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Abstract The lower crust beneath the North China Craton (NCC) was transformed during the craton destruction in the
Mesozoic, however, the transformation processes are yet to be fully understood. Compositional and geochronological variations
of granulite and pyroxenite xenoliths provided insights into the nature of the lower crust before and after the craton destruction.
In this study, we summarized the latest results of geochemistry and zircon geochronology coupled with Hf-O isotopes from
granulite and pyroxenite xenoliths hosted by Phanerozoic igneous rocks in NCC. Comparing previous studies on the granulite
terranes and adakitic rocks of NCC, we aim to discuss the destruction processes of lower crust beneath the NCC. The granulite
and pyroxenite xenoliths of NCC were divided into two and three groups, respectively, based on the differences of geochemical
features. Group I granulite xenoliths from the NCC have silicic-basic compositions, with metamorphic ferrosilite. The Group I
granulite xenoliths show relatively lower Mg# values of pyroxenes and whole-rock than that of the Group II granulite xenoliths,
and enrichments of light rare earth elements and Sr-Nd isotopic compositions. Their zircons display Archean-Phanerozoic ages
with three peaks of Neoarchean, Paleoproterozoic, and Mesozoic. Generally, Group I granulite xenoliths show close affinities to
the granulite terranes of the NCC in terms of the major and trace elements and Sr-Nd isotopic compositions, with a consistent
Archean-Proterozoic evolutionary history. However, Group I granulite xenoliths have abundant Phanerozoic zircons with
variable Hf isotopic compositions from depleted to enriched, which could be formed by modifications of magma underplating.
Therefore, Group I granulite xenoliths represent the modified ancient lower crust beneath the NCC. The Group II granulite and
Group III pyroxenite xenoliths from the NCC have similar geochemical features and are basic in compositions, with meta-
morphic to magmatic orthopyroxenes. The Group II granulite and Group III pyroxenite xenoliths usually show higher MgO and
lower incompatible elements compositions in minerals and bulk rocks than that in the granulite terranes and Group I granulite
xenoliths, but their Sr-Nd isotopic compositions fall into the fields of granulite terranes and group I granulite xenoliths. Zircons
from the Group II granulite and Group III pyroxenite xenoliths are predominantly Phanerozoic with subordinate Archean-
Proterozoic ages, and the Hf-O isotopic compositions of zircons are similar to those in the Group I granulite xenoliths.
Additionally, the trace element compositions of Group II granulite and Group III pyroxenite xenoliths are complementary to
those of the adakitic rocks from the NCC. Furthermore, the similar Sr-Nd and zircon Hf isotopic compositions among Group II
granulite and Group III pyroxenite xenoliths and adakitic rocks indicate that they are cognate. Therefore, we suggest that the
Group II granulite and Group III pyroxenite xenoliths could be restites left after partial melting of the ancient basic lower crust
that produced voluminous adakitic rocks. In contrast, Group I and II pyroxenite xenoliths from the NCC have cumulate and
reaction origins, respectively. The Group I and II pyroxenite xenoliths commonly have magmatic enstatite and show higher Mg#
values and depleted Sr-Nd isotopic compositions of minerals and bulk rocks relative to that in the granulite and Group III
pyroxenite xenoliths. Formation of voluminous Group I pyroxenite cumulates in the crust-mantle transition zones implies
extensive magma underplating beneath the NCC during the Mesozoic-Cenozoic, which also provided exotic materials and heat
for the reworking of the ancient lower crust. Therefore, the destruction of the lower crust beneath the NCC could result from
continuous modifications and remelting of the ancient lower crust triggered by magma underplating. These processes led to not
only the transformations of some ancient basic lower crust into granulite and pyroxenite restites but also the compositional
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modifications of the ancient lower crust. Consequently, the lower crust beneath the NCC showed downward rejuvenation, similar
to the lithospheric mantle.

Keywords North China Craton, Destruction of lower crust, Granulite xenolith, Pyroxenite xenolith

Citation: Zou D, Zhang H. 2023. Destruction of the lower crust beneath the North China Craton recorded by granulite and pyroxenite xenoliths. Science China
Earth Sciences, 66(2): 190–204, https://doi.org/10.1007/s11430-022-1007-5

1. Introduction

The lower crust is an important layer of the earth that records
crust-mantle interactions and is the source of intermediate-
silicic magmas, thus, it is crucial to understand the compo-
sition and structure of lower continental crust. The North
China Craton (NCC) has been widely studied with respect to
the pronounced changes in its lithosphere from a thick, cool,
and refractory lithosphere in the Paleozoic to a thin, hot, and
fertile lithosphere in the Cenozoic (Menzies et al., 1993;
Griffin et al., 1998; Fan et al., 2000; Zhai, 2008; Zhang,
2009; Wu et al., 2014; Li and Wang, 2018; Wang K et al.,
2018; Wang Y et al., 2018; Zheng et al., 2018; Zhu and Xu,
2019). The lithospheric mantle and lower crust beneath the
NCC were variably thinned and transformed during the
craton destruction (Zhai et al., 2007; Ying et al., 2013a;
Zheng et al., 2021b). Mechanisms of thinning and transfor-
mation of the lithospheric mantle beneath the NCC have
reached a broad consensus (Zhang, 2009; Zong and Liu,
2018; Tang et al., 2021; Zheng et al., 2021a). However, the
destruction processes of the lower crust beneath the NCC
remain controversial. Several compelling models have been
proposed, such as the delamination of the basic lower crust
(Gao et al., 2004; Deng et al., 2006; Xu et al., 2013), and
underplating and replacement (Zhai et al., 2007; Zheng et al.,
2021b). In contrast, some studies of the Mesozoic adakitic
rocks argued against the delamination of the lower crust
beneath the NCC (Chen et al., 2012; Qian and Hermann,
2013; Ma et al., 2015). Moreover, it has been controversial
whether the magmatic underplating formed the newly ac-
creted basic granulite (Liu et al., 2004a; Zheng et al., 2009b;
Ma et al., 2017) or simply led to the remelting of the ancient
lower crust during the Phanerozoic (Jiang and Guo, 2010; Hu
et al., 2020).
In addition to geophysical methods, the Precambrian

