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Abstract Paleoclimate reconstructions show that the arid Central Asia (ACA) is characterized by a wetting trend from the mid-
Holocene (MH) to the Preindustrial period (PI), which has been acknowledged to be a result of increased mean precipitation.
However, a systemic understanding of its governing dynamics remains elusive. Based on model outputs from 13 climate models
from the Paleoclimate Model Intercomparison Project phase 4 (PMIP4) and proxy records fromACA, here we show that increase
in mean precipitation in ACA can be attributed to changes in water vapor source and its transport intensity in winter (December,
January, and February) and spring (March, April, and May). In particular, the increase in water vapor supply in winter is
associated with the southerly wind anomaly over the northwestern Indian Ocean and Central Asia, caused by an overall
weakening of the Asian winter monsoon. This is conducive to water vapor transport from the upwind regions (e.g., Medi-
terranean) to ACA. Meanwhile, water vapor supply from the eastern Iceland is also enhanced due to a negative North Atlantic
Oscillation-like (NAO-like) atmospheric circulation pattern caused by sea ice expansion in the North Atlantic. In spring,
evaporation over land and inland lakes is enhanced by increased insolation in the Northern Hemisphere, which increases
atmospheric humidity that fuels midlatitude westerlies to enhance ACA precipitation. In addition, weakened atmospheric
subsidence over ACA in winter and spring also contributes to the increased precipitation. Overall, our results indicate that
paleoclimate modeling is of great importance for disentangling governing dynamics accounting for reconstructed climate
phenomena that might be a synergic consequence of several processes operating in different seasons.
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1. Introduction

Arid Central Asia (ACA), as controlled by midlatitude
westerlies, is the largest nonzonal arid region in the world. Its
climatic characteristics are different from those in “Mon-
soonal Asia” (i.e., East and South Asia), which is dominated

by monsoon system (Chen et al., 2019). This region is lo-
cated in the hinterland of Eurasia, and is characterized by
scarce water resources, sparse vegetation cover and fragile
ecosystems, which gives rise to its high sensitivity to climate
change (Gasse et al., 1991; D’Arrigo et al., 2000; Sorg et al.,
2012; Zhang and Feng, 2018). Therefore, great attention has
been paid to its spatiotemporal climate and environment
changes in different time scales.
The mid-Holocene (MH) is a historical period 6000 years
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ago. Its most evident difference from the modern climate is
the configuration of the Earth’s orbit. Compared with Pre-
industrial period (PI), the boreal summer (winter) insolation
in the MH was higher (lower), indicating a stronger sea-
sonality (Berger, 1978). There are abundant proxy records
used to reconstruct climate change in ACA since the MH.
For example, a study based on 12 high-quality lake records
revealed that the moisture has decreased in ACA since the
MH (Chen et al., 2008, 2009). It is worth noting that some
proxy records influenced by the East Asian summer mon-
soon (EASM) during the early Holocene (EH) to MH were
included in that early work, causing erroneous estimates of
the moisture evolution in ACA. Recently, Chen et al. (2019)
refined the “Westerlies-Dominated Climatic Regime”
(WDCR) theoretical framework based on the understanding
of climate change in modern midlatitude Asia. Therein they
divided the old ACA region into a westerlies-dominated
region and a transitional belt between the monsoon- and
westerlies-dominated regions. They further pointed out that
the moisture in the WDCR core area increased rapidly after
the MH, reaching its maximum in the late Holocene. That is,
ACA got wetter from the MH to PI, supported by numerous
proxy records in the WDCR (e.g., Wang and Feng, 2013;
Leroy et al., 2014; Chen et al., 2016; Xu et al., 2019; Li J Yet
al., 2020; Wang et al., 2020; Zhang et al., 2020).
Climate models can mimic climate responses caused by

changes in Earth’s orbit, greenhouse gases, ice sheets, and
other climate forcing factors (Kutzbach and Otto-Bliesner,
1982; Prell and Kutzbach, 1987; Joussaume and Braconnot,
1997; Montoya et al., 2000; Kutzbach et al., 2008) and have
been widely used for paleoclimate dynamics. Previous
modeling work on Holocene climate evolution in ACA
mainly focused on the mechanism for the EH drought. For
example, Jin et al. (2012) applying the coupled climate
model CCSM3.0 proposed that the EH (8.5 ka BP) deserti-
fication in ACAwas mainly caused by orbital configuration.
This orbital setup reduced latitudinal temperature gradient in
boreal winter, weakening the midlatitude westerlies and
suppressing the upwind evaporation by lowering the tem-
perature. These responses reduced the water vapor transport
to ACA, leading to the drought in the EH. In addition,
Carlson and Clark (2012) show that stronger boreal summer
insolation accelerated ice sheet melting in the Northern
Hemisphere, such as the Laurentide Ice Sheet (LIS). This
boosts meltwater injection into the North Atlantic, weaken-
ing the Atlantic meridional, overturning circulation and
hence cooling the northern high latitudes. This further
weakens North Atlantic evaporation, reducing the water
vapor transport to ACA and hence facilitating the EH ACA
desertification (Chen et al., 2019). Based on transient climate
simulations of the Kiel Climate Model (KCM), Zhang X J et
al. (2016, 2017) confirmed that the persistent Holocene
wetting trend in winter in northwestern China is a reflection

