmin are
48.7–65.6 mm month−1, 2.1–3.0°C month−1, and 2.0–
2.7°C month−1, respectively, which are also much smaller
than those before bias correction of 54.7–74.0 mm month−1,
3.5–5.0°C month−1, and 3.5–5.8°C month−1 (Figure 3b). The
PCCs of P, Tmax, and Tmin with CMFD for each GCM before
bias correction are 0.51–0.82, 0.89–0.94, and 0.88–0.95,
respectively, while the PCCs of the variables after bias
correction are all above 0.99 (Figure 3c).
By combining the above indicators, after bias correction,

the MAE and RMSE of monthly P, Tmax, and Tmin of each
GCM are substantially reduced, PCC is close to 1, and
EDCDFm is better for bias correction of the six GCMs’ daily
P, Tmax, and Tmin.

Table 2 Detailed information of 16 hydrological stations in China and error evaluation table of the simulated streamflow

No. Station name Basin
Location Basin area

(103 km2) Validation period NSE MRE (%) PCC
Longitude Latitude

1 Wuzhou PR 111.3°E 23.48°N 310 1984–2009 0.93 15.9 0.97

2 Luning YZR 101.87°E 28.45°N 108 1984–2008 0.73 28.7 0.96

3 Cuntan YZR 106.36°E 29.37°N 867 1984–2008 0.86 20.7 0.97

4 Yichang YZR 111.23°E 30.67°N 1006 1984–2009 0.88 18.7 0.97

5 Hankou YZR 114.28°E 30.77°N 1488 1984–2009 0.89 13.9 0.97

6 Datong YZR 117.62°E 30.77°N 171 1984–2008 0.86 15.4 0.96

7 Tangnaihai YR 100.05°E 35.4°N 122 1984–2009 0.60 43.7 0.91

8 Lutaizi Huai 116.63°E 32.4°N 88 1984–2008 0.71 38.7 0.92

9 Luanxian HR 118.75°E 39.73°N 44 1984–2008 0.60 58.8 0.80

10 Nuxia YZ 94.57°E 29.47°N 191 1984–2008 0.74 37.4 0.89

11 Jiuzhou LCR 99.38°E 25.83°N 84 1984–2008 0.73 30.7 0.87

12 Yunjinghong LCR 101.07°E 21.88°N 138 1984–2007 0.69 32.5 0.86

13 Daojieba NR 98.53°E 24.59°N 115 1984–2007 0.78 27.1 0.91

14 Yingluoxia Hei 100.18°E 38.82°N 10 1984–2014 0.81 25.1 0.90

15 Chifeng LR 118.57°E 42.17°N 8.7 1984–2006 0.70 56.1 0.84

16 Jiangqiao SR 123.68°E 46.78°N 163 1984–2002 0.74 49.8 0.88
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3.2.2 GCMs Simulation accuracy in the historical period
Because different basins have different climatic conditions,
underlying surface circumstances, and socioeconomic de-
velopment levels, the result of six GCMs arithmetic en-
semble mean (Ensemble) before (DS) and after (BS)
statistical downscaling bias correction is compared with
CMFD-based annual P, annual evapotranspiration (E), and
annual runoff depth (R) for each basin in the historical period
(1985–2014). The effect of statistical downscaling on GCMs
and hydrological simulations and the confidence of GCM
simulation results in the historical period can thus be ana-

lyzed (Figure 4).
As seen from Figure 4, after bias correction, the annual P,

annual E, and annual R based on GCM Ensemble are closer
to the measured values, and the errors relative to CMFD
variables are reduced in most of the basins, with the largest
reduction in the errors of P and R in the YZ (Figure 4h) basin,
at −160% and −200%, respectively. For single basins, the
annual P from GCM Ensemble is slightly overestimated in
most basins, with smaller underestimates (<3 mm) in the HR
(Figure 4e), LR (Figure 4f), and Hei (Figure 4k) basins. The
annual E based on GCM Ensemble is similar to the measured