granulite terranes, lower crustal xenoliths entrained in ba-
saltic or kimberlitic rocks, and crust-derived volcanic rocks
provide information on the lower crust (Zhai and Guo, 1992;
Liu et al., 2001, 2004a, 2004b; Zhai and Liu, 2001; Rudnick
and Gao, 2014; Zheng et al., 2021b). The widespread Pre-
cambrian granulite terranes exposed in the NCC represent
the lower crust before its destruction. Granulite and pyrox-
enite xenoliths carried by the Phanerozoic magmatic rocks of
the NCC provide direct samples for investigating the com-
position, nature, and evolution of the lower crust before and

after the destruction (Figure 1). Extensive Mesozoic adakitic
intermediate-silicic magmatic rocks in the NCC are asso-
ciated with magma underplating and melting of the basic
lower crust, thus, can also inverse the evolution of lower
crust beneath the NCC. Numerous studies have been con-
ducted on the granulite terranes, granulite and pyroxenite
xenoliths and adakitic rocks from the NCC (Chen et al.,
2001; Liu et al., 2001, 2004a, 2005, 2020; Xu, 2002; Zhang
et al., 2003; Zheng et al., 2003, 2004a, 2004b, 2009a, 2009b,
2012; Huang et al., 2004; Jiang and Guo, 2010; Ying et al.,
2010; Shao and Wei, 2011; Xu et al., 2013; Ying et al.,
2013b; Hu et al., 2016; Ma et al., 2017, 2020; Zhao et al.,
2017, 2021; Wei et al., 2019; Dai et al., 2021). In this work,
we summarized the latest geochemical and geochronological
results of granulite and pyroxenite xenoliths and compared
with that of granulite terranes and adakitic rocks to explore
the destruction processes of the lower crust beneath the NCC.

2. Composition and evolution of the lower crust
recorded by granulite terranes

The Precambrian granulite terranes represent the lower crust
beneath the NCC before the craton destruction. The granulite
terranes are primarily distributed in the Trans-North China
Orogen, Inner Mongolia Suture Zone, Yinshan Block, Jiao-
Liao-Ji Belt, and Eastern Block (Figure 1) (Zhai, 2004; Zhao
et al., 2005, 2012). They are felsic to basic granulites that are
mainly composed of plagioclase, orthopyroxene, clinopyr-
oxene, garnet, amphibole, and mica. Amphibole and mica
were not discussed in this study due to the absence of hy-
drated minerals in the granulite xenoliths. Plagioclase in the
granulite terranes is oligoclase-andesine, and garnet is al-
mandine with pyrope constituent (Figure 2). Clinopyroxene
in the granulite terranes is diopside-augite (Figure 2) with
low Mg# values (Figure 3a and 3b), and orthopyroxene is
predominantly metamorphic ferrosilite (Figures 2 and 3)
with low Mg# values (Figure 3c) (Zhang et al., 1982; Jin and
Li, 1986; Cui et al., 1991; Cui and Wang, 1992; Liu, 1997;
Guo et al., 1998, 2005; Huang et al., 2001). Granulite ter-
ranes show variable SiO2 contents, Mg# values and Sr-Nd
isotopic compositions (Figures 4 and 6), and uniform light
rare earth element (LREE)-enriched patterns (Figure 5a).
Granulite terranes in the Trans-North China Orogen, Inner
Mongolia Suture and Jiao-Liao-Ji Belt formed mainly in the
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Paleoproterozoic with a clockwise pressure-temperature-
time (P-T-t) path. Granulite terranes in the Yinshan Block
and Eastern Block formed mainly in the Archean with an
anticlockwise P-T-t path (Guo and Zhai, 2000; Guo et al.,
2001; Zhao et al., 2005, 2012; Zhai, 2009). In addition, the
Archean granulite terranes in the Eastern Block often de-
monstrate overprinting of Late Paleoproterozoic high-pres-
sure granulite facies metamorphism (Yang and Wei, 2017;
Wei, 2018; Lu and Wei, 2020; Xu et al., 2021). Basic garnet
granulite terranes represent the lowermost lower crust and
display metamorphic pressure of ≥1.15 GPa, implying that
the crust of the NCC was at least ~40 km thick in the Pre-
cambrian (Zhai et al., 2007; Zhai, 2008).

