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Abstract Historical biome changes on the Tibetan Plateau provide important information that improves our understanding of
the alpine vegetation responses to climate changes. However, a comprehensively quantitative reconstruction of the historical
Tibetan Plateau biomes is not possible due to the lack of quantitative methods that enable appropriate classification of alpine
biomes based on proxy data such as fossil pollen records. In this study, a pollen-based biome classification model was developed
by applying a random forest algorithm (a supervised machine learning method) based on modern pollen assemblages on and
around the Tibetan Plateau, and its robustness was assessed by comparing its results with the predictions of the biomisation
method. The results indicated that modern biome distributions reconstructed using the random forest model based on modern
pollen data generally concurred with the observed zonal vegetation. The random forest model had a significantly higher accuracy
than the biomisation method, indicating the former is a more suitable tool for reconstructing alpine biome changes on the Tibetan
Plateau. The random forest model was then applied to reconstruct the Tibetan Plateau biome changes from 22 ka BP to the
present based on 51 fossil pollen records. The reconstructed biome distribution changes on the Tibetan Plateau generally
corresponded to global climate changes and Asian monsoon variations. In the Last Glacial Maximum, the Tibetan Plateau was
mainly desert with subtropical forests distributed in the southeast. During the last deglaciation, the alpine steppe began ex-
panding and gradually became zonal vegetation in the central and eastern regions. Alpine meadow occupied the eastern and
southeastern areas of the Tibetan Plateau since the early Holocene, and the forest-meadow-steppe-desert pattern running
southeast to northwest on the Tibetan Plateau was established afterwards. In the mid-Holocene, subtropical forests extended
north, which reflected the “optimum” condition. During the late Holocene, alpine meadows and alpine steppes expanded south.
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1. Introduction

The uplift of the Tibetan Plateau altered the intensity of the
Asian monsoon (An et al., 2001, 2015; Molnar et al., 2010)

and formed a unique alpine ecosystem (Zhang, 1978; Zheng
et al., 1979; Wu, 1980). The development and response of
alpine vegetation on the Tibetan Plateau due to climate
changes have garnered considerable attention (e.g., Tang and
Li, 2001; Chen et al., 2020; Zhao et al., 2020). The biome
dynamics since the Last Glacial Maximum (LGM) represent
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a series of vegetation responses to climate changes from
glacial to interglacial, and biome changes during this period
have been studied based on fossil pollen sequences at many
fossil sites across the Tibetan Plateau (e.g., Shen et al., 2006;
Zhao et al., 2011; Herzschuh et al., 2014; Li et al., 2019; Shi
et al., 2020).
Several reviews have provided qualitative overviews of the

zonal vegetation shifts in different parts of the Tibetan Pla-
teau since the LGM. For instance, Tang and Li (2001)
summarised the fossil pollen data and described the tem-
poral-spatial biome distributions on the Tibetan Plateau
during the Holocene; Tang et al. (2021) reviewed the pub-
lished palaeopalynological works of the Tibetan Plateau, and
illustrated the major biome changes in different sites during
20–0 ka BP.
Quantitative reconstruction of past biome changes based

on the fossil pollen data on the Tibetan Plateau is rare, al-
though fossil pollen records are available at many sites. All
the quantitative biome reconstructions were performed by
applying the biomisation method (Prentice et al., 1996).
Herzschuh et al. (2006) presented the Holocene pollen record
of Zigetang Co, and quantitatively revealed the local biome
variations between temperate steppe and alpine steppe dur-
ing the Holocene with a site-specific biome classification
scheme. Herzschuh et al. (2009) reconstructed the changes of
tundra and steppe biomes surrounding Koucha Lake since
the late glacial. Dallmeyer et al. (2011) reconstructed the
biome changes over the past 6 ka at four sites representing
different vegetation zones on the Tibetan Plateau, and ex-
hibited the variations of the forest, shrub, steppe/meadow,
and desert at these sites. Despite applying the same method,
these pollen-based biome reconstructions used different
biome classification schemes, so their results are not fully
comparable.
Minimal studies on past biome distributions in China in-

cluded quantitative reconstructions of past biomes on the
Tibetan Plateau (Yu et al., 2000; Ni et al., 2014; Sun et al.,
2020) using fossil pollen data and biomisation method
(Prentice et al., 1996). These studies aimed to determine past
biome distributions across China at a subcontinental scale;
however, insufficient attention was given to specific regions
such as the Tibetan Plateau. The biome classification scheme
of Yu et al. (2000) only incorporated one tundra biome type
to represent alpine vegetation of the Tibetan Plateau and
presented the past biome distributions for two time windows
(18 and 6 ka BP). Ni et al. (2014) reconstructed the biome
changes along a continuous timeline from the LGM, and
their biome scheme contained multiple tundra biome types;
however, the tundra types did not distinctly conform to the
zonal vegetation of the Tibetan Plateau. Sun et al. (2020)
reconstructed the biomes of China in the mid-Holocene, and
their scheme included two alpine biome types compatible
with the vegetation zones of the Tibetan Plateau. However, a

suitable quantitative reconstruction method for the biome
changes on the Tibetan Plateau since the LGM has yet to be
established.
Two studies performed model simulations for past biome

distribution on the Tibetan Plateau. Song et al. (2005) si-
mulated the early Holocene biome distribution of the Tibetan
Plateau applying a biogeography-biogeochemistry model
(BIOME4), and the modeled palaeo-biome pattern was va-
lidated using a biome zonation map inferred from fossil
pollen data qualitatively. Dallmeyer et al. (2011) simulated
the biome changes on the Tibetan Plateau over the past 6 ka
using a coupled atmosphere-ocean-vegetation model (EC-
HAM5/JSBACH-MPIOM), and assessed the model perfor-
mance by using the biome reconstructions from fossil pollen
data at four representative sites. However, the pollen-based
biome reconstructions used in both cases didn’t provide
sufficient evidence for verifying the model results because of
using either qualitative interpretation at a coarse spatial scale
or quantitative reconstructions from a limited number of
sites. A more comprehensive pollen-based reconstruction of
past biome pattern on the Tibetan Plateau applying a suitable
quantitative method will facilitate the model-proxy com-
parisons for identifying the mechanism of past biome
changes.
The random forest algorithm, a supervised machine