of the increasing boreal winter insolation in the midlatitudes.
They proposed that the increasing winter insolation weakens
the East Asian winter monsoon, which is conducive to ACA
rainfall, by weakening the Siberian High that is harmful for
atmospheric ascending motion. However, climate back-
grounds during the EH are distinct from those during MH.
That is, stronger boreal seasonality (Berger, 1978), lower
atmospheric CO2 and other greenhouse gas levels (In-
dermuhle et al., 1999; Monnin et al., 2004; Ruddiman, 2007;
Loulergue et al., 2008), and remanent LIS (Carlson et al.,
2008) during the EH, disable a simple transfer of governing
mechanisms of the early-to-late Holocene precipitation
change in ACA to explain changes in the mid-to-late Holo-
cene. Based on multi-model results in PMIP3, Xu et al.
(2020) pointed out that the precipitation was higher during
the PI than that during the MH, consistent with reconstruc-
tions. However, they did not further analyze the associated
dynamic mechanisms. In this study, by using model outputs
from the latest PMIP4, we explore dynamics accounting for
increasing ACA precipitation from the MH to PI.

2. Data and methods

2.1 Study area

The Caspian Sea bounds the western part of the study area,
and the eastern part extends to the arid region of Northwest
China and Mongolia. The study area spans meridionally by
15° from 35°N to 50°N (Figure 1). It covers five countries
(i.e., Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and
Uzbekistan) and a small part of northern Iran, Afghanistan,
and Pakistan, as well as northwestern China and western
Mongolia.

2.2 Model and datasets

The datasets are from the PMIP4 model simulations. We
selected 13 models, including both PI and MH experiments,
for the analysis: AWI-ESM-1-1-LR (Sidorenko et al., 2015;
Rackow et al., 2018), CESM2 (Danabasoglu et al., 2020),
EC-Earth3-LR (Zhang et al., 2021), FGOALS-f3-L (He et
al., 2019), FGOALS-g3 (Li L J et al., 2020), GISS-E2-1-G
(Kelley et al., 2020), INM-CM4-8 (Volodin et al., 2018),
IPSL-CM6A-LR (Boucher et al., 2020), MPI-ESM1-2-LR
(Mauritsen et al., 2019), MRI-ESM2-0 (Yukimoto et al.,
2019), NESM3 (Cao et al., 2018), NorESM1-F (Guo et al.,
2019), and NorESM2-LM (Seland et al., 2020), downloaded
from https://esgf-node.llnl.gov/projects/cmip6/. For detailed
information on these 13 models, please refer to Table 1.
Boundary conditions of the PI and MH are listed in Table 2.
The last 100-year average was calculated to represent cor-
responding climatology. The anomaly between MH and PI
was used to represent PI anomaly relative to the MH. To
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avoid seasonal bias caused by the varying length of the
month associated with changing orbital configurations, we
corrected model outputs from the default “fixed-day” ca-
lendar to a “fixed-angular” calendar (Joussaume and Bra-
connot, 1997; Chen et al., 2011). In addition, to effectively
reduce the model uncertainty, we use the multi-model mean
(MMM) to evaluate the climate characteristics and asso-
ciated dynamic mechanism in ACA. Note that if there are at
least seven models consistent with MMM results, MMM is
considered to be representative of ACA climate character-
istics (e.g., precipitation in Figures 2 and 3), as well as the
corresponding physical mechanism. Therefore, if there is no
specific description in the following analysis, the variables
used meet our criteria for representativeness.
To evaluate model performance on the PI precipitation

over ACA, we used the Global Precipitation Climatology
Centre (GPCC) dataset from January 1920 to December
2019 with a resolution of 1°×1° (doi: 10.5676/DWD_GPCC/
FD_M_V2018_100, download from https://opendata.dwd.
de/climate_environment/GPCC/html/fulldata-month-
ly_v2018_doi_download.html). To evaluate the simulated
precipitation anomaly between the MH and PI in PMIP4
models, we employed a new compilation of ACA records, of
which details are shown in Table 3 (summarized by Chen et
al. (2022)) and Figure 1.