Figure 2 Comparison of simulated and measured monthly streamflow at each hydrological station in 1984–2009 ((p) Yingluoxia station in 1984–2014).
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value in the Hei (Figure 4k) and YR (Figure 4c) basins, with
some underestimation in the Huai (Figure 4d) basin and

some overestimation in other basins. The annual R based on
GCM Ensemble is somewhat overestimated in the Huai
(Figure 4d) basin and slightly underestimated in the LR
(Figure 4f), SR (Figure 4g), YZ (Figure 4h), NR (Figure 4i),
and LCR (Figure 4j) basins. For the Chinese mainland
average, the annual P and annual E based on the GCM En-
semble are slightly overestimated, and the annual R is
slightly underestimated (Figure 4l). Overall, after statistical
downscaling bias correction, errors of annual P, annual E,
and annual R based on the GCM Ensemble are substantially
reduced over the historical period, and the GCM-driven
multiyear average hydrologic simulations are more reliable
(Figure 4)

3.2.3 GCMs data variation in the future period
The comparison of the multiyear average annual P, annual
daily maximum Tmax and minimum Tmin temperature under
the SSP2-4.5 scenario for each GCM before (DS) and
after (BC) downscaling bias correction is shown in Fig-
ures 5–7, respectively, with the Chinese mainland and
each basin as one unit and both the near future (2020–
2049) and far future (2070–2099) included. After bias
correction, the P in the future period of the GCMs changes
greatly and decreases in most of the basins, among which
the FGOALS-g3 model has a greater decrease in the P in
the YZ basin (Figure 5). After bias correction, the changes
in Tmax and Tmin are small and increase in most of the

Figure 3 Histogram comparing the multiyear average monthly pre-
cipitation (P), monthly mean daily maximum (Tmax) and minimum (Tmin)
temperatures relative to CMFD error indicator values before (DS) and after
(BC) bias correction for GCMs data statistical downscaling from 1979 to
2014. (a)–(c) represent MAE, RMSE, and PCC, respectively, and the error
line is 1 standard deviation of the six GCMs data.

Figure 4 Multiyear average annual precipitation (P), annual evapotranspiration (E), and annual total runoff depth (R) of the basins in the historical period
(1985–2014) based on CMFD (yellow) and GCM Ensemble (Ens), before (DS, blue) and after (BC, purple) bias correction, with error lines of 1 standard
deviation of the six GCMs data. (a)–(l) represent the following basins: PR, YZR, YR, Huai, HR, LR, SR, YZ, NR, LCR, Hei, and the Chinese mainland,
respectively; the coordinate axes of (a)–(k) are the same as those in (l). The color shades of the basins represent the magnitude of the multiyear average P in
the historical period.
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basins, but the Tmax in the PR, Huai and YZR basins of the
FGOALS-g3 model (Figure 6) and the Tmin in the Hei
Basin of the GFDL-CM4, MPI-ESM2-0, and MRI-ESM2-
0 models decrease (Figure 7). The relative changes in the
GCMs in each unit after downscaling bias correction
under the SSP5-8.5 scenario are similar to those under the
SSP2-4.5 scenario, as detailed in Appendix Figures S7–
S9.

3.3 Hydrological process variation

3.3.1 Time variation analysis
To reflect the variation in hydrological variables in annual
totals over time during the study period, this paper plots the
spatially mean 1985–2099 annual P, annual E, and annual R
hydrographs for the Chinese mainland (Figure 8 and Ap-
pendix Figure S10). As seen from Figure 8, the annual var-

Figure 5 Scatter plots of multiyear average annual precipitation (P) before and after downscaling bias correction for each GCM data under the SSP2-4.5
scenario. “+” indicates the near future (2020–2049), “×” indicates the far future (2070–2099), different colors represent different basins, and CHN means the
Chinese mainland. PCC is the correlation coefficient of each model before (DS) and after (BC) downscaling bias correction.

Figure 6 The symbols mean the same as in Figure 5, but the variable is the multiyear average daily maximum temperature (Tmax).
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iation in hydrologic variables is large for the single GCM
during the historical period, the GCM Ensemble reflects
relatively gentle hydrologic variability, and the simulated
annual P (Figure 8a), annual E (Figure 8b), and annual R
(Figure 8c) in 2014 are approximately 630, 335, and
295 mm, respectively. In the future period (2015–2099) un-
der the SSP2-4.5 scenario, the annual P (Figure 8a), annual E

(Figure 8b), and annual R (Figure 8c) projected by the GCM
Ensemble wavelike rise from approximately 670, 345, and
310 mm to approximately 740, 380, and 350 mm, respec-
tively, and change more dramatically under the SSP5-8.5
scenario (Appendix Figure S10). The annual P (Appendix
Figure S10a), annual E (Appendix Figure S10b), and annual
R (Appendix Figure S10c) projected by the GCM Ensemble

Figure 7 The symbols mean the same as in Figure 5, but the variable is the multiyear average daily minimum temperature (Tmin).