learning method, was recently used to establish a pollen-
biome model to reconstruct historical biomes. Using modern
pollen assemblages from Africa and the Arabian Peninsula,
Sobol and Finkelstein (2018) tested the reliability of eight
numerical biome prediction methods based on pollen data
and determined that the random forest model most accurately
predicted biomes from pollen data. Subsequently, Sobol et al.
(2019) applied the random forest algorithm to develop pol-
len-biome classification models in Southern Africa, resulting
in highly accurate modern biome predictions based on
modern pollen data, and they successfully used the random
forest models to reconstruct biome changes in the last 60 ka
at Wonderkrater.
The machine learning method has great potential for biome

reconstruction of the Tibetan Plateau; however, validation of
its robustness is necessary. In this study, we introduced the
random forest algorithm to the quantitative reconstruction of
past biome changes on the Tibetan Plateau. A pollen-biome
reconstruction model for the Tibetan Plateau was developed
applying the random forest algorithm based on a modern
pollen dataset. The robustness of the proposed model was
assessed by comparing its prediction accuracy with the re-
sults of the biomisation method using the same modern
pollen dataset. Finally, the biome changes at fossil sites
across the Tibetan Plateau were quantitatively reconstructed
to illustrate the successive vegetation changes on the Tibetan
Plateau since the LGM.
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2. Materials and methods

2.1 Study region

The Tibetan Plateau covers ca. 2.54 million km2 (Zhang et
al., 2014) with an average elevation of >4000 m a.s.l. Its
climate is mainly controlled by the Indian summer monsoon,
the East Asian summer monsoon, and the mid-latitude
westerlies (Chen et al., 2020). The vegetation zonation on the
plateau along the thermal and moisture gradients from
southeast to northwest is generally forest-meadow-steppe-
desert (Zhang, 1978, 2007; Zheng et al., 1979).
The tropical rain forests are restricted to low-altitude areas

on the southern slope of the Himalayas and are dominated by
semi- and tropical evergreen trees such as Dipterocarpus
spp., Artocarpus chaplasha, Dysoxylum spp., Canarium re-
siniferum, Tetrameles nudiflora, Altingia excelsa, Chukrasia
tabularis, and Shorea assamica. Subtropical broadleaf
evergreen forests occur in the southeastern portion of the
Tibetan Plateau, and the dominant species mainly include
evergreen trees in the Fagaceae family, such as Castanopsis
spp., Lithocarpus spp., Cyclobalanopsis spp., evergreen
Quercus (Q. aquifolioides, Q. rehderiana, and Q. semi-
carpifolia), and other evergreen genera such as Schima,
Machilus, Manglietia, and Ficus. Coniferous trees, such as
Pinus densata, P. yunnanesis, and Tsuga dumosa, play im-
portant roles in some of these forests. The high-altitude
mountain area can be occupied by cold temperate needleleaf
forests, with dominant species including Picea (P. li-
kiangensis, P. asperata, P. aurantiaca, P. purpurea, and P.
brachytyla var. complanata), Abies (A. georgei and A.
squamata), Sabina (S. tibetica and S. saltuaria), Pinus (P.
griffithii), and Larix (L. chinensis) (Zhang, 2007).
The eastern Tibetan Plateau is characterised by subalpine

scrubs and alpine meadows. Dominant shrubs include Ro-
dodendron (Rh. capitatum, Rh. thimifolium, Rh. przewalskii,
Rh. violaceum, Rh. litangensis, Rh. nivale, Rh. cepha-
lanthoides, and Rh. fastigiatum), Salix (S. cupularis, S. or-
iterpha, S. atopantha, and S. sclerophylla), Potentilla
fruticosa, Rosa sericea, Sibiraea angustata, Spiraea alpina,
and Caragana jubata. The alpine meadows are characterised
by sedges such as Kobresia (K. pygmaea, K. humilis, K.
setchwanensis, K. capillifolia, and K. prattii) and Carex (C.
lanceolata, C. muliensis, and C. meyeriana), and grass spe-
cies such as Elymus nutans, Roegneria nutans, Stipa pur-
purea, S. aliena, and Deschampsia caespitosa. Diverse forbs
in genera such as Polygonum, Potentilla, Anaphalis, Leon-
topodium, Taraxacum, Saussurea, Pedicularis, Anemone,
Trollius, Ranunculus, Thalictrum, Gentiana, Swertia, Oxy-
tropis, Astragalus are also frequently found in the alpine
meadows (Zhang, 2007).
Alpine steppes prevail in the central portion of the Tibetan

Plateau, which are mainly dominated by plants from the
genera of Stipa (S. purpurea, S. bungeana, S. subsessiliflora

var. basiplumosa, S. roborowskyii, and S. capillacea), Arte-
misia (A. wellbyi, A. younghusbandii, and A. stracheyi) and
Carex (C. moorcroftii and C. montis-everestii). Other im-
portant components include grasses such as Littledalea ra-
cemose, Orinus thoroldii, Pennisetum flaccidum, and
Aristida adscensionis, and shrubs such as Caragana versi-
color, Sophora moorcroftiana, Sabina pingii var. wilsonii,
and Potentilla fruticosa (Zhang, 2007).
Alpine and temperate deserts occupy the northern and

western regions of the Tibetan Plateau. The dominant species
are mainly plants from the Chenopodiaceae family, such as
Ceratoides (C. compacta and C. latens), Salsola (S. abro-
tanoides), Haloxylon (H. ammodendron), and Kalidium (K.
foliatum and K. cuspidatum), and xerophilous plants such as
Ephedra (E. przewalskii and E. intermedia), Zygophyllum
xanthoxylon, Nitraria (N. roborowskii and N. sibirica),
Ajania tibetica and Artemisia (A. rhodantha and A. arenaria)
can also be dominant. Some grasses such as Stipa purpurea
and S. glareosa, and sedges like Carex moorcroftii, together
with the above-mentioned typical desert plants, form the
desert-steppe vegetation (Zhang, 2007).