2.3 Vertically integrated water vapor fluxes

To evaluate roles of water vapor supply in ACA precipita-
tion, the vertically integrated water vapor fluxes (unit:
kg m−1 s−1) can be calculated as follows:

Q q V p= 1
g d , (1)

P

100hPa

s

where g represents gravity acceleration (g=9.8 m s−2), Ps re-
presents surface pressure, q represents specific humidity, V re-
presents horizontal velocity, and Q represents water vapor flux.
To quantify contribution of moisture transport to regional

atmospheric water budgets, we calculated the mean annual

and seasonal water vapor transport into ACA via each
boundary according to the method used by Guan et al.
(2019). The calculation formula is as follows:
Western boundary:

Q Q a= d . (2)W
S

N

W

Eastern boundary:

Q Q a= d . (3)E
S

N

E

Southern boundary:

Q Q a= cos d . (4)S S
W

E

S

Northern boundary:

Q Q a= cos d , (5)N N
W

E

N

where λW and λE represent the longitudes of the western and
eastern boundaries, respectively; φS and φN represent the
latitudes of the southern and northern boundaries, respec-
tively; Q

W
and Q

E
represent the zonal fluxes across the

western and eastern boundaries, respectively; and Q
S
and

Q
N
represent the meridional fluxes across the southern and

northern boundaries, respectively. The value adopted for the
Earth’s mean radius was a=6.37×106 m.

3. Results

3.1 Model evaluation

First, we compared GPCC precipitation with PI results si-
mulated by the 13 selected models. Table 4 shows their
correlation coefficients. The results showed that the coeffi-
cients were significantly different among models in terms of
annual and seasonal precipitation. Among them, MRI-
ESM2-0 is characterized by the highest winter (average in
December, January, and February) coefficient, while AWI-
ESM-1-1-LR features the lowest spring (average in March,
April, and May) coefficient (note that correlations exceeding
the 95% confidence level but not exceeding the 99% con-
fidence level). Importantly, only six models are characterized
by higher-than-MMM correlation coefficients, although
mainly for a single season. This indicates that the MMM can
better represent and capture observed precipitation patterns
than a single model.

3.2 Model-data comparison

In this section, we compare PMIP4 model results with proxy
records to evaluate the reliability of the model results (Figure

Figure 1 Altitude of Central Asia (in km). The area surrounded by the
dark blue solid line is the study area, and the black dots are the spatial
locations of the recent proxy records by Chen et al. (2022).
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2). Since the proxy records mainly reflect the annual mean
(Chen et al., 2022), we use simulated annual mean pre-
cipitation in this analysis.
Of thirteen models eight (Figure 2a–2h, corresponding to

AWI-ESM-1-1-LR, CESM2, FGOALS-f3-L, FGOALS-g3,
GISS-E2-1-G, IPSL-CM6A-LR, MPI-ESM1-2-LR, and
MRI-ESM2-0, respectively) are characterized with increas-
ing ACA precipitation from the MH to PI, with majority of

the ACA area exceeding 95% confidence level. Four models
(Figure 2i–2l, corresponding to EC-Earth3-LR, NorESM2-
LM, NESM3, and NorESM1-F respectively) simulated pre-
cipitation reduction in a large part of plotted area, but in
ACA area their increased precipitation is significant (ex-
ceeding the 95% confidence level). Only INM-CM4-8
(Figure 2m) characterizes a general decrease in precipitation.
Figure 2n shows the comparison between the MMM and

Figure 3 The MMM anomalies of precipitation (units: mm/month) between the PI and the MH in winter (a), spring (b), summer (c), and autumn (d). The
black dots indicate that at least 7 of the 13 models agree on the sign of MMM.

Table 1 Model name, spatial resolution and countrya)

Model name
Atmosphere resolution Ocean resolution

Country
Lon Lat Level Lon Lat Level

AWI-ESM-1-1-LR* 192 96 L47 126859 wet nodes# L46 Germany

CESM2 288 192 L32 320 384 L60 USA

EC-Earth3-LR 320 160 L62 362 292 L75 Sweden

FGOALS-f3-L* 288 180 L32 360 218 L30 China

FGOALS-g3 180 80 L26 360 218 L30 China

GISS-E2-1-G* 144 90 L40 360 180 L40 USA

INM-CM4-8** 180 120 L21 360 318 L40 Russia

IPSL-CM6A-LR 144 143 L79 362 332 L75 France

MPI-ESM1-2-LR 192 96 L47 256 220 L40 Germany

MRI-ESM2-0 320 160 L80 360 364 L61 Japan

NESM3*** 192 96 L47 384 362 L46 China

NorESM1-F 144 96 L32 360 384 L70 Norway

NorESM2-LM 144 96 L32 360 384 L70 Norway

a) * denotes a model that lacks the sea ice area percentage and does not include in the calculation of average; ** denotes a model that lacks omega and does
not include in the calculation of average; *** denotes a model that lacks evaporation and does not include in the calculation of average; # The grid
information of the AWI-ESM-1-1-LR in the ocean model is irregular.
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proxy records. It appears that the MMM precipitation in
ACA is characterized by a significant increase during the PI,
in good agreement with the reconstructed moisture change.
This analysis suggests that there exists a large spread on

simulated ACA precipitation change while the MMM can

effectively reduce these model uncertainty and thus improve
their consistency with proxy records.