3. Composition and evolution of the lower crust
recorded by granulite xenoliths

Granulite xenoliths in the Phanerozoic magmatic rocks re-
present different periods lower crust beneath the NCC and
have different geological implications. Granulite xenoliths
hosted by the Fuxian kimberlite (~480 Ma) are basic garnet
granulite, which formed in 2.7–2.5 Ga and underwent tec-
tonic and thermal reworking during the Paleoproterozoic
(1.9–1.8 Ga) and Neoproterozoic (700–600 Ma) (Zheng et
al., 2004b). Geochemical features of the primary minerals in
the Fuxian granulite xenoliths are similar to those of the
garnet granulites from the NCC granulite terranes (Zheng et

al., 2004b). Thus, the Fuxian granulite xenoliths represent
the lower crust beneath the NCC before the craton destruc-
tion.

Abundant granulite xenoliths entrained in the Mesozoic-
Cenozoic magmatic rocks from the NCC are located in its
northern and southeastern margins (Figure 1). Various lower
crust-derived xenoliths from the Xinyang (~160 Ma) and
Xuhuai (~132 Ma) regions within the southeastern NCC
(Figure 1) have been studied, including amphibolite, gran-
ulite, and eclogite. Equilibrium pressures of the garnet
granulite and eclogite xenoliths suggest that the crust of the
southeastern NCC was at least 45 km thick in the Late Me-
sozoic (Zheng et al., 2003; Xu et al., 2006a). The Xinyang
granulite xenoliths formed in 3.8–3.6 Ga, and experienced
multiple reworking and accretion at ~3.5, ~2.5, and ~1.8 Ga,
respectively (Zheng et al., 2004a; Ping et al., 2015; Ma et al.,
2020). The Xuhuai granulites formed in 2.5–2.4 Ga and
experienced high pressure granulite-facies metamorphism in
~1.8 Ga (Liu Y C et al., 2009). However, granulite xenoliths
from the Qingdao (~86 Ma), Junan (~67 Ma), and Nushan
(~1 Ma) regions within the southeastern NCC (Figure 1) are
primarily garnet-absent silicic to basic compositions, with
the exception of minor garnet granulite xenoliths in the Junan
region. Equilibrium pressures of the granulite xenoliths from
the Qingdao, Junan and Nushan regions imply that the crust
of the southeastern NCC was no more than 35 km thick
during the Late Mesozoic-Cenozoic (Huang et al., 2004;
Zhang and Zhang, 2007; Ying et al., 2010). Granulite xe-

Figure 1 Distribution of the Precambrian granulite terranes, Phanerozoic granulite and pyroxenite xenoliths, and adakitic rocks in the NCC (modified from
Zhao et al. (2005) and Zhang et al. (2001b)).
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noliths from the Qingdao, Junan and Nushan regions formed
mainly in the Neoarchean (2.7–2.5 Ga) and were modified by
the Paleoproterozoic tectono-thermal events, which is con-
sistent with the evolutionary history of the granulite terranes
of the eastern NCC. However, numerous 140–90 Ma zircons
with a large range of Hf isotopic compositions have been
observed in the granulite xenoliths from the Qingdao, Junan
and Nushan regions (Huang et al., 2004; Ying et al., 2010;
Zhang, 2012; Ping et al., 2019). Ping et al. (2019) suggested
that the basic granulites with Mesozoic ages from the Nushan
region could be part of a newly accreted lower crust.
Granulite xenoliths in the Mesozoic-Cenozoic magmatic

rocks from the northern margin of the NCC are widely dis-
tributed in Chifeng (~227 Ma), Siziwangqi (~128–108 Ma),
Fuxin (~100 Ma), Hannuoba (27–14 Ma), and Qingyuan
(~19 Ma). Most of granulite xenoliths from the northern
margin of the NCC are garnet-absent granulites. Equilibrium
pressures of the granulite xenoliths from the Siziwangqi in
the Western Block and Hannuoba in the Trans-North China
Orogen (Figure 1) indicate that the crustal thickness could
reach 40 and 42 km in the area during the Cenozoic, re-

spectively (Chen et al., 2001; Liu et al., 2001; He et al.,
2009). However, equilibrium pressures of granulite xenoliths
from the Chifeng and Fuxin regions in the northeastern NCC
reflect a crustal thickness of <33 km in the Mesozoic (Shao
and Wei, 2011; Ma et al., 2017; Zou and Zhang, 2022). This
implies that the destruction of the lower crust beneath the
northeastern NCC began earlier, making it thinner than that
in the southeastern NCC. The intermediate-silicic granulite
xenoliths from the Siziwangqi, Fuxin, Hannuoba, and Qin-
gyuan regions formed in 2.7–2.5 Ga (He et al., 2009; Wei et
al., 2015; Ma et al., 2020; Zou et al., 2022). ~1.8 Ga zircons
in the Hannuoba granulite xenoliths indicate the influence of
the Paleoproterozoic tectono-thermal event. In addition, all
intermediate-silicic granulite xenoliths from the northern
NCC contain abundant 220–45 Ma zircons with variable Hf
isotopic compositions. However, most zircons in the basic
granulite xenoliths from the Chifeng, Fuxin, and Hannuoba
regions yielded ages of 315–83 Ma, with a few Archean-
Proterozoic ages (Liu et al., 2004a; Zheng et al., 2009b; Shao
et al., 2012; Ma et al., 2017). Some authors have suggested
that the basic granulites with Phanerozoic ages were pro-