2.2 Modern pollen dataset

The modern pollen dataset used as the training set for de-
veloping the pollen-biome classification model contained
1802 samples in 17 vegetation zones obtained from locations
on and surrounding the Tibetan Plateau (Cao et al., 2014;
Zheng et al., 2014; Zhao et al., 2021) (Figure 1). Modern
pollen samples covered a significantly larger area than the
extent of the Tibetan Plateau to incorporate more vegetation
types represented by the fossil pollen records. The modern
pollen assemblages in the dataset were from surface soils
(832 samples), moss polsters (619 samples), and surface lake
sediments (351 samples). In the study region, pollen as-
semblages from a single sediment type cannot cover all
target vegetation zones (Figure 1). Therefore, we combined
the pollen assemblages from different types of sediment to
form the modern pollen dataset, although pollen signals may
differ among sediment types (Fall, 1992; Wilmshurt and
McGlone, 2005; Zhao et al., 2009; Lisitsyna et al., 2012).
The dataset contained 504 terrestrial pollen taxa, which were
homogenised into 230 taxa by merging the synonyms and
combining the low-level taxonomic groups. The pollen
percentages were recalculated based on the sum of the ter-
restrial pollen.
A large number of the modern pollen samples had no

original vegetation information in the dataset, and the ori-
ginal vegetation data of the other samples were probably
obtained via different criteria such as different field survey
extents and vegetation classification systems. Therefore, the
biome labels for all modern pollen assemblages were reas-
signed according to their positions on the vegetation map to
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ensure consistency, so each pollen assemblage was assigned
as a biome type that represented the relevant vegetation zone.
The vegetation zone is the subordinate regionalisation unit to
the vegetation region in the vegetation regionalisation map
of China (Zhang, 2007). Such a spatial scale should be ap-
propriate for establishing pollen-vegetation model, since
studies on modern pollen-vegetation relationships indicated
that modern pollen assemblages can reflect vegetation zones
better than finer-scale vegetation information (Felde et al.,
2014; Qin, 2021).

2.3 Fossil pollen dataset

A total of 51 fossil pollen records from the Tibetan Plateau
(Figure 1, Appendix Table A1, https://link.springer.com)
were used to reconstruct past biome changes from the LGM
to the present, which were primarily obtained from the Late

Quaternary pollen dataset of eastern continental Asia (Cao et
al., 2013). The elevations of the fossil sites ranging from
1974 to 5325 m a.s.l. Twelve sites were located in the
modern subtropical forest region, which included four and
eight sites in the middle subtropical broadleaf evergreen and
subtropical mountain cold-temperate needleleaf forest zones,
respectively. Seven sites were in the subalpine scrub and
alpine meadow zone, and three were in the alpine meadow
zone. Fifteen sites were in the alpine (11 sites), temperate (3
sites), and southern temperate (1 site) steppe zones and the
remaining 14 sites were in desert zones, including the alpine
(5 sites), temperate (1 site), and temperate semi-shrubby and
shrubby (8 sites) desert zones. The original 269 fossil pollen
taxa were homogenised into 135 taxa, and all the fossil
pollen taxa were harmonised to correspond with the modern
pollen dataset.
Most of the fossil pollen records had at least three age

Figure 1 Map showing the vegetation zonation of the Tibetan Plateau and the fossil and modern pollen sample locations.
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control points. New age-depth models were developed for
most of the records using the Bayesian method (Blaauw and
Christen, 2011) and constructed using rbacon 2.3.7 (Blaauw
and Christen, 2019) in R v. 3.5.1 (R Core Team, 2018). The
original age-depth models of lakes Donggi Cona, Muge Co,
Taro Co, Ximen Co, and Wuxu Lake were developed using
the Bayesian method, and the age-depth model of Dunde ice
cap was determined by the annual layers of the ice core.
These original age-depth models were used in this study. The
sample resolutions of 36 records were greater than 500 years/
sample, 12 records had sample resolutions between 500–
1000 years/sample, and 3 records had sample resolutions
>1000 years/sample (Appendix Table A1). All fossil pollen
records were linearly interpolated to 500-year time slices,
resulting in a studied time interval of 22–0 ka BP containing
45 time windows. It’s noteworthy that some fossil pollen
records had limited age control points, or showed low sam-
pling resolutions (Appendix Table A1). These fossil pollen
records were all included in the palaeobiome reconstructions
to maximise the number of fossil sites and increase the
spatial representation, although uncertainties may be in-
volved in the ages of these records. Nevertheless, these un-
certainties may be reduced to some extent by focusing on the
long-term changes of large-scale biome patterns revealed by
multiple sites rather than on the biome succession of a single
site.

2.4 Biome reconstruction methods

2.4.1 Random forest algorithm
Modern pollen assemblages and their vegetation type in-
formation were used to train the pollen-biome classification
model via the random forest algorithm (Breiman, 2001).
Random forest algorithm fits many classification trees, and
the final prediction is made according to the majority vote
from all the trees (Breiman, 2001; Cutler et al., 2007). Each
tree is fitted to a random bootstrap subset of the original
dataset using classification and regression tree (CART)
methodology (Breiman et al., 1984). At each node of the
classification tree, only a small group of variables are ran-
domly selected to split on. After being fully grown (not
pruned), each tree is tested on the out-of-bag (OOB) samples
that are not included in the bootstrap subset (about one-third
of the original dataset), and the error rates are estimated. The
averaged error rates over all trees (OOB error rates) are used
to assess the performance of the random forest model. The
importance of a specific variable (pollen taxon in this study)
is evaluated by using the mean decrease in accuracy, which
measures the increase in misclassification when the values of
the variable are randomly permuted for the OOB samples.
The model training was performed following the procedures
of Sobol and Finkelstein (2018) and Sobol et al. (2019). The
number of trees and pollen taxa randomly selected as pre-

dictor variables at each node were set to 500 and 11, re-
spectively. Biome types containing <15 samples were
excluded from model fitting. The algorithm was repeated
100 times, and the model with the lowest OOB error rate was
selected for subsequent analyses. The pollen-biome model
was applied to the fossil pollen data from the Tibetan Plateau
to reconstruct the biome changes for each fossil site. The
reconstructed biomes were mapped, and the biome dis-
tributions on the Tibetan Plateau since the LGM in the dif-
ferent time windows were determined. The establishment
and application of the random forest model were im-
plemented in R v.3.5.1 (R Core Team, 2018) using the ran-
domForest 4.6–14 package (Liaw and Wiener, 2002).