Figure 8 Average annual precipitation (P), evapotranspiration (E), and runoff depth (R) change hydrograph for the Chinese mainland in 1985–2099 when
the future scenario is SSP2-4.5; the solid line is the CMFD value, the thin dashed line is the simulated value of each model, the thick blue dashed line is the
multi-GCM Ensemble (Ens) value, and the shaded area indicates 1 standard deviation of six GCMs data.
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wavelike rise from approximately 680, 345, and 320 mm to
810, 425, and 370 mm, respectively. The range of variation
in hydrologic variables and inter-GCM standard deviation of
single GCM projections also increased with the prediction
period, and the uncertainty of the multi-GCM Ensemble in-
creased.

3.3.2 Spatial variation analysis
To analyze the spatial distribution of climate change and
hydrologic variability, this study draws the spatial distribu-
tion map of multiyear averages of annual P (Figure 9a0),
annual E (Figure 9b0), and annual R (Figure 9c0) for the
historical period (1985–2014) based on CMFD and the GCM
Ensemble under the SSP2-4.5 scenario (Figure 9) and SSP5-
8.5 scenario (Appendix Figure S11) and the spatial dis-
tribution map of the change rate (CR) of multiyear average
hydrologic variables relative to the historical period in the
near future (2020–2049) and the far future (2070–2099).
As seen from Figure 9, the multiyear average of hydro-

logical variables for the historical period in the Chinese
mainland all decreased from southeast to northwest (Figure
9a0–c0), with annual P above 100 mm in most of the
northwest (<100 mm in Tarim Basin) and approximately
1000–3000 mm in the southeast (Figure 9a0), while annual E
and annual P were basically less than 50 mm in the north-
west, and in the southeast were approximately 250–1500 and
1000–2500 mm, respectively. In the southeast, the multiyear
average annual E is generally smaller than the annual R,
while in the north and southwest, the multiyear average an-
nual E is generally larger than the annual R (Figure 9b0, 9c0).
Under the SSP2-4.5 scenario, the near future multiyear

average annual P increases in most of China relative to the
historical period but decreases in northern Yunnan (Figure
9a1). The annual E only decreases in the northern Xinjiang
region but increases in all other regions and the increasing
trend is greater in the northwest than in the southeast, with
the largest increase in the northeast corner of the Qinghai-
Xizang Plateau (Figure 9b1). The annual R shows decreasing

Figure 9 The change rates (CR) of the multiyear average annual precipitation (P), annual evapotranspiration (E), and annual total runoff depth (R) of the
GCM Ensemble in future periods under the SSP2-4.5 scenario relative to the historical period. (a)–(c) represent P, E, and R, respectively, and numbers 0–2
represent the historical period (Historical), the near future (SSP245-near), and the far future (SSP245-far), respectively.
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changes in the Tarim Basin, the southern southwestern river
basin and the upper YZR basin but increases in all other
regions, particularly in the HR, YR, and Hei basins in
northern China, with CRs up to 150% near the Tarim Basin
and Qinghai-Xizang Plateau boundary (Figure 9c1); the CRs
of annual R and annual P have some spatial correlation
(Figure 9a1, 9c1). In the far future, the multiyear average
annual P of all grids in the Chinese mainland mostly in-
creases, and the CR between the south and the north is
bounded by ~10%, showing a distribution pattern of larger in
the north and smaller in the south (Figure 9a2). The increase
in annual E is relatively small in the Huai and PR basins,
while the relatively large increase occurs in the northwest,
especially at the northern boundary of the Qinghai-Xizang
Plateau, where the relative CR exceeds 70% (Figure 9b2).
The spatial distribution of the relative CR of annual R re-
mains similar to that of annual P (Figure 9a2, 9c2) and in-
creases basically in all the Chinese mainland grids, but the
10% CR dividing line moves south to the northern YZR
basin; in the northern Qinghai-Xizang Plateau, the relative
CR is as high as 80% (Figure 9c2). The dramatic changes in
future projected hydrological variables near the northern
boundary of the Qinghai-Xizang Plateau may be related to
the small P, E, and R during the historical baseline period in