Figure 2 Ternary diagrams of Ab-An-Or for plagioclase, Alm-Pyr-Gro for garnet and En-Wo-Fs for pyroxene. Data sources: granulite xenoliths (Fan and
Liu, 1996; Chen et al., 2001; Liu et al., 2003; Liu Y C et al., 2009; Zheng et al., 2003, 2004c, 2009b; Huang et al., 2004; Zhang and Zhang, 2007; Jiang and
Guo, 2010; Ying et al., 2010; Du and Fan, 2011; Zhang et al., 2016; Ma et al., 2017), Group I and II granulite xenoliths represent modified ancient lower crust
and partial melting residues of ancient basic lower crust, respectively; pyroxenite xenoliths (Liu et al., 2004b; Zhang et al., 2007; Zheng et al., 2009b; Shao
and Wei, 2011; Xu et al., 2013; Ying et al., 2013b; Zou et al., 2014; Hu et al., 2016; Zhao et al., 2017, 2021; Wei et al., 2019; Dai et al., 2021; Liu et al., 2020),
Group I and II pyroxenite xenoliths have cumulate and reaction origin, respectively, and Group III pyroxenite xenoliths are residues of partial melting of
ancient basic lower crust; granulite terranes (Zhang et al., 1982; Jin and Li, 1986; Cui et al., 1991; Liu, 1997; Guo et al., 1998, 2005; Huang et al., 2001; Yang
and Wei, 2017; Lu and Wei, 2020; Xu et al., 2021); experimental data of partial melting of basic lower crust (Springer and Seck, 1997; Qian and Hermann,
2013). Pl, Plagioclase; Grt, Garnet; Opx, Orthopyroxene; Cpx, Clinopyroxene.
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ducts of magma underplating during the Phanerozoic (Zheng
et al., 2009b, 2012; Ma et al., 2017), while others have
suggested that some intermediate-basic granulite xenoliths
from Hannuoba and Fuxin are residues of partial melting of
an ancient lower crust during the Phanerozoic (Jiang and
Guo, 2010; Hu et al., 2020; Zou and Zhang, 2022).
Granulite xenoliths from the NCC were classified into two

groups based on their geochemical features in this study.
Group I granulite xenoliths are basic-silicic compositions,
comprising oligoclase-andesine, almandine-pyrope (Figure
2), augite-diopside and metamorphic ferrosilite (Figures 2
and 3). The Group I granulite xenoliths show relatively lower

Mg# values of pyroxenes (Cpx: 54.3–74.6; Opx: 49.8–63.7)
and MgO contents of whole rock (0.92–10.9 wt.%) (Figures
3 and 4) than that in the Group II granulite xenoliths and have
LREE-enriched patterns (Figure 5) and variable and enriched
Sr-Nd isotopic compositions (Figure 6). Their zircon ages
vary from the Archean to Phanerozoic, with three peaks of
Neoarchean (2.6–2.5 Ga), Paleoproterozoic (1.9–1.8 Ga),
and Mesozoic (150–120 Ma) (Figure 7). The Archean zir-
cons show relatively narrow ranges of Hf isotopic compo-
sitions, falling into the evolutionary field of the 4.0–2.5 Ga
crust (Figure 8). Hf isotopic compositions of some Paleo-
proterozoic zircons lie within the evolutionary zone of the

Figure 3 Diagrams for major element compositions of pyroxenes in granulite and pyroxenite xenoliths. Mg# vs. (a) CaO and (b) Al2O3 contents in Cpx; (c)
Mg# vs. CaO content in Opx; ((d) and (e)) Discrimination diagram of orthopyroxene origin (Bhattacharyya, 1971; Rietmeijer, 1983). Symbols and data
sources are the same as Figure 2.
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Archean crust, while that of others lie near the chondritic
values (Figure 8). The Archean-Proterozoic zircons show a
large range of oxygen isotopic compositions, with δ18O va-
lues from below the mantle value to above the limit of the
global Archean-Proterozoic zircons (Figure 8). The Meso-
zoic zircons have variable Hf isotopic compositions with
εHf(t) values from depleted to enriched, some of which fall

into the evolutionary zone of the Archean zircons. The δ18O
values of Mesozoic zircons overlap with that of the Archean
zircons (Figure 8).
As a whole, the Group I granulite xenoliths show affinities

to the NCC granulite terranes in terms of major and trace
elements and Sr-Nd isotopic compositions of mineral and
whole rock (Figures 2–6). In addition, the Group I granulite

Figure 4 Diagrams of whole-rock major element compositions of granulite and pyroxenite xenoliths. Data sources: granulite xenoliths (Shao and Han,
2000; Liu et al., 2001, 2005, 2010; Zhou et al., 2002; Zheng et al., 2003, 2009a; Huang et al., 2004; Zheng et al., 2004c; He et al., 2009; Jiang et al., 2010,
2011; Ying et al., 2010; Shao and Wei, 2011; Wang et al., 2016; Ma et al., 2017); pyroxenite xenoliths (Liu et al., 2001, 2005, 2020; Xu, 2002; Zheng et al.,
2009b; Jiang et al., 2010; Ying et al., 2013b; Hu et al., 2016, 2020; Zhao et al., 2017; Wei et al., 2019; Dai et al., 2021); RG2003 represents compositions of
the lower crust calculated by Rudnick and Gao (2014). Data sources of granulite terranes and symbols are the same as Figure 2.