2.4.2 Biomisation method
The biomisation method (Prentice et al., 1996) was also
employed to reconstruct modern biomes from modern pollen
data for comparison with the resultant random forest model
biomes. The process included (Prentice et al., 1996; Prentice
and Webb III, 1998): (1) assigning each pollen taxon to one
or more plant function types (PFTs) according to its eco-
physiological and bioclimatic characteristics; (2) defining
biomes based on the characteristic PFTs; (3) constructing a
biome × taxon matrix indicating which pollen taxa might
occur in each biome; and (4) calculating the affinity scores
for each biome using pollen percentage data as follows:

{ }( )A p= max 0, ,ik
j

ij jk j

where Aik is the affinity score of pollen sample k for biome i,
δij is the entry in the biome × taxon matrix for biome i and
taxon j, pjk is the pollen percentage for taxon j in sample k,
and θj is the threshold pollen percentage (0.5% in this study).
Finally, the pollen assemblage was assigned to the biome
with the highest affinity score. When affinity scores of dif-
ferent biomes are equal, the biome defined by a smaller
number of PFTs has priority (Prentice et al., 1996). The
classification of PFTs and biomes was based on the Sun et al.
(2020) scheme (detailed classifications see Tables B1–B3 in
Appendix B) because it included more alpine biome types
that correspond to the alpine vegetation of the Tibetan Pla-
teau and more accurately reconstructed the modern biomes
of China than previous studies (Sun et al., 2020). The bio-
misation method was performed using 3Pbase software
(Guiot and Goeury, 1996).

3. Results

3.1 Random forest model performance

The random forest model was established based on 1764
samples from 13 biomes (>15 samples for each biome), in-
cluding northern tropical seasonal and semi-evergreen
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monsoon rain forest, southern subtropical monsoon broad-
leaf evergreen forest, middle subtropical broadleaf evergreen
forest, northern subtropical broadleaf evergreen and decid-
uous forest, southern warm-temperate deciduous Quercus
forest, subtropical mountain cold-temperate needleleaf for-
est, subalpine scrub & alpine meadow, alpine meadow,
southern temperate steppe, alpine steppe, temperate steppe,
warm-temperate shrubby and semi-shrubby desert, and
temperate semi-shrubby and shrubby desert.
The overall performance of the random forest model was

ideal with an overall OOB error rate of 23.47%. Re-
constructed biomes produced by the random forest model
generally showed a zonal distribution similar to the modern
vegetation regionalisation (Figure 2). The model accuracies
for the different biome types varied and are presented in
Table 1.
The model showed the highest classifying accuracy for the

middle subtropical broadleaf evergreen forest biome
(93.56%), and most of the misidentified samples were as-
signed to the alpine steppe (2.99%) and subtropical mountain
cold-temperate needleleaf forest (1.95%) biomes. The sub-
tropical mountain cold-temperate needleleaf forest biome
also exhibited a high accuracy (72.94%), and the majority of
the misidentified samples were assigned to the middle sub-
tropical broadleaf evergreen forest biome (23.53%).
The random forest model showed weak performances for

the other forest biomes. The model correctly assigned
39.29% of the northern tropical seasonal and semi-evergreen
monsoon rain forest samples, and misidentifications were
primarily assigned to the middle subtropical broadleaf
evergreen forest biome (57.14%). A large proportion

(68.75%) of southern subtropical monsoon broadleaf ever-
green forest samples was incorrectly assigned to the middle
subtropical broadleaf evergreen forest biome, and only
29.69% was correctly assigned. The majority of the northern
subtropical broadleaf evergreen and deciduous forest sam-
ples were assigned to the subalpine scrub & alpine meadow
(38.46%), middle subtropical broadleaf evergreen forest
(28.85%), and northern subtropical broadleaf evergreen and
deciduous forest (19.23%) biomes. The southern warm-
temperate deciduous Quercus forest biome showed the
lowest accuracy (8.33%) among the forest biomes, which
were inaccurately assigned to the northern subtropical
broadleaf evergreen and deciduous forest (25.00%), middle
subtropical broadleaf evergreen forest (20.83%), subalpine
scrub & alpine meadow (20.83%), and southern temperate
steppe (16.67%) biomes.
Most samples from the two desert biomes, warm-tempe-

rate shrubby and semi-shrubby desert (90.08%) and tempe-
rate semi-shrubby and shrubby desert (87.50%), were
correctly assigned, and incorrect assignments for samples of
the former were all assigned to the latter, while those of the
latter were primarily assigned to the former.
The majority of the alpine meadow samples were correctly

assigned (83.10%), and the remainder were mainly assigned
as the alpine steppe biome (9.86%). The subalpine scrub &
alpine meadow samples exhibited an accuracy of 80.43%,
while 7.61% and 6.52% were incorrectly assigned to the
alpine meadow and northern subtropical broadleaf evergreen
and deciduous forest biomes, respectively.
The southern temperate steppe samples were primarily

assigned correctly (82.5%), and most of the misidentified

Table 1 Confusion matrix of the random forest model performance for classifying biomes using modern pollen assemblagesa)

Observed vs.
predicted NTRF SStBEF MStBEF NStBEDF StMNF SWTDQF SaScM AM STS TS AS WTD TD Accuracy