3.3 Precipitation seasonal variability

We further analyzed the precipitation seasonality to clarify
dynamic mechanisms accounting for mean annual pre-
cipitation change. The MMM indicates that seasons with the
most significant precipitation increase in ACA are winter
(Figure 3a) and spring (Figure 3b). Therein regions between
Pamir Plateau and the Caspian Sea are characterized by
significant rainfall increase in winter (Figure 3a), while in
spring, the significant regions are just over Pamir Plateau and
Tianshan Mountains (Figure 3b). Rainfall in summer was
significantly reduced, in contrast to winter, spring, and annual
mean (Figure 3c). Simulated rainfall change in autumn is in
general in line with annual mean but with a weak magnitude
and thus a weak contribution to annual mean (Figure 3d).

Table 2 Orbital parameters and greenhouse gases for the PI and MH
experimentsa)

Boundary conditions PI MH

Eccentricity 0.016764 0.018682

Obliquity (°) 23.459 24.105

Perihelion-180° (°) 100.33 0.87

Carbon dioxide (ppm) 284.3 264.4

Methane (ppb) 808.2 597

Nitrous oxide (ppb) 273 262

Solar constant (W m−2) 1360.747 PI

a) https://pmip4.lsce.ipsl.fr/. 1 ppm=10−6, 1 ppb=10−9.

Table 3 Proxy records in ACA, summarized from Chen et al. (2022)a)

Site name Latitude Longitude Moisture
conditions Proxies used References

Lake Issyk-Kul 42.50°N 77.10°E Drier δ18O, CaCO3, pollen
Rasmussen et al., 2001; Ricketts et al.,

2001; Ferronskii et al., 2003

Lake Bosten 41.94°N 86.76°E Wetter Pollen Wünnemann et al., 2006; Huang et al.,
2009

Lake Akkol 50.38°N 89.42°E Drier Pollen Blyakharchuk et al., 2007

Lake Wulungu 47.20°N 87.29°E Wetter Grain size, pollen Liu et al., 2008

Aral Sea 45.00°N 60.00°E Wetter Terrace, historical documents Krivonogov et al., 2010

Lake Balikun 43.62°N 92.77°E Wetter Pollen Tao et al., 2010; An et al., 2012

Lake Sayram 41.50°N 81.03°E Wetter Pollen Jiang et al., 2013

Lake Achit Nur 49.42°N 90.52°E Drier Pollen Sun et al., 2013

Lake Aibi 45.01°N 82.86°E Wetter Pollen Wang et al., 2013

Chaiwobu Peatland 43.49°N 87.93°E Wetter Cellulose δ13C value Hong et al., 2014

Caspian Sea 41.93°N 50.67°E Wetter Pollen Leroy et al., 2014

Lake Bayan Nur 49.98°N 93.95°E No change Pollen Tian et al., 2014

Kansu section 43.43°N 83.92°E Wetter Magnetic proxies Chen et al., 2016

Lujiaowan section 43.97°N 85.34°E Wetter Magnetic proxies Chen et al., 2016

Zeketai section 43.53°N 83.30°E Wetter Magnetic proxies Chen et al., 2016

Zhongliang section 43.50°N 87.33°E Wetter Magnetic proxies Chen et al., 2016

Kesang Cave 42.87°N 81.75°E Wetter trace element ratios, δ18O Cheng et al., 2016; Cai et al., 2017

Ton Cave 38.4°N 67.34°E Wetter trace element ratios, δ18O Cheng et al., 2016

Lake Lup Nur 40.00°N 91.00°E Drier Grain-size, pollen, ostracod, soluble salt Liu et al., 2016

TLSH Peatland 48.81°N 86.92°E Wetter Pollen, n-alkane Zhang Y et al., 2016, 2018

NRX Peatland 48.80°N 89.90°E Wetter Pollen Feng et al., 2017

Bayanbulak Basin 42.95°N 84.00°E Wetter Grain-size, magnetic susceptibility, loss
on ignition Long et al., 2017

Lake Kanas 48.70°N 87.01°E Wetter Pollen Huang et al., 2018

Baluke Cave 42.43°N 84.73°E Wetter trace element ratios, δ18O Liu et al., 2019, 2020

YE section 37.60°N 55.43°E Wetter δ13C Wang et al., 2020

Kelashazi Peat 48.11°N 88.36°E Wetter Pollen Wang and Zhang, 2019

a) Moisture conditions represent the PI change relative to the MH.
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3.4 Water vapor supply in winter and spring

As indicated by the seasonal variability of precipitation
(Figure 3), the mean annual precipitation increase is mainly
associated with winter and spring precipitation increase. Of
particular relevance to ACA precipitation is atmospheric
water vapor content (Zhang X J et al., 2016). Climatologi-
cally, the ACA water vapor mainly comes from upwind
evaporation over the North Atlantic, inland seas, and lakes,
which is transported to ACA by the midlatitude westerlies
(Figure 4a, 4c; Böhner, 2006; Zhang, 2021). Therefore, the
physical mechanism causing precipitation increase in winter
and spring during the PI can be attributed to changes in
pathway and intensity of water vapor transport. In this sec-
tion, we explore the reasons for these changes in winter and
spring between the PI and MH.
In winter, there exist two anomalous water vapor trans-