the region, resulting in a larger relative CR due to the same
hydrologic changes.
The spatial distributions of the multiyear average annual P,

annual E, and annual R relative to the historical period CR
under the SSP5-8.5 scenario (Appendix Figure S11) for the
near future (Appendix Figure S11a1–c1) and far future
(Appendix Figure S11a2–c2) are similar to those for the
SSP2-4.5 scenario, but the SSP5-8.5 scenario has more
drastic changes. More areas experience relative decreases in
annual P in the near future (Appendix Figure S11a1), fewer
areas experience relative decreases in annual R (Appendix
Figure S11c1), and some areas of the upper southwestern
YZR experience decreases in the annual R in the far future
relative to the historical period (Appendix Figure S11c2),
which may be related to the higher future radiative forcing
assumptions in the SSP5-8.5 scenario.

3.3.3 Temporal variation in the basins
To study the future changes in hydrology relative to the
historical period (1985–2014) for the Chinese mainland and
major basins under the SSP2-4.5 and SSP5-8.5 scenarios,
this paper draws the relative CRs in the multiyear average
annual P, annual E, and annual R for the GCM Ensemble in
the near future (2020–2049) (Figure 10) and the far future

Figure 10 The bias-corrected GCM Ensemble for the near future (2020–2049) multiyear average annual precipitation (P), annual evapotranspiration (E),
and annual total runoff depth (R) change rates (CR) of the basins relative to the historical period (1985–2014), with error lines of 1 standard deviation for the
six GCMs data. The number above the bar indicates the number of models with the same positive or negative CR of the variable as the Ensemble; the number
not exceeding half of the total number of the models (<4) is red; otherwise, it is blue. (a)–(l) represent the following basins: PR, YZR, YR, Huai, HR, LR, SR,
YZ, NR, LCR, Hei, and the Chinese mainland, respectively; the coordinate axes of (a)–(k) are the same as in (l). The color shades of the basins represent the
magnitude of the multiyear average P in the historical period.
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(2070–2099) (Figure 11), in which the Chinese mainland and
each basin, which functions as a single unit with a unique
spatially averaged variation is calculated (the heatmap of the
single GCM and GCM Ensemble CR in each unit relative to
the historical period is shown in Appendix Figure S12).
For the near future period in the Chinese mainland and the

basins, the GCM Ensemble projects increase in multiyear
average annual P, annual E, and annual R under the SSP2-4.5
scenario relative to the historical period (Figure 10). The
maximum CR in annual E and the minimum CR in annual R
are shown in the YZR (Figure 10b), NR (Figure 10i), and
LCR (Figure 10j) basins, while the maximum CR in annual R
and the minimum CR in annual E are shown in the other
basins and the Chinese mainland. Focusing on the analysis of
R, the future increases in annual R in the near future are small
(<10%) in the PR (Figure 10a), YZR (Figure 10b), NR
(Figure 10i), and LCR (Figure 10j) basins, and increases in
annual R in the YR (Figure 10c), Huai (Figure 10d), LR
(Figure 10f), SR (Figure 10g), and YZ (Figure 10h) basins
are approximately 10–20%. The GCM Ensemble projected
that the multiyear average annual P, annual E, and annual R
also increased relative to the historical period under the
SSP5-8.5 scenario, and the CR was higher than that of the
SSP2-4.5 scenario (Figure 10). The multiyear average annual
R in the Chinese mainland (Figure 10l) increased by more
than 10% relative to the historical period. The annual R of the
YR (Figure 10c), Huai (Figure 10d), and YZ (Figure 10h)