NTRF 11 1 16 0 0 0 0 0 0 0 0 0 0 0.39

SStBEF 0 19 44 0 1 0 0 0 0 0 0 0 0 0.30

MStBEF 0 2 625 1 13 0 4 0 0 3 20 0 0 0.94

NStBEDF 0 0 15 10 1 3 20 0 2 0 0 0 1 0.19

StMNF 0 1 40 0 124 0 4 0 1 0 0 0 0 0.73

SWTDQF 0 0 5 6 0 2 5 0 4 0 1 0 1 0.08

SaScM 0 0 1 6 0 0 74 7 1 0 2 0 1 0.80

AM 0 0 0 0 0 0 2 59 1 0 7 0 2 0.83

STS 0 0 1 0 0 0 1 1 99 0 3 4 11 0.82

TS 0 0 7 1 0 0 1 1 5 6 13 0 2 0.17

AS 0 0 20 0 0 0 4 17 4 0 42 2 35 0.34

WTD 0 0 0 0 0 0 0 0 0 0 0 118 13 0.90

TD 0 0 0 0 0 0 1 0 6 0 5 11 161 0.87

a) NTRF, northern tropical seasonal and semi-evergreen monsoon rain forest; SStBEF, southern subtropical monsoon broadleaf evergreen forest; MStBEF,
middle subtropical broadleaf evergreen forest; NStBEDF, northern subtropical broadleaf evergreen and deciduous forest; StMNF, subtropical mountain cold-
temperate needleleaf forest; SWTDQF, southern warm-temperate deciduous Quercus forest; SaScM, subalpine scrub & alpine meadow; AM, alpine meadow;
STS, southern temperate steppe; TS, temperate steppe; AS, alpine steppe; WTD, warm-temperate shrubby and semi-shrubby desert; TD, temperate semi-
shrubby and shrubby desert
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Figure 2 The observed modern biomes (a) and the predicted biomes produced via the random forest model (b) for the modern pollen samples.
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samples were assigned into the temperate semi-shrubby and
shrubby desert (9.17%). Samples from the other two steppe
biomes showed low accuracy, with only 33.87% of the alpine
steppe samples being correctly assigned, and the remainder
were incorrectly assigned to the temperate semi-shrubby and
shrubby desert (28.23%), middle subtropical broadleaf
evergreen forest (16.13%), and alpine meadow (13.71%)
biomes. Only 16.67% of the temperate steppe samples were
correctly assigned, and 36.11%, 19.44%, and 13.89% were
incorrectly assigned to the alpine steppe, middle subtropical
broadleaf evergreen forest, and southern temperate steppe
biomes, respectively.
The pollen taxa exhibited different effects on the accuracy

of the model (Figure 3), and their importance for the model
was calculated through the mean decrease in accuracy. Pinus,
Amaranthaceae/Chenopodiaceae, and Alnus accounted for
more than 5% of the mean decrease in accuracy, respectively,
and played the most important role in accurately classifying
the different vegetation zones. Cyperaceae, Ephdera, Quercus
(Evergreen), Artemisia, Betula, and Castanopsis/Lithocarpus
contributed significantly to an individual mean decrease in
accuracy exceeding 2%, and the mean decrease in accuracy of
Tsuga, Abies/Picea, Nitraria, Ranunculaceae, Quercus (De-
ciduous), Juglans, Asteraceae, and Ericaceae exceeded 1%.

3.2 Modern vegetation reconstructed via biomisation
method

Fourteen biome types were reconstructed for modern pollen

samples from the Tibetan Plateau and its vicinity using the
biomisation method (Table 2, Figure 4, Appendix C), which
included the tropical rain forest (TRFO), tropical seasonal
forest (TSFO), south subtropical broadleaf evergreen forest
(STFO), middle subtropical broadleaf evergreen forest
(MTFO), north subtropical mixed forest (WAMF), warm-
temperate mixed forest (TEDE), cool-temperate mixed forest
(COMX), cold-temperate evergreen conifer forest (CLEC),
cold-temperate summergreen conifer forest (CLDC), alpine
meadow (ALME), alpine steppe (ALST), cool-temperate
steppe (STEP), cool-temperate desert steppe (TEDS), and
desert (DESE). In order to distinguish from the random
forest model, the acronyms were used for biome names of
biomisation method.
Based on a comparison with the observed biomes, only a

few biome types reconstructed from modern pollen data
showed meaningful accuracy (Table 2). The STEP samples
showed the strongest agreement between the reconstructed
and observed biomes, with 70.00% being correctly assigned,
while 11.67% and 9.17% of the samples were inaccurately
assigned to the COMX and DESE, respectively. Of the
DESE samples 60.29% were correctly reconstructed; how-
ever, 29.86% were incorrectly assigned to the STEP. In ad-
dition to the STEP and DESE, the ALME and TSFO samples
showed relatively high accuracies. For the ALME samples,
38.65% were correctly reconstructed, and 29.45% and
28.22% were incorrectly assigned to the ALST and STEP,
respectively. The TSFO samples yielded an accuracy of
35.71%; however, 25.00% and 21.43% of the samples were

Figure 3 Pollen taxa significance determined by the mean decrease in accuracy in the pollen-based biome reconstruction model established using the
random forest algorithm.
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incorrectly assigned to the STFO and WAMF, respectively.
The other biome types showed unsatisfactory accuracies.

Only 21.18% of the CLEC samples were correctly assigned,
while the majority of the CLEC samples were assigned to

COMX (26.47%), ALME (15.29%), and WAMF (12.94%).
Nearly half of the ALST samples were incorrectly assigned
to STEP (44.38%), and only 15.63% of the reconstructions
were consistent with the observed vegetation. Large portions

Figure 4 The observed modern biomes (a) and the predicted biomes produced via the biomisation method (b) for the modern pollen samples.
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of the ALST samples were incorrectly assigned to the CLEC
(16.25%) and DESE (15.00%). Only one COMX sample was
correctly reconstructed, and the others were largely mis-
identified as STEP (75%). The TEDE samples were identi-
fied as TEDE (8.33%), COMX (29.17%), STEP (25.00%),
ALME (16.67%), and CLEC (12.50%). The MTFO biome
had the largest number of samples but had a 2% re-
construction accuracy, with a large number of samples being
misidentified as CLEC (43.71%) and WAMF (33.23%). Few
of the WAMF samples were correctly reconstructed (1.92%),
while the majority were misidentified as ALST (25.00%),
COMX (23.08%), ALME (19.23%), and CLEC (13.46%).
None of the STFO samples were correctly reconstructed, and
most were misidentified as CLEC (76.56%).