ports, accounting for increased precipitation in ACA (Figure
4b). One transport anomaly is northward water vapor trans-
port from the northwestern tropical Indian Ocean to the
ACA. Based on the climatological water vapor transport
during the MH (Figure 4a), this indicates that water vapor
from upwind areas of ACA (such as the Mediterranean)
tends not to be transported to the Indian Ocean, but rather to
ACA. The other represents a water vapor source originating
from the ocean in east of Iceland, which goes southeastwards
across the Western Europe and the Mediterranean, turning
eastwards over the northeastern North Africa and then
merging with the southerly water vapor in south of Iranian
Plateau. The merged water vapor finally enters ACA from

the western of the southern boundary of the study area (i.e.,
the Iranian Plateau and other places) (Table 5). This accounts
for a significant increase in precipitation mainly in the south
of the study area (Figure 3a).
Moisture supply for ACA precipitation in spring is dif-

ferent from that in winter (Figure 4d). In comparison to the
MH, more water vapor is transported eastwards from the
North Atlantic to the Eurasian continent at mid-latitudes
during the PI (Figure 4d). After passing the mid Europe, the
water vapor turns southwards towards the eastern Medi-
terranean Sea, where part of it turns eastwards via Caspian
Sea to ACA (Figure 4d; Table 5). This finally provides extra
water vapor for increased ACA precipitation in ACA in
spring (Figure 3b).

4. Underlying dynamics

The increased water vapor import strengthens ACA pre-
cipitation in winter and spring in the last 6000 years. Changes
in water vapor transport are a consequence of atmospheric
humidity and large-scale atmospheric circulation. In this
section, we investigate these two controlling factors to ac-
count for an underlying dynamic of the increasing ACA
precipitation in winter and spring from the MH to PI.

4.1 Dynamic mechanism of winter precipitation
variations

Climatologically, boreal midlatitude westerlies transport

Table 4 Correlation coefficients between ACA precipitation climatology during the PI simulated by the 13 models and the observed precipitation
climatology (1920–2019) from the GPCCa)

Models ANN DJF MAM JJA SON

AWI-ESM-1-1-LR 0.349 0.663 0.085* 0.431 0.567

CESM2 0.520 0.672 0.527 0.745 0.449

EC-Earth3-LR 0.573 0.388 0.788 0.590 0.477

FGOALS-f3-L 0.542 0.654 0.501 0.468 0.387

FGOALS-g3 0.537 0.513 0.490 0.577 0.464

GISS-E2-1-G 0.318 0.367 0.444 0.469 0.266

INM-CM4-8 0.388 0.516 0.118 0.714 0.335

IPSL-CM6A-LR 0.686 0.707 0.661 0.690 0.590

MPI-ESM1-2-LR 0.592 0.550 0.593 0.581 0.559

MRI-ESM2-0 0.730 0.842 0.776 0.704 0.568

NESM3 0.451 0.708 0.286 0.461 0.565

NorESM1-F 0.175 0.341 0.151 0.497 0.258

NorESM2-LM 0.559 0.708 0.291 0.640 0.595

MMM 0.605 0.727 0.579 0.708 0.628

a) The result of the MMM is the correlation between the mean values of the 13 models and the GPCC. * denotes correlations exceeding the 95%
confidence level; the others exceed the 99% confidence level. The correlation coefficients greater than the MMM are italicized, with ANN representing the
annual mean, DJF representing the average of December, January, and February, MAM representing the average of March, April, and May, JJA representing
the average of June, July and August, and SON representing the average of September, October, and November.
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water vapor to ACA from the North Atlantic, Mediterranean,
and the Caspian Sea in winter (Figure 4a; Böhner, 2006;
Guan et al., 2019; Zhang, 2021). This process provides
sufficient water vapor for winter precipitation, resulting in a
high proportion of winter precipitation in the annual pre-
cipitation (Guan et al., 2019; Zhang, 2021). However, the
Eurasian continent is mainly controlled by the downdraft
generated by Siberian High, suppressing ACA precipitation
(Zhang X J et al., 2016). The modeling results show that
changes in the Earth’s precession (Table 2) increase boreal
winter insolation from the MH to PI (Berger, 1978). Due to
the lower specific heat capacity over land than in the sea, the
boreal temperature over land in winter was approximately
1°C higher than that over the Indian Ocean and the Pacific
Ocean during the PI (Figure 5a). This reduces the land-sea
temperature difference, weakening the Asian winter mon-
soon and hence resulting in a southerly wind anomaly over

the northwestern Indian Ocean and south of Central Asia
(Figure 5d). This effectively reduces water vapor import into
the tropical Indian Ocean, promoting the upwind water vapor
transport to ACA and hence strengthening the ACA pre-
cipitation. Xie et al. (2021) by investigating mechanisms of
interannual winter rainfall in southern ACA during 1979 to
2017, found that southerly anomaly can bring more water
vapor from the Arabian Sea, leading to the occurrence of
modern extreme precipitation events inland. In addition, the
land-sea temperature response also modulates large scale
atmospheric circulation (Figure 5a, 5b): weakened Siberian
High over Central Asia, and positive sea level pressure
anomalies over the tropical southern Indian Ocean (Figure
5b). It appears that the center of the positive 200 hPa geo-
potential height (GPH) anomaly lies in the Asian continent,
while the tropical Indian Ocean experiences a slight increase
in the GPH field (Figure 5a). This spatial configuration of the

Figure 4 The MMM vertical integrated water vapor transport (arrow; unit: kg m−1 s−1) for the MH in winter (a) and its anomaly (arrow; unit: kg m−1 s−1)
between the PI and the MH (b); (c) same as (a) but in spring; (d) same as (b) but in spring. Color shadings indicate the elevation (in km) of the terrain.