basins increased by approximately 20% relative to the his-
torical period, the relative CR in the annual R of the LR
(Figure 10f) basin was greater than 25%, and the relative CR
in the annual R in the Hei (Figure 10k) and HR (Figure 10e)
basins were as high as 30% and 46%, respectively. The inter-
GCM standard deviations of the variables were the largest
for annual R and the smallest for annual E (Figure 10), which
shows that the projection of R has relatively large un-
certainty. In most basins and scenarios, most (>3) GCMs
projected positive and negative CR for the three variables in
the near future (Figure 10) in agreement with the GCM
Ensemble; however, only three GCMs projected an increase
in annual R in the NR (Figure 10i) basin relative to the
historical period under the SSP2-4.5 scenario.
In the far future, the multiyear average annual P, annual E,

and annual R projected by the GCM Ensemble under the
SSP2-4.5 scenario also increase in the Chinese mainland and
the basins relative to the historical period (Figure 11), the CR
is approximately 1–2 times that of the near future (Figure
10), and the CR for all three variables is approximately 15%
in the Chinese mainland (Figure 11l). The PR (Figure 11a),
and YZR (Figure 11b) basins experience the maximum CR in
annual R and the minimum CR in annual E, while the other
basins and the Chinese mainland experience the maximum
CR in annual E and the minimum CR in annual R, which is
roughly opposite to the distribution of CR in the near future
(Figure 10). Focusing on R, the increase in annual R is re-

Figure 11 The symbols are the same as in Figure 10, but for the far future (2070–2099).
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latively small (<10%) in the PR (Figure 11a) and YZR
(Figure 11b) basins, followed by the NR (Figure 11i) and
LCR (Figure 11j) basins with a relative CR of 10–15%, while
the annual R in the YR (Figure 11c), Huai (Figure 11d), SR
(Figure 11g), and YZ (Figure 11h) basins increased more by
20–30%. The relative CR in annual R in the LR (Figure 11f),
Hei (Figure 11k), and HR (Figure 11e) basins reached ap-
proximately 35%, 40%, and 50%, respectively. Under the
SSP5-8.5 scenario, the multiyear average annual P, annual E,
and annual R in the Chinese mainland (Figure 11l) projected
by the GCM Ensemble increase by approximately 20% re-
lative to the historical period, and the CR of hydrological
variables relative to the historical period is greater than that
of the SSP2-4.5 scenario for all basins and the Chinese
mainland except for the PR (Figure 11a) basin, where the
relative increase in annual R is less than that of the SSP2-4.5
scenario. The GCM Ensemble projects approximately 49%,
59%, 75%, and 90% increases in annual R in the LR (Figure
11f), Hei (Figure 11k), YZ (Figure 11h), and HR (Figure 11e)
basins, respectively. The inter-GCM standard deviations of
the variables were the largest for annual R and the smallest
for annual E (Figure 11), which is the same as those in the
near future (Figure 10), demonstrating the relatively large
uncertainty in the projection of R. Under the SSP2-4.5 and
SSP5-8.5 scenarios, most (>3) models in the Chinese
mainland and each basin projected the same positive and
negative CR of the three variables in the far future (Figure
11) as the GCM Ensemble, and the increase in annual R in
the far future (Figure 11) was more likely than in the near
future (Figure 10).

4. Discussion

4.1 Future hydrological changes based on CMIP6

Under the SSP2-4.5 and SSP5-8.5 scenarios, the results of
the GCM Ensemble based on the arithmetic ensemble mean
of the six CMIP6 GCMs data indicate that the multiyear
average annual precipitation (P), annual surface runoff depth
(SurR), and annual total runoff depth (R) increase relative to
the historical period in most of China in the near and far
future (Figure 12). The projected results in the far future
(Figure 12a2–c2, 12a4–c4) were compared with the results
of the CMIP6 multi-GCM Ensemble (Cook et al., 2020),
which was based on the same historical period, future sce-
narios and similar far future (2071–2100), found that in this
study, under both the SSP2-4.5 and SSP5-8.5 scenarios, the
annual P increases over most of the Chinese mainland, and
the increase is larger (>60%) near the boundary between the
Tarim Basin and the Qinghai-Xizang Plateau (Figure 12a2,
12a4). The annual SurR decreases by approximately 10% in
the southeastern Qinghai-Xizang Plateau (Figure 12b2,
12b4). The projected increases in the annual SurR and annual