3.3 Palaeovegetation reconstruction

The random forest model showed higher accuracy than the
biomisation method based on comparing the reconstructions
from modern pollen data with observed biomes. Therefore,
the random forest model was adopted to reconstruct biome
changes on the Tibetan Plateau from 22 ka BP to the present.
Past biome distributions of the Tibetan Plateau were de-

monstrated via the biome reconstructions of 51 fossil sites
using the random forest model (serial maps were shown in
Figure S1 in Appendix B). Five stages reflecting major
changes in the biome distribution were determined, although
fluctuations existed within each stage (Figure 5).
Stage I (22–17 ka BP). This period was characterised by

widespread desert biomes across the Tibetan Plateau. Nearly

all sites in the western, central, and northern parts of the
Tibetan Plateau were reconstructed as temperate semi-
shrubby and shrubby deserts or warm-temperate shrubby and
semi-shrubby deserts in the 11 time-windows. In the eastern
and southeastern areas, subtropical mountain cold-temperate
needleleaf forests or middle subtropical broadleaf evergreen
forests occurred. From 18.5–17 ka BP, several sites were
identified as alpine steppes in the eastern area, and subalpine
scrub & alpine meadow biomes occasionally occurred.
Stage II (16.5–12 ka BP). During this period, the tempe-

rate semi-shrubby and shrubby desert and warm-temperate
shrubby and semi-shrubby desert biomes gradually retreated
to the northern part of the Tibetan Plateau, and middle sub-
tropical broadleaf evergreen forests remained in the eastern
and southeastern areas. Alpine steppe became prevalent in
the central and eastern regions, and an alpine steppe belt
emerged. The subalpine scrub & alpine meadows occupied a
small region in the southeastern Tibetan Plateau.
Stage III (11.5–8 ka BP). Temperate semi-shrubby and

shrubby deserts and warm-temperate shrubby and semi-
shrubby deserts mainly distributed in the northern and wes-
tern portions of the Tibetan Plateau but also occurred occa-
sionally at central and eastern Tibetan Plateau sites. Middle
subtropical broadleaf evergreen forest mainly occurred in the
eastern and southeastern areas, and occasionally occurred in
southern and central Tibetan Plateau sites. A subalpine scrub
and alpine meadow belt gradually formed in the eastern-
southeastern area of the Tibetan Plateau, which consequently
compressed the alpine steppe extents.
Stage IV (7.5–6 ka BP). During this period, temperate

Table 2 Confusion matrix of the biomisation method performances for classifying modern biomes using modern pollen assemblagesa)

Observed vs.
predicted TRFO TSFO STFO MTFO WAMF TEDE COMX CLEC CLDC ALME STEP TEDS ALST DESE Accuracy

TRFO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00

TSFO 0 10 7 2 6 1 0 0 1 0 0 1 0 0 0.36

STFO 0 0 0 1 5 2 4 49 3 0 0 0 0 0 0.00

MTFO 6 13 15 13 222 45 48 292 1 6 4 2 1 0 0.02

WAMF 0 0 0 1 1 3 12 7 0 10 4 0 13 1 0.02

TEDE 0 0 0 0 0 2 7 3 0 4 6 0 1 1 0.08

COMX 0 0 0 0 0 0 1 1 0 0 6 0 0 0 0.13

CLEC 17 0 0 2 22 3 45 36 0 26 8 1 10 0 0.21

CLDC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00

ALME 0 0 0 0 0 0 1 3 0 63 46 0 48 2 0.39

STEP 0 0 0 0 0 0 14 5 0 4 84 1 1 11 0.70

TEDS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00

ALST 0 0 0 0 0 0 0 26 0 6 71 8 25 24 0.16

DESE 0 0 0 0 0 0 8 7 0 5 103 0 14 208 0.60

a) TRFO, tropical rain forest; TSFO, tropical seasonal forest; STFO, south subtropical broadleaf evergreen forest; MTFO, middle subtropical broadleaf
evergreen forest; WAMF, north subtropical mixed forest; TEDE, warm-temperate mixed forest; COMX, cool-temperate mixed forest; CLEC, cold-temperate
evergreen conifer forest; CLDC, cold-temperate summergreen conifer forest; ALME, alpine meadow; STEP, cool-temperate steppe; TEDS, cool-temperate
desert steppe; ALST, alpine steppe; DESE, desert
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semi-shrubby and shrubby deserts and warm-temperate
shrubby and semi-shrubby deserts were generally restricted
to the northern and western parts of the Tibetan Plateau. The
subtropical mountain cold-temperate needleleaf and middle
subtropical broadleaf evergreen forests expanded towards
the southeastern part of the Tibetan Plateau at the expense of
subalpine scrub & alpine meadow biome extents.
Stage V (5.5–0 ka BP). In this stage, temperate semi-

shrubby and shrubby deserts and warm-temperate shrubby

and semi-shrubby deserts remained in the northern and
western areas; alpine steppes were dominant in the central
part; and subalpine scrub & alpine meadow biomes often
occurred in the eastern and southern regions of that the Ti-
betan Plateau. Subtropical mountain cold-temperate needle-
leaf and middle subtropical broadleaf evergreen forests
generally occupied the southeastern region of Tibetan Pla-
teau, and spread farther north in some time windows such as
4 and 1.5 ka BP.