Figure 5 REE patterns of the granulite and pyroxenite xenoliths from the NCC. Chondrite-normalized values are from Sun and McDonough (1989). Other
data sources are the same as Figure 4.
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xenoliths have consistent Archean-Paleoproterozoic evolu-
tionary history with the granulite terranes (Figure 7). These
observations indicate that the Group I granulite xenoliths
could be fragments of the Precambrian lower crust beneath
the NCC. Few intermediate granulites in the Group I gran-
ulite xenoliths could be restites of partial melting of inter-
mediate-silicic granulites, e.g., those from the Hannuoba and
Fuxin regions (Jiang et al., 2009, 2011; Jiang and Guo, 2010;
Hu et al., 2020; Zou and Zhang, 2022). Most of the Pha-
nerozoic zircons in the Group I granulite xenoliths are be-
lieved to have formed by modification of the older zircons,
resulting in the wide ranges of Hf isotopic compositions.
Phanerozoic zircons with εHf(t) within the evolution zone of

Archean zircons only suffered the resetting of U-Pb ages,
whereas those with εHf(t) above the evolution line of Archean
zircons reflect the injection of underplated magmas (Zhang
et al., 2011; Zhang, 2012). Therefore, we suggest that the
Group I granulite xenoliths represent the modified ancient
lower crust beneath the NCC.
In contrast, Group II granulite xenoliths are basic com-

positions and comprise andesine-labradorite-bytownite, py-
rope-almandine, augite-diopside (Figure 2), and enstatite-
ferrosilite that are magmatic to metamorphic in origin (Fig-
ures 2 and 3). Group II granulite xenoliths have higher Mg#
values of pyroxenes (Cpx: Mg#=71.8–80.6; Opx: 64.9–79.8)
(Figure 3) and MgO contents of whole rock (7.61–19.8 wt.
%) (Figure 4) and middle (M)-REE-enriched patterns (Fig-
ure 5) than those of Group I granulite xenoliths and granulite
terranes. However, the Sr-Nd isotopic compositions of
Group II granulite xenoliths fall into the fields of Group I
granulite xenoliths and granulite terranes (Figure 6). Zircons
in the Group II granulite xenoliths are dominated by Pha-
nerozoic with minor Archean-Proterozoic (Figure 7) and Hf-
O isotopic compositions of zircons are similar to that in the
Group I granulite xenoliths (Figure 8). These observations
indicate that the Group II granulite xenoliths markedly differ
from the Precambrian lower crust beneath the NCC. The
geochemical features of Group II granulite xenoliths can be
explained by the partial melting of the ancient basic lower
crust. Partial melting led to an increase in compatible ele-
ments, a decrease in incompatible elements in the residues,
as manifested by the increased MgO/Mg# and decreased
LREE contents in pyroxenes (Figure 3) and whole rock
(Figures 4 and 5) of the Group II granulite xenoliths. Few
Archean-Proterozoic zircons in the Group II granulite xe-
noliths could be the results of complete melting or mod-

Figure 6 Sr-Nd isotopic compositions of granulite and pyroxenite xe-
noliths. Data sources: Mesozoic adakitic rocks from the NCC (Zhang et al.,
2001c; Xu et al., 2006b; Jiang et al., 2007; Liu S et al., 2009; Chen et al.,
2012; Ma et al., 2012, 2015, 2016a, 2016b); depleted mantle (DM) (Zindler
and Hart, 1986). Other data sources are the same as Figure 4.

Figure 7 Histogram of zircon U-Pb ages from granulite and pyroxenite xenoliths. Data sources: granulite xenoliths (Liu et al., 2004a, 2010; Zheng et al.,
2004b, 2004c, 2009b; Jiang and Guo, 2010; Jiang et al., 2010, 2011; Ying et al., 2010; Zhang, 2012; Wei et al., 2015; Ma et al., 2017, 2020; Ping et al., 2019;
Zou et al., 2022); pyroxenite xenoliths (Liu et al., 2004a, 2004b; Zheng et al., 2009b; Jiang et al., 2010; Wei et al., 2015).
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ification of the older zircons during the partial melting, as
observed in the partial melting experiment of the lower crust
that zircons were exhausted at 900°C (Wang, 2020). The
negative correlation of Sr and Nd isotopes (Figure 6) and
depleted Hf isotopic compositions (Figure 8) of the Pha-
nerozoic zircons of the Group II granulite xenoliths were

attributed to the modifications of magma underplating. This
is also consistent with previous studies that regarded the
Hannuoba basic granulites as residues left after partial
melting of ancient basic lower crust (Jiang and Guo, 2010;
Hu et al., 2020).
The major and trace elements compositions of Group II

granulite xenoliths can also be explained by cumulates
formed by mantle-derived magma underplating except the
Sr-Nd isotopic compositions. If the Group II granulite
xenoliths were formed by magma underplating and con-
taminated by the ancient lower crust, their Sr-Nd isotopic
compositions should change from depleted (e.g., the cu-
mulate Group I pyroxenite) to enriched with the mixing of
ancient lower crust. However, such signatures were not
observed in the Group II granulite xenoliths, which show
enriched Sr-Nd isotopic compositions within the field of
Group I granulite xenoliths and granulite terranes (Figure
6). Therefore, the Group II granulite xenoliths are inferred
to represent the residues of partial melting of the ancient
basic lower crust. Additionally, partial melting experiment
of the basic lower crust have proved that the residues could
be two-pyroxene granulite and garnet granulite (Springer
and Seck, 1997; Qian and Hermann, 2013). The consistent
mineral compositions of the experimental residues and the
Group II granulite xenoliths (Figures 2 and 3) further
support the residual origin of the Group II granulite xe-
noliths.