R in northern China under the SSP5-8.5 scenario are more
dramatic than those under the SSP2-4.5 scenario (Figures
12b2, 12c2, 12b4, 12c4), but are all generally consistent with
the results in Cook et al. (2020); however, the CRs relative to
the historical period are generally greater than the results in
Cook et al. (2020), which may be related to the higher spatial
resolution of the CMIP6 GCMs with statistical downscaling
in this paper thus can reveal more details of hydrological
spatial variation. Meanwhile, Cook et al. (2020) did not
analyze changes in the annual R of southern China in the near
future (Figure 12a1–c1, 12a3–c3) and basin-scale hydro-
logical variables relative to the historical period. This study
shows that the future projected annual R increases in most of
southern China relative to the historical period under the
SSP2-4.5 and SSP5-8.5 scenarios, but the projected annual R
decreases in some areas of the YZR basin under the SSP5-8.5
scenario.

4.2 Comparison with the CMIP5-based projected re-
sults

Under the premise that both use the VIC model to simulate
hydrology, the results of this paper can be compared with
those based on the CMIP5 GCMs data to explore the impact
of the latest CMIP6 GCMs data on the projection of future
hydrological changes. Leng et al. (2015)’s simulation results
of five CMIP5 GCMs data based on ISIMIP (GFDL-
ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-
CHEM, and NorESM1-M) with the VIC model showed that,
when using 1971–2000 as the historical baseline period, the
projected future multiyear average annual R in the Chinese
mainland under the RCP8.5 scenario continues to decrease
by up to −15% by the end of the 21st century. In contrast, the
results of this study (Figure 13) show that, when using 1985–
2014 as the historical baseline period, under the SSP5-8.5
scenario, the projected multiyear average annual R for the
Chinese mainland continues to increase in the 21st century,
with an increase of approximately 24% at the end of the 21st
century, and the growth rate increases roughly until 2035 and
slows down after 2035 (Figure 13a), which is similar to the
change in the multiyear average annual P (Figure 13b).
Under the SSP5-8.5 scenario, the growth rate of the multi-
year average annual P relative to the historical period is
consistently greater than the annual E, thus leading to a
continuous increase in the multiyear average annual R. As
the projected period extends, the standard deviations be-
tween different GCMs increase, and the uncertainty of GCM
projections increases (Figure 13), which is consistent with
the findings of previous studies (Leng et al., 2015).
At the basin scale, projections based on the CMIP5 (ISI-

MIP) GCMs Ensemble (Leng et al., 2015) show that multi-
year average annual P continues to increase in the northern
basins of China in the 21st century under the RCP8.5 sce-
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nario, except for the HR basin, and annual P decreases and
then increases in the southern basins and the HR basin.
Annual R continues to decrease in most northern and
southern basins in China, with the largest decrease in the
YZR basin, which decreases by approximately 25% at the
end of the 21st century relative to the historical period, but
the LR basin shows a smaller change and the annual R in the
HR basin shows an increasing trend, with an increase of
approximately 15% at the end of the 21st century relative to
the historical period. In contrast, the results of this study
based on the CMIP6 GCMs show that the multiyear average
P in both the northern and southern basins of China con-
tinues to increase under the SSP5-8.5 scenario, the change in

P in the northern basin is greater than that in the southern
basin, and the change in annual P in the YZ basin is relatively
the greatest, increasing by approximately 60% at the end of
the 21st century relative to the historical period (Figure 14a).
The change in annual R is similar to that of annual P and
continues to increase in both southern and northern basins,
but the magnitude of change differs from that of annual P,
with the largest change in annual R relative to the historical
period in the HR basin, reaching approximately 89% at the
end of the 21st century; the YZ basin follows with the next
largest change. Moreover, the future multiyear average an-
nual R in the YZR and PR basins shows little change relative
to the historical period, with relative CR stabilizing at ap-