Table 5 MMM anomaly of vertical integrated water vapor transport between the PI and the MH at each boundary of the study area in winter and spring

Season Western boundary
(50°E, 35°N–50°N)

Eastern boundary Southern boundary
Northern boundary
(50°E–100°E, 50°N)

Regional
atmospheric
water budgetsNorthern part

(100°E, 40°N–50°N)
Southern part

(80°E, 35°N–40°N)
Western part

(50°E–80°E, 35°N)
Eastern part

(80°E–100°E, 40°N)

Winter
(×1010 kg s−1) 1.60 −1.58 −1.19 3.25 0.04 −1.13 0.99

Spring
(×1010 kg s−1) 6.39 −3.79 −2.38 0.20 −0.51 0.15 0.05
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pressure field weakens the strength of the Siberian High,
reducing the atmospheric subsidence movement over the
ACA, especially its southern region (Figure 5b), and hence
generating conditions favorable for ACA precipitation. This
is also supported by modeling results in Zhang X J et al.
(2016) which suggested a weakening of the East Asian
winter monsoon intensity since the MH. In addition, they
calculated correlation between the East Asian winter mon-
soon intensity and the winter precipitation in Northwest
China, which exhibits a significant negative value (r=−0.81,
p<0.05) from the MH to PI.
Since the ACA is sensitive to change in atmospheric

moisture, an increase in water vapor transport from the sea in
east of Iceland also plays a role in ACA precipitation, al-

though its amount is relatively smaller in comparison with
that from the tropical Indian Ocean. The increasing preces-
sion from the MH to PI reduces boreal summer insolation
(Berger, 1978), which can give rise to an increase in mean
annual sea ice at northern high latitudes (Wu et al., 2020). In
winter, regions within Arctic Circle experience polar night
and hence local insolation plays a minor role in con-
temporary sea ice change. Instead, it mainly follows summer
sea ice change caused by summer insolation change, as in-
dicated by more extended sea ice cover in eastern Greenland
during the PI than that during the MH (Figure 6a). In con-
trast, sea ice in the south of Arctic Circle is controlled by
increasing winter solar insolation, and hence characterized
by a significant weakening trend since the MH (Figure 6a).

Figure 5 The MMM anomalies of (a) 200 hPa geopotential height (contour; unit: m) and surface temperature (color shading; unit: °C), (b) sea-level
pressure (contour; unit: Pa) and 500 hPa vertical velocity (color shading; unit: Pa s−1), (c) water vapor fluxes (arrows; unit: kg m−1 s−1), and (d) 850 hPa
horizontal velocity (arrows; unit: m s−1) between the PI and MH in winter. Contour intervals are 2 m and 20 Pa in (a) and (b), respectively. The solid lines in
(a), (b) indicate positive values, and the dotted lines indicate negative values, and a negative value for vertical velocity in (b) indicates uplift. The color
shading indicates the elevation (in km) of the terrain in (c), (d).
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This further affects spatial patterns of sea surface tempera-
ture and sea-level pressure (Figure 6b). It appears that the
Icelandic Low weakened and the Azores High strengthened
from the MH to PI, resembling the negative phase of the
North Atlantic Oscillation (NAO) (Figure 6b). That is, a
NAO-negative phase like climatology pattern. This promotes
more water vapor from the northern North Atlantic trans-
ported southeastwards via mid-south Europe, which turns
eastwards over Northeast Africa to fuel the ACA precipita-
tion (Figure 6a). Our results are supported by previous
modeling studies (Lorenz et al., 2006; Zhang et al., 2010;
Yuan et al., 2014) and paleoclimate reconstruction regarding
the Holocene NAO (Davis et al., 2003; Rimbu et al., 2003,
2004; Olsen et al., 2012). Previous studies have shown that
there is an inverse phase relationship between NAO/AO and
the ACAwinter precipitation on the interannual to centennial
timescale (Aizen et al., 2001; Chen et al., 2010). In other
words, the positive and negative sea-level pressure anoma-
lies, respectively, in the high and middle latitudes of NAO
show a negative NAO/AO atmospheric circulation pattern,
which is favorable for ACA precipitation (Li and Wang,
2003; Huang et al., 2013; Kutzbach et al., 2014). Our results
are consistent with this view; that is, the North Atlantic at-
mospheric circulation pattern is characterized by a trend to a
negative phase from the MH to the PI. This is conducive to
the transport of water vapor from the eastern Iceland to ACA
over the European continent, thereby promoting the increase
in winter precipitation.