4. Lower crustal processes recorded by the
pyroxenite xenoliths

Abundant pyroxenite xenoliths also occurred in the Meso-
zoic-Cenozoic magmatic rocks in the Fangcheng, Junan,
Chifeng, Hannuoba, Yangyuan, Sanyitang, Siziwangqi, and
Langshan regions of the NCC (Figure 1). Pyroxenite, with
variable petrogenesis, could form in the lower crust, crust-
mantle transition zones, and lithospheric mantle. Most pyr-
oxenite xenoliths from the NCC were suggested as cumu-
lates from magma underplating in the crust-mantle transition
zones, e.g., websterite and garnet pyroxenite xenoliths from
the Langshan, Siziwangqi, Yangyuan, Hannuoba, Chifeng,
Fuxin, Junan, and Feixian regions (Xu, 2002; Zhang et al.,
2007; Ying et al., 2013b; Zou et al., 2014, 2022; Wang et al.,
2019; Dai et al., 2021; Liu et al., 2020; Zhao et al., 2021).
The Hannuoba garnet pyroxenites and Feixian and Chifeng
olivine-websterites were regarded as reaction products of
peridotite-silicic melts derived from the recycled lower
continental or oceanic crust (Liu et al., 2005; Xu et al., 2013;
Zou et al., 2014). However, some Hannuoba websterites
were considered to be partial melting residues of ancient
basic granulites (Jiang et al., 2010; Hu et al., 2020). Not only
dose magma underplating form pyroxenite cumulates di-

Figure 8 Plots of U-Pb age vs. (a) 176Hf/177Hf ratios (b) εHf(t) and (c) δ
18O

values in zircons from granulite and pyroxenite xenoliths and Mesozoic
adakitic rocks. Data sources: δ18O values of mantle (Valley et al., 2005);
Mesozoic adakitic rocks from the NCC (Jiang et al., 2007; Ma and Zheng,
2009; Ma et al., 2012; Ma, 2013); 176Lu/177Hf ratio of crust (Vervoort and
Jonathan Patchett, 1996). Other data sources are the same as Figure 7.
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rectly but also provides heat for the remelting of ancient
lower crust. Thus, formation of pyroxenite is vital to un-
derstand the evolution of lower crust.
Pyroxenite xenoliths from the NCC were divided into

three groups according to their geochemical features in this
study. The Group I and II pyroxenite xenoliths are plagio-
clase-absent websterites and garnet pyroxenites, and have
cumulate and reaction origins, respectively. The Group I
pyroxenite xenoliths show usually cumulate texture,
whereas the Group II pyroxenite xenoliths show reaction
texture. Garnets of the Group II pyroxenite xenoliths are
pyrope (Figure 2). Clinopyroxene of the Group I and II
pyroxenite xenoliths is Mg-rich augite (Figure 2), and or-
thopyroxene is magmatic enstatite (Figures 2 and 3). Pyr-
oxenes and whole rock of the Group I and II pyroxenite
xenoliths have relatively higher Mg# values (Cpx: 83.0–
92.7; Opx: 84.5–92.1; whole rock: 75.0–91.9) than those in
the granulites and Group III pyroxenite xenoliths (Figures 3
and 4). Group I pyroxenite xenoliths are characterized by
LREE- or MREE-enriched patterns, but Group II pyrox-
enite xenoliths mainly show enrichments in heavy (H)-REE
due to the presence of garnets (Figure 5). Moreover, Group
I and II pyroxenite xenoliths exhibit depleted Sr-Nd iso-
topic compositions (Figure 6).
In contrast, the Group III pyroxenite xenoliths comprise

andesine-labradorite, pyrope-almandine (Figure 2), augite-
diopside, and magmatic to metamorphic orthopyroxenes
(Figure 3). Group III pyroxenite xenoliths show relatively
lower Mg# values of pyroxenes and whole rocks (Cpx: 74.8–
87.8; Opx: 68.3–84.9; whole rock: 66.2–88.1), and enrich-
ments of MREE (Figure 5) and Sr-Nd isotopic compositions
(Figure 6) than that in Group I and II pyroxenite xenoliths
(Figures 3 and 4). These observations indicate that the Group
III pyroxenite xenoliths are not cumulates or reaction pro-
ducts of peridotite-melt but show mineralogical and geo-
chemical affinities to the Group II granulite xenoliths
(Figures 2–6). Additionally, zircons of the Group III pyr-
oxenite xenoliths also yielded Archean-Phanerozoic ages
with a peak at Mesozoic (Figure 7) and the Phanerozoic
zircons have significantly depleted Hf isotopic compositions
(Figure 8) similar to those of the Group II granulite xenoliths.
This implies that the Group III pyroxenite xenoliths could be
as partial melting residues of the ancient basic lower crust as
the Group II granulite xenoliths and Hannuoba Al-pyrox-
enite xenoliths (Jiang et al., 2010; Hu et al., 2020). Fur-
thermore, experimental studies and modal calculations also
support that websterite and garnet pyroxenite could be partial
melting residues of the basic lower crust (Huang and He,
2010; Qian and Hermann, 2013; Ma et al., 2015). Thus,
Group III pyroxenite xenoliths from the NCC represent the
reworking products of the ancient basic lower crust, which
record directly the transformation processes of the lower
crust beneath the NCC.