Figure 12 The change rates (CR) of the multiyear average annual precipitation (P), annual surface runoff depth (SurR) and annual total runoff depth (R) of
the GCM Ensemble in future periods relative to the historical period. (a)–(c) represent P, SurR, and R, respectively. The numbers 1–4 represent four periods:
the near future of the SSP2-4.5 scenario (SSP245-near), the far future of the SSP2-4.5 scenario (SSP245-far), the near future of the SSP5-8.5 scenario
(SSP585-near), and the far future of the SSP5-8.5 scenario (SSP585-far), respectively.
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proximately 10% and 7% in approximately 2030, respec-
tively (Figure 14b). This suggests that future changes in
annual P using the latest and more reliable CMIP6 GCMs
data, considering scenarios of future socioeconomic devel-
opment, are very different from those considering only future
radiative forcing changes, which may be the main reason for
the difference in the projected future changes in annual R.
This study shows that annual E increases in all basins relative
to the historical period and increases more in the Hei and YZ
basins; furthermore, annual E changes are greater in the

northern basins than in the southern basins (Figure 14c),
which is consistent with the results in (Leng et al., 2015).
The results of other scholars based on the VIC model and

CMIP5 GCMs data indicate that the future runoff in the YR
source region projected increases under the RCP4.5 and
RCP8.5 scenarios (Jin et al., 2020), the projected runoff in
the upper YZR decreases under the RCP8.5 scenario (Bir-
kinshaw et al., 2017), and projected runoff in the Xijiang
River Basin increases under the RCP4.5 and RCP8.5 sce-
narios (Zhao et al., 2020); however, the areas of the basins
they studied are not consistent with the present study, making
direct comparisons difficult. The results of studies under-
taken by other scholars based on the CMIP6 multi-GCM
Ensemble also indicate that under the SSP2-4.5 and SSP5-
8.5 scenarios, the future projected precipitation in the LCR
basin in the 21st century shows a significant increasing trend
(Zhang, 2020); precipitation increase and runoff wavelike
rise in the upper Huai Basin (Yao et al., 2021), these findings
are consistent with the corresponding results in this paper.
More GCMs can be selectively studied in the future (Hassan
et al., 2020), and scenarios with low or moderate radiative
forcing, such as SSP1-2.6 and SSP3-7.0, can be considered
for hydrological change projections in the Chinese mainland
(Su et al., 2021).

4.3 Uncertainty in the VIC Model and GCMs En-
semble

Constrained by insufficient measured data, the VIC model
used in this study did not calibrate parameters in the western
and northwestern basins of China and directly used the ca-
librated parameters from adjacent basins (Zhang et al.,
2014), which would introduce some errors to the streamflow
simulation. In terms of climate drivers, the sparseness of the
meteorological stations in western China will introduce er-
rors to the CMFD. In terms of model principles, the VIC
model tends to perform less well in arid regions than in wet
regions (Yang et al., 2019, 2021). These factors create larger
uncertainties for the hydrological simulation of the VIC

Figure 13 GCM Ensemble CR in annual R (a) and annual P and E (b) throughout the 21st century for the Chinese mainland under the SSP5-8.5 scenario.
The changes are calculated for every 30-year running average in the time series with respect to 1985–2014. Northern China basins are shown with thin dashed
lines, and southern China basins are shown with thick solid lines. Shaded areas indicate 1 standard deviation of the six GCMs data.

Figure 14 GCM Ensemble CR in annual P (a), annual R (b), and annual
E (c) throughout the 21st century for 11 basins in China under the SSP5-8.5
scenario. The changes are calculated for every 30-year running average in
the time series with respect to 1985–2014. Northern China basins are
shown with thin dashed lines, and southern China basins are shown with
thick solid lines.
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model in western and northwestern China. Therefore, the
basin-scale studies in this paper do not involve basins in
western and northwest China where the VIC model para-
meters are not calibrated, however, the runoff is small in
these basins and has little impact on total runoff change at the
continental scale in China. In addition, the VIC model used
in this study does not consider hydraulic engineering and
human water use, which may also introduce some errors to
the simulation of streamflow in regions with frequent human
activities. In future studies, we intend to collect as much
measured meteorological and streamflow data as possible in
northwest China, explore the influence and feedback of
natural and human factors in the evolution of the terrestrial
water cycle (Tang, 2020), and consider for the first time the
influence of reservoirs and human activities on streamflow
simulations in some regions where data on water con-
servancy projects and human water use are more complete.
In this paper, the traditional arithmetic ensemble mean

analysis method is used for the multi-GCM Ensemble. Re-
cently, the IPCC AR6 has adopted a new method based on
observational data with a clear physical meaning of “emer-
gent constraint” (Chen and Lai, 2021) to limit or narrow the
range of climate model results. This suggests that the ob-
servation constraint can provide new methods and ideas to
reduce the uncertainty of multi-GCM prediction, but the
“emergent constraint” requires a large number of more re-
liable observations; more effective and accurate data acqui-
sition can be acquired in the future by using integrated
methods of information geography and big data technology
(Li et al., 2022).