Figure 5 Selected maps representing the typical patterns of the five-stage changes in the Tibetan Plateau biome distributions over the last 22 ka re-
constructed using the random forest model ((a)–(e), Stages I–V), and modern biomes (f) of the fossil sites.
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4. Discussion

4.1 Robustness of the random forest model to re-
construct modern biomes

The random forest model showed a reliable performance in
predicting modern biomes from modern pollen assemblages
based on a comparison with the observed biomes (Table 1,
Figure 2). However, the classification performance of the
model differs for each biome.
Biomes in the meadow and desert categories all showed

highly accurate classification abilities, including alpine
meadow, subalpine scrub & alpine meadow, warm temperate
shrubby and semi-shrubby desert, and temperate semi-
shrubby and shrubby desert (Table 1). Within the forest ca-
tegory, the middle subtropical broadleaf evergreen forest and
subtropical mountain cold-temperate needleleaf forest ex-
hibited high prediction accuracies, and the southern tempe-
rate steppe was the only steppe category to show high
accuracy.
Using the random forest model, the forest samples were

easily misidentified as middle subtropical broadleaf ever-
green forest (Table 1), which is primarily attributed to the
similar pollen signals of arboreal taxa (e.g., Alnus, Betula,
and Quercus) among the forest categories. Some of the forest
samples were misidentified as non-forest biomes. For in-
stance, many northern subtropical broadleaf evergreen and
deciduous forest samples were assigned to the subalpine
scrub & alpine meadow biome. Because the northern sub-
tropical broadleaf evergreen and deciduous forest zone is
located beside the subalpine scrub & alpine meadow zone
(Figure 1), the samples located near the boundary are vul-
nerable to the pollen signals of neighbouring vegetation
zones. For the same reason, the southern warm-temperate
deciduous Quercus forest samples were often misidentified
as the subalpine scrub & alpine meadow or southern tem-
perate steppe.
The samples of alpine steppe and temperate steppe biomes

were poorly identified by the random forest model (Table 1),
with most of the misidentifications being assigned to
southern temperate steppe, alpine meadow and temperate
semi-shrubby and shrubby desert biomes. The inaccuracy
was mainly attributed to the shared pollen components of
these non-forest biomes. Additionally, a significant number
of the alpine steppe and temperate steppe samples were in-
correctly assigned to the middle subtropical broadleaf ever-
green forest, which is resulted from long-distance
transportation of arboreal pollen from subtropical forests in
the southeastern and eastern regions.
Compared with the random forest model, the biomisation

method had much lower accuracies for predicting modern
biomes using the same modern pollen dataset (Table 2). Only
cool-temperate steppe (STEP) and desert (DESE) showed
reliable reconstructions. Samples of alpine steppe (ALST)

and alpine meadow (ALME) were frequently misidentified
as other non-forest biomes. The forest samples had even
more ambiguous assignments. Tropical seasonal forest
(TSFO) had relatively high accuracy, and misidentifications
generally fall into other forest biomes. More than half of the
north subtropical, warm-temperate, and cool-temperate
mixed forest samples were identified as non-forest biomes.
The cold-temperate evergreen conifer forest (CLEC) sam-
ples were assigned to 4–5 biomes. The south subtropical
broadleaf evergreen forest (STFO) samples were all in-
correctly assigned, and most of them were assigned to other
forest biomes.
The unsatisfactory performance of the biomisation method

may partly be attributed to the insufficient compatibility
between biome classification scheme and vegetation zona-
tion on the Tibetan Plateau. For instance, subalpine scrub and
alpine meadows are important zonal vegetations in the
eastern Tibetan Plateau, while they are merged into the al-
pine meadow in the biome classification scheme of Sun et al.
(2020). Sun et al. (2020) reported higher reconstruction ac-
curacy (80%) of the vegetation distributions across China
based on modern pollen data using the biomisation method.
This implies that with the available biome/PFT classification
scheme, the biomisation method is suitable for sub-
continental and global scale application; however, it is not
suitable for biome distribution reconstruction of the Tibetan
Plateau.
Reconstructions produced via the random forest model and

biomisation method are not directly comparable because
they utilise different biome classification approaches. The
reconstructed biomes were grouped into mega-biomes ac-
cording to bioclimate control similarities to enable a direct
comparison between the two methods (Appendix B Table
B4). Considering the mega-biomes, the overall accuracies of
the random forest model (82.57%) and biomisation method
(43.01%) were improved because the biomes sharing similar
bioclimate controls and producing indistinguishable pollen
signals were combined into one mega-biome at a coarser
scale. Generally, the random forest model produced a more
distinct zonal pattern in the study region than the biomisation
method (Figure 6).
The random forest model produced clear spatial pattern for

the mega-biomes of the modern pollen samples (Figure 6).
Tropical forests occurred in the southernmost region of the
study area, and subtropical forests distributed in the south-
eastern and eastern regions surrounding the Tibetan Plateau.
Temperate forests occurred in a few locations in the eastern
temperate region. Cool-temperate/boreal conifer forests
distributed in the southeastern Tibetan Plateau. Alpine
meadows/subalpine scrubs occupied the eastern area, and
temperate/alpine deserts distributed across the northern re-
gion in and surrounding the Tibetan Plateau. Temperate/al-
pine steppes were scattered across the central Tibetan Plateau
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and the northeastern portion of the study region.
Results of biomisation method show a somewhat similar

spatial pattern to that of the random forest model (Figure 6).
Different forest mega-biomes occupied the areas surround-
ing the Tibetan Plateau to the east and southeast. Alpine
meadows/subalpine scrubs distributed across the eastern
Tibetan Plateau. Temperate/alpine steppes occupied a vast
area across the entire Tibetan Plateau and the temperate re-

gion northeast of the plateau, while temperate/alpine deserts
dominated the northern part of the study area.
Notably, many sites in the central and western part of the

Tibetan Plateau were reconstructed as forest biomes by both
methods, where alpine non-forest vegetation (alpine steppe
and alpine desert) typically prevails. Long-distance pollen
transportation, prominent in regions with minimal plant
cover (Cour et al., 1999), from forests surrounding the Ti-

Figure 6 Comparison of modern mega-biomes reconstructed using the random forest model (a) and biomisation method (b) based on modern pollen data.
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betan Plateau, is believed responsible for these incorrect
reconstructions.
In summary, the random forest model shows great poten-

tial for reconstructing past biome changes on the Tibetan
Plateau, while the biomisation method with a published
biome/PFT classification scheme yielded unsatisfactory re-
sults.