5. Inversion of the lower crust evolution by
adakitic rocks

Apart from the direct records by the lower crust rocks, lower
crust-derived magmatic rocks can inverse the evolutionary
processes of lower crust. Mesozoic adakitic intermediate-
silicic magmatic rocks are widely distributed in the NCC
(Figure 1) (Zhang et al., 2003) and generally show high La/
Yb and Sr/Y ratios (Zhang et al., 2001a; Liu et al., 2002; Liu
S et al., 2009; Xu et al., 2002; Li et al., 2004, 2005; Jiang et
al., 2007; Ma et al., 2012, 2016a, 2016b). They were initially
considered to originate from the thicker or delaminated
lower crust (Zhang et al., 2001a; Gao et al., 2004; Xu et al.,
2006b; Xiong et al., 2011). However, recent studies have
suggested that the adakitic rocks in the NCC could have been
derived from the partial melting of the basic lower crust at
medium pressure (10–12.5 kbar), inferring the absence of a
thicker lower crust beneath the NCC during the Mesozoic
(Xu et al., 2002; Ma et al., 2012, 2015; Qian and Hermann,
2013). Thus, the widespread adakitic rocks in the NCC were
products of the partial melting of the basic lower crust. As
discussed above, the Group II granulite and Group III pyr-
oxenite xenoliths could be partial melting residues of the
ancient basic lower crust. The relationships between the re-
sidues and adakitic products need to be ascertained.
Qian and Hermann (2013) conducted an experiment on the

partial melting of the basic lower crust from the NCC. The
experimental results demonstrated that the generated re-
sidues are amphibolite at P=10–15 kbar and T=800°C, the
residues are garnet granulite at P=10–12.5 kbar and T=
900–1000°C, the residues are two-pyroxene granulite at
P=13.5–15 kbar and T=900–1000°C, the residues are garnet
pyroxenite at P=15 kbar and T=1050°C, and the residues are
websterite at P=10–15 kbar and T=800°C. Moreover, mi-
neral compositions of the experimental residues were in
consistent with that of Group II granulite and Group III
pyroxenite xenoliths (Figures 2 and 3). We calculated the
REE contents of melts and their residues during various
degrees partial melting of the ancient basic lower crust re-
presented by the basic Group I granulite xenoliths using the
rock-melt partition coefficients (Qian and Hermann, 2013).
The results demonstrated significant similarities between the
partial melts and adakitic rocks and between the residues and
Group II granulite and Group III pyroxenite xenoliths during
30–50% partial melting (Figure 9a–9e). If underplated melts
make contributions to the formation of adakitic rocks as
suggested by (Chen et al., 2012), 20–30% partial melting of
the ancient basic granulites would be better match. The
calculated REE patterns of the equilibrium melts with the
Group II granulite and Group III pyroxenite xenoliths are
consistent with that of the adakitic rocks (Figure 9f). The
higher LREE contents in some pyroxenites could be results
of late metasomatism. In addition, the adakitic rocks and the
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Group II granulite and Group III pyroxenite xenoliths from
the NCC show identical Sr-Nd isotopic compositions (Figure
6) (Zhang et al., 2001c; Xu et al., 2006b; Jiang et al., 2007;
Liu S et al., 2009; Chen et al., 2012; Ma et al., 2012, 2015,
2016a, 2016b). The Archean-Proterozoic inherited zircons
were also found in some Mesozoic adakitic rocks, and the Hf
isotopic compositions of all zircons are similar to those of the
granulite and pyroxenite xenoliths (Figure 8) (Jiang et al.,
2007; Ma and Zheng, 2009; Ma et al., 2012; Ma, 2013).
These observations indicate that the adakitic rocks in the
NCC are cognate with the residual granulite and pyroxenite
xenoliths and the ancient basic lower crust beneath the NCC

has experienced extensive partial melting.

6. Evolution and destruction of the lower crust
beneath the NCC

Seismological observations have shown that the crust of the
NCC gradually thinned from west (~44 km) to east
(30–36 km) and exhibited overall intermediate-silicic com-
positions (Xia et al., 2016). This is generally consistent with
the studies on the lower crust xenoliths in the Mesozoic-
Cenozoic magmatic rocks, but there are some differences.