5. Conclusions

This study, based on the VIC hydrological model, uses six
CMIP6 GCMs (CanESM5, FGOALS-g3, GFDL-CM4,
IPSL-CM6A-LR, MPI-ESM1-2-HR, and MRI-ESM2-0)
data with EDCDFm statistical downscaling bias-corrected
and two future scenarios, SSP2-4.5 and SSP5-8.5, to project
future changes in the terrestrial surface water cycle in the
Chinese mainland and major basins in the 21st century, using
CMFD gridded data as a historical reference. The main
conclusions are the following three points:
(1) The monthly streamflow simulated by the CMFD-

driven VIC model and CaMa-Flood model has NSEs of 0.6 in
the YR and Huai basins and NSEs of 0.7–0.9 in other study
basins, indicating that the VIC model hydrological simula-
tion is applicable in the Chinese mainland. The accuracy of
0.25° gridded monthly precipitation, monthly mean daily
maximum and minimum temperatures based on CMFD and
EDCDFm statistical downscaling bias-corrected is sub-
stantially improved in the historical period (1985–2014); the
multiyear average annual precipitation, annual evapo-

transpiration and annual runoff depth based on GCM En-
semble are generally consistent with the results based on
CMFD; and the downscaling GCMs are reliable in China. In
the near future (2020–2049) and far future (2070–2099), the
annual precipitation of each GCM after downscaling bias-
corrected decreases substantially in most of the basins, while
the annual mean daily maximum and minimum temperatures
decrease slightly in most of the basins.
(2) The hydrological projections of the single GCM data at

the basin scale have large uncertainties. Under the SSP2-4.5
and SSP5-8.5 scenarios, most of the six GCMs data reflect
increases in annual precipitation, annual evapotranspiration,
and annual runoff depth in each basin in the near and far
future relative to the historical period; however, annual
precipitation and annual runoff depth for model MPI-ESM1-
2-HR decrease substantially in the YZ, NR, and LCR basins
in the near and far future. The annual precipitation and an-
nual runoff depth projected by model IPSL-CM6A-LR de-
crease in the near future in the NR and LCRiver basins, while
model FGOALS-g3 projects a slight decrease in the annual
runoff depth in the near future Hei and far future PR basins.
The multi-GCM arithmetic ensemble mean reduces the un-
certainty of GCM projections.
(3) The annual precipitation, annual evapotranspiration,

and annual runoff depth of the GCM Ensemble under the
SSP2-4.5 scenario show an overall wavelike rise in 2015–
2099 in the Chinese mainland. In the near and far future, the
annual precipitation, annual evapotranspiration, and annual
runoff depth projected by the GCM Ensemble increase in
most of the grids and 11 basins relative to the historical
period; the grids with decreasing annual precipitation and
annual evapotranspiration in the near future are mainly lo-
cated in the southwest and northwest regions, respectively,
and the grids with decreasing annual runoff depth is mainly
distributed in a few regions in the northwest and northwest;
in the far future, the annual precipitation, annual evapo-
transpiration, and annual runoff depth increase in most of the
grids in the Chinese mainland. Under the SSP5-8.5 scenario,
the annual precipitation, annual evapotranspiration and an-
nual runoff depth projected by the GCM Ensemble also in-
crease in most of the grids, and in the near future is wetter
than that under the SSP2-4.5 scenario, and the annual runoff
depth in the far future is decreased only in the upper YZR. In
other words, under the SSP2-4.5 and SSP5-8.5 scenarios, the
future water resources in the Chinese mainland and each
basin are likely to increase, and the decrease in annual runoff
is likely to occur mainly in the northwest and southwest
regions, which can provide a strong scientific reference for
future water resource management and risk analysis in China
under climate change.
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