4.2 Dynamic mechanism of spring precipitation varia-
tions

Different from the winter case, water vapor import in ACA in
spring is mainly attributed to the enhancement of water vapor

transport from the upwind area. This is associated with an
insolation-induced increase in evaporation in the Medi-
terranean, continental Europe, and inland water bodies (such
as the Black Sea, Caspian Sea, etc.) (Figure 7a), which in-
creases atmospheric humidity (Figure 7b) and hence pro-
motes water vapor transport to ACA (Figure 7b). Enhanced
eastward water vapor transport over the North Atlantic is
mainly a result of the intensification of the midlatitude
westerlies (Figure 7a), serving as the upwind water vapor
source for downstream regions (e.g., the European continent)
(Figure 7b).
To quantify the source of imported water vapor, we define

two upwind regions; subregion R1 (0°E–50°E, 35°N–50°N,
representing the Mediterranean and southern Europe) and
subregion R2 (60°W–0°, 40°N–60°N, representing the North
Atlantic) (Figure 7). Then calculated are the vertically in-
tegrated water vapor fluxes across the boundaries of each
subregion (Table 6).
The results show that water vapor transport into and out of

each subregion is mainly through their western and eastern
boundary, respectively (Figure 7; Table 6). Importantly, the
water vapor import of subregion R2/R1 is stronger/weaker
than its export, indicating that subregion R2/R1 is a sink/
source of water vapor. Therefore, the enhanced water vapor
transport to ACA during the PI is closely associated with the
increased atmospheric humidity caused by the enhanced
evaporation over Europe, western Asia and their inland
lakes. Meanwhile, increased atmospheric humidity in sub-
region R2 is a result of the enhanced import of water vapor
from North America by midlatitude westerlies, which also
accounts for increased water vapor transport from subregion
R2 to subregion R1 (Figure 7; Table 6). Overall, the in-
solation-induced increase in spring water vapor import to
ACA can be attributed to the enhanced evaporation over land

Figure 6 The MMM anomalies of (a) sea ice area percentage (color shading; unit: %) and water vapor fluxes (arrows; unit: kg m−1 s−1), (b) surface
temperature (color shading; unit: °C) and sea-level pressure (contour; unit: Pa) between the PI and MH in winter. The contour interval is 20 Pa in (b). The
solid lines in (b) indicate positive values, and the dotted lines indicate negative values.
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and inland lakes in the Northern Hemisphere, support by Jin
et al. (2012), which proposed high spring insolation
strengthens evaporation in the upstream continental regions
in the cold-season of the Northern Hemisphere.
In addition, it appears that the midlatitude westerlies have

a weak effect on the enhancement of ACA water vapor im-
port (Figure 7a). In subregion R1 northerly anomaly prevails,
although the westerly anomaly prevails in subregion R2
(Figure 7a). Based on eq. (1), the integrated water vapor
transport is a function of wind and atmospheric humidity.
Therefore, the latter dominates the ACAwater vapor import
in spring. In other words, enhanced ACAwater vapor import
is a consequence of increased atmospheric water vapor
content caused by strengthened evaporation in its upstream
regions.
Finally, the reduced atmospheric subsident movement

during the PI, as indicated by the negative anomaly of 500
hPa vertical velocity over ACA (Figure 7a), is a local factor
conducive to the increased spring precipitation.

5. Discussions

The ACA drought conditions in the EH have been attributed
to a weakened midlatitudes westerlies and reduced eva-
poration in winter, resulting in a reduction in water vapor
supply from the North Atlantic, Caspian Sea, and Medi-
terranean Sea (Chen et al., 2008, 2016; Liu et al., 2009, 2014;
Jin et al., 2012; Wang and Feng, 2013; Zhang X J et al., 2016,
2017). The former might be associated with a decreased
meridional temperature gradient caused by insolation
change. In addition to low winter insolation, the latter might
be attributed to the remnant LIS and the associated meltwater
into the North Atlantic (Carlson and Clark, 2012; Jin et al.,
2012). Accordingly, Chen et al. (2019) proposed a dynamic
framework of “Westerlies-Dominated Climatic Regime”,
within which changes in midlatitude westerlies across the
Holocene can be used to explain the difference in the Ho-
locene precipitation evolution between ACA and East Asian
monsoon regions. In addition, insolation-induced enhance-

Figure 7 The MMM anomalies of (a) evaporation (color shading; unit: mm/month), 500 hPa vertical velocity (contour; unit: Pa s−1) and 850 hPa horizontal
velocity (arrow; unit: m s−1), (b) water vapor flux (arrows; unit: kg m−1 s−1) and 850 hPa specific humidity (color shading; unit: 10−2 g kg−1) between the PI
and MH in spring. ACA is highlighted by the dark blue solid line. Two upwind subregions are defined, solid green and yellow rectangles represent the
subregions R1 and R2, respectively. In ACA of subplot (a), contours represent 500 hPa vertical velocity. The contour interval is 0.003 Pa s−1, solid and dotted
lines indicate positive (subsident movement) and negative (uplift movement) values.