Figure 9 (a)–(e) Calculated REE patterns of partial melts and residues during different degrees of partial melting of ancient basic lower crust and (f)
equilibrium melts with the Group II granulite and Group III pyroxenite xenoliths. Data sources: REE partition coefficients of rocks-melt are from Qian and
Hermann (2013); adakitic rocks from the NCC (Zhang et al., 2001b; Ma et al., 2015). Ancient basic lower crust was represented by the basic Group I
granulite xenoliths and data sources are the same as Figure 4; Chondrite-normalized values sources are the same as Figure 5.
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For example, the crustal thickness beneath the Xinyang and
Xuhuai regions could have been 45 km during the early late-
Mesozoic, which could be influenced by the continental
collision of the NCC and Yangtze Craton (Li et al., 1993), as
evidenced by the identical ages from the lower crust xeno-
liths and eclogite of the Dabie-Sulu Orogenic Belt. Other
granulite xenoliths from the eastern NCC indicate that
crustal thickness was <35 km in the Cenozoic, reflecting that
the modern crust is thinner than that in the Precambrian
(≥40 km), as constrained by the granulite terranes. The high-
density basic lower crust (density >2.9 g cm−3; P-wave ve-
locity=6.8–7.3 km s−1) beneath the NCC in the modern is
4–5 km for the Western Block and <2 km for the Eastern
Block and Trans-North China Orogen (Xia et al., 2016),
which is generally thinner than that in the Precambrian.
These changes could be attributed to the extensive remelting
of the ancient basic lower crust during the Phanerozoic,
which was transformed into granulite and pyroxenite re-
sidues. The P-wave velocities of some basic residues are
within the ranges of the crust-mantle transition zones
(6.8–7.8 km s−1; Deng and Zhong, 1997) and are clearly
different from those of mantle peridotites. However, the P-
wave velocities of other residues (e.g., garnet granulite and
pyroxenite) are up to 7.8 km s−1 (Shao and Han, 2000; Liu et
al., 2001; Zheng et al., 2021b), which is close to that of
mantle peridotite (7.8–8.2 km s−1). Thus, it is so difficult to
distinguish by seismological observations that some residues
could be classified as constituents of the upper lithospheric
mantle, resulting in the observations of general thin of high
density basic lower crust or the crust-mantle transition zones
beneath the NCC.
Compared to the granulite terranes, most of granulite and

pyroxenite xenoliths from the NCC have abundant Phaner-
ozoic zircons (Figure 7) with positive εHf(t) and near-mantle
δ18O values (Figure 10), suggesting that the ancient lower

crust was strongly modified by magma underplating. Group I
granulite xenoliths with major and trace elements and Sr-Nd
isotopic compositions similar to those of the granulite ter-
ranes represent the modified ancient lower crust. Group II
granulite and Group III pyroxenite xenoliths with higher
compatible and lower incompatible elements contents than
that of the granulite terranes represent partial melting re-
sidues of the ancient basic lower crust. Group I pyroxenite
xenoliths are cumulates originated from magma underplating
in the crust-mantle transition zones. Consequently, the upper
layer of lower crust beneath the eastern NCC is composed of

Figure 10 Histogram of εHf(t) and δ
18O values of the Archean, Proterozoic and Phanerozoic zircons. Data sources: mantle δ18O values (Valley et al., 2005).

Other data sources are the same as Figure 7.

Figure 11 Sketch of lithospheric structure beneath the NCC in the Pa-
leozoic and Cenozoic.
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modified ancient granulites, and the lower layer is composed
of residues and pyroxenite cumulates (Figure 11). The pyr-
oxenite cumulates provide direct evidence for the extensive
magma underplating during the Phanerozoic, which supplied
exotic material and heat for the reworking of the ancient
lower crust. Additionally, the large-scale lithospheric ex-
tension was also one of the reasons for the thinning and
melting of the lower crust beneath the NCC (Meng, 2003;
Zhai et al., 2003; Wang et al., 2007; Ma and Xu, 2021).
Therefore, with extensive magma underplating and litho-
spheric extension, the lower crust beneath the NCC was
continually modified and remelted, resulting in its destruc-
tion. The ancient basic lower crust was transformed into
granulite and pyroxenite residues and produced adakitic
magmatic rocks. Hence, thinning of the lower crust beneath
the NCC primarily resulted from the voluminous consump-
tion of ancient lower crust through remelting and some re-
sidues (e.g., websterite and garnet granulite) comprise a part
of the crust-mantle transition zones. Compositional trans-
formations are mainly due to the injection of underplated
magma and partial melting processes.

7. Conclusions

(1) Group I granulite xenoliths show major and trace ele-
ment and Sr-Nd isotopic compositions and an Archean-
Proterozoic evolutionary history similar to that of the gran-
ulite terranes. However, they have abundant Phanerozoic
zircons with variable Hf isotopic compositions from depleted
to enriched, which were formed by modifications of magma
underplating. The Group I granulite xenoliths represent
modified ancient lower crust beneath the NCC.
(2) Group II granulite and Group III pyroxenite xenoliths

have higher MgO and lower incompatible element compo-
sitions to those in the granulite terranes and Group I granulite
xenoliths, but similar Sr-Nd isotopic compositions and Ar-
chean-Phanerozoic evolutionary history to the Group I
granulite xenoliths. Their trace element compositions can be
complementary with that of the adakitic rocks of the NCC,
and Sr-Nd and zircon Hf isotopic compositions are similar to
the adakitic rocks. The Group II granulite and Group III
pyroxenite xenoliths represent partial melting residues of an
ancient basic lower crust that produced voluminous adakitic
rocks.
(3) The lower crust beneath the eastern NCC experienced

thinning and compositional transformation during the Pha-
nerozoic. Extensive magma underplating not only formed the
Group I pyroxenite cumulates in the crust-mantle transition
zones during the Mesozoic-Cenozoic, but also provided
exotic materials and heat for the modifications and remelting
of the ancient lower crust. These processes resulted in the
destruction of lower crust beneath the NCC.
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