Table 6 MMM anomaly (PI–MH) of vertically intergrated water vapor flux at each boundary of the two subregions in spring

Subregion Western boundary Eastern boundary Southern boundary Northern boundary Regional atmospheric
water budgets

R1 3.68 −6.39 −8.36 3.52 −7.55

R2 13.97 −9.60 −0.20 −2.49 1.67

a) The spatial extent of each subregion is shown in Figure 7, unit: ×1010 kg s−1.
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ment of Siberian High (Zhang X J et al., 2016, 2017) and the
negative phase of Arctic Oscillation (AO) or NAO-like at-
mospheric circulation (Chen et al., 2016) are proposed to
explain the ACA drought in the EH.
In this study, we further investigated the underlying dy-

namics of ACAwetting from the MH to PI based on results
from 13 PMIP4 models. Our results show that the wetting is
caused by enhanced water vapor supply in both winter and
spring. A conceptual diagram has been provided to illustrate
the dynamics (Figure 8). In winter, the increased water vapor
supply is associated with anomalous southerly over the
northwestern Indian Ocean and southern Central Asia and a
negative NAO/AO-like atmosphere circulation. The former
promotes the water vapor transport from the Mediterranean
to ACA, meanwhile, the latter enhanced water vapor trans-
port from the northern North Atlantic to ACA (Figure 8a). In
spring, the increased water vapor transported to ACA was
mainly related to increased atmospheric humidity as a con-
sequence of enhanced solar insolation (Figure 8b).
Different from the previous view, change in the mid-

latitude westerlies contributed little to the enhanced water
vapor supply in both winter and spring (Figures 6 and 7). The
midlatitude westerlies might be weakened by the negative
NAO-like phase in winter (Figure 6a; Kutzbach et al., 2014;
Orme et al., 2021). The regionally strengthened westerlies
only account for the increased water vapor transport from the
North Atlantic to the European continent and other places
(Figure 7). In contrast, the enhanced transport of water vapor
from the European continent to ACA is mainly associated
with the insolation-induced increase in evaporation and
hence atmospheric humidity (Figure 7a). Therefore, we
suggest that the increasing ACA precipitation in the last
6000 years might be mainly caused by changes in water
vapor supply due to contemporary insolation increase.
Our findings improve previous dynamic understanding of

precipitation change in the “Westerlies-Dominated Climatic
Regime” across the Holocene. On one hand, the longitudinal
heterogeneity of changes in the midlatitude westerly shown

by PMIP4 MMM casts doubt on reliability of using globally
zonal mean change to represent regional changes (e.g., in
ACA). On the other hand, the proposed mechanisms in this
study are different from those inferred from analysis between
EH and PI, suggesting that governing dynamics of ACA
precipitation change through the Holocene might change
with time. This might be a result of change in climate
backgrounds. In comparison with the EH, the MH is char-
acterized by an increased winter insolation (Berger, 1978),
LIS meltaway (Carlson et al., 2008), and decreased atmo-
spheric CO2 levels (Indermuhle et al., 1999; Monnin et al.,
2004; Ruddiman, 2007; Loulergue et al., 2008).

6. Conclusion

Using modeling results from 13 models in the PMIP4, we
explored the governing mechanism of the ACAwetting from
the MH to PI. The key findings and conclusions can be
summarized as follows.
(1) Increase in ACA precipitation from the MH to PI is

closely related to a strengthened water vapor supply in winter
and spring; meanwhile, weakening of atmospheric sub-
sidence also plays a positive role.
(2) In winter, two water vapor transport anomalies account

for the enhanced moisture supply to ACA since the MH. One
is related to the southerly wind anomaly over the north-
western Indian Ocean and Central Asia, as a consequence of
weakened Asian winter monsoon caused by enhanced boreal
winter insolation. The other is from the region to the east of
Iceland to ACA, associated with the negative-phase NAO-
like atmospheric circulation pattern, as a consequence of
increased winter sea ice caused by the weakened boreal
summer insolation.
(3) In spring, the enhanced water vapor supply to ACA is

controlled by increased northern hemisphere atmospheric
humidity. Increasing boreal spring insolation from the MH to
PI promotes continental (and terrestrial lakes and seas)

Figure 8 Schematic diagram for governing dynamics of increased water vapor supply to ACA in (a) winter and (b) spring from the MH to PI.
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evaporation, increasing air humidity and hence providing
more water vapor for ACA precipitation during the PI.
In summary, climatic information derived from re-

constructed records might be a consequence of a synergy of
multiple dynamical processes and hence possesses different
dynamic solutions. Therefore, in a future study, with the aid
of high resolution proxy records, climate models and perhaps
regional climate models shall be used to deepen our under-
standing of a tempo-spatial moisture evolution in ACA
through the Holocene.
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