4.2 Strengths and weaknesses of the two methods

The random forest algorithm is a newly introduced method
for reconstructing biomes based on pollen data (Sobol and
Finkelstein, 2018; Sobol et al., 2019). The biomisation
method has frequently been used in previous palaeovegeta-
tion reconstruction studies (Prentice and Jolly, 2000; Pickett
et al., 2004; Marchant et al., 2009) and is a reliable method
for predicting modern and past biomes in China (Yu et al.,
2000; Chen et al., 2010; Ni et al., 2010; Ni et al., 2014; Tian
et al., 2018; Sun et al., 2020). Both methods have strengths
and weaknesses, and each has specific error sources.
There are three advantages to applying the random forest

algorithm to establish a pollen-biome reconstruction model
(Sobol et al., 2019). First, pollen-biome relationships are
established based on modern pollen data, thereby avoiding
the subjective assignment of PFTs and biomes. Second, the
entire pollen dataset is retained for analysis, which reduces
information loss. Third, the resultant model is statistically
validated and robust.
As a data driven approach, the robustness of the random

forest model primarily relies on the quality of the training set.
Pollen identification is one of the most important quality
aspects of a pollen dataset. The pollen identification re-
solution can differ among the modern pollen samples, which
are compilations of modern pollen data obtained from stu-
dies spanning decades. Higher taxonomic levels (genera or
families) were generally used to homogenise the original
pollen taxa of this study to maintain consistency, which in-
creases the risk of involving different taxa characterised by
different environmental adaptions into an individual pollen
taxon.
The biases influencing the pollen-vegetation relationships

also contribute to the uncertainty of the random forest model,
such as the effect of long-distance transported pollen, dif-
ferences of pollen productivities, variations among pollen
assemblages within individual biome, and differences in
pollen assemblages from different sediment types. In addi-
tion, the random forest algorithm is possible to identify
ecologically irrelevant patterns in the dataset (Sobol et al.,
2019).
Some weaknesses are attributed to the methodology. The

random forest model cannot predict biome types outside of
the biome range of the training set. For example, samples
from the alpine desert and temperate desert zones of the

Tibetan Plateau were excluded due to the limited number of
sample sites (<15 sites); therefore, the random forest model
cannot assign pollen assemblages to the two biomes. More-
over, a smaller sample size of a specific biome yields a
weaker reconstruction performance for the biome. The seven
biomes that exhibited high reconstruction accuracies con-
stituted 81% of the modern pollen dataset (Table 1), and the
remaining six biomes, which had low accuracies, constituted
19%. It’s implied that small sample size may provide in-
adequate representation for the specific biome type.
The biomisation method has advantages of connecting

pollen assemblage with biome based on ecological rules.
PFT classification follows the ecophysiological and biocli-
matic principles (Ni et al., 2010); the biomes are defined on a
biogeographical basis; and the biome affinity scores are
calculated using a rational equation (Prentice et al., 1996).
Therefore, the robustness of the biomisation method pri-
marily depends on the correlation between the biome/PFT
classification scheme and the ecological foundations of the
target vegetation with respect to palynology. Moreover, the
biomisation method does not require a preliminary process to
establish pollen-biome relationships based on the training
set.
The biomisation method has three main weaknesses (Sobol

et al., 2019). First, subjectivity is involved in defining PFTs
and biomes and the selective removal of taxa from the da-
taset. Second, biomisation method relies on hand-tuning of
model which may lead to overfitting. Third, a set of biome/
PFT classification schemes is sensitive to vegetation change
at limited ecological scale. For instance, the biome/PFT
classification scheme of Sun et al. (2020) is robust for
predicting biome distributions in China, but it exhibited a
weak performance for the Tibetan Plateau biome re-
constructions in this study. The adopted PFT/biome classi-
fication scheme was designed to fit the biome patterns across
China, so it may not fully reflect the reginal-scale biome
distributions of the Tibetan Plateau. It’s expected that some
adjustments in PFT and biome classifications based on re-
gional consideration would improve the performance of
biomisation method in future applications on the Tibetan
Plateau.
The robustness of the random forest model could be im-

proved by: (1) incorporating new modern pollen data from
vegetation zones containing insufficient numbers of modern
pollen assemblages (alpine desert zone and temperate desert
zone); (2) improving the pollen data consistency and pro-
viding more appropriate modern analogues for fossil pollen
assemblages from lake cores by performing additional
modern pollen analyses on surface lake sediment; (3) redu-
cing the influences of pollen representation and long-dis-
tance transported pollen by calibrating the pollen-vegetation
relationship using the methods derived from the Extended R-
value model (Bunting and Middleton, 2009; Sugita, 2007a,
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2007b). The robustness of the biomisation method could be
improved by designing a more compatible biome/PFT
scheme for vegetation on the Tibetan Plateau.

4.3 Vegetation succession on the Tibetan Plateau since
the LGM

This study illustrated the spatio-temporal changes of the
Tibetan Plateau biome distributions from 22 ka BP to the
present by using the pollen-based reconstruction of 51 sites
via a random forest model (Figures 5 and Figure B1 in Ap-
pendix B). The fossil sites were scattered across the entire
Tibetan Plateau and in different modern vegetation zones.
The number of sites differs for the 45 time windows because
the sediments of the sites span different time intervals, and
no fossil sites could be found in some areas of the Tibetan
Plateau in the specified time windows (see Figure S1 for
details). The resultant biome distributions from the LGM to
the present show that the biome pattern changes on the Ti-
betan Plateau since 22 ka BP generally correlated with glo-
bal climate change and Asian monsoon dynamics.
Biomes on the Tibetan Plateau in Stage I (22–17 ka BP)

were characterised by the constant dominance of deserts in
most areas of the plateau, which corresponds to the cold and
dry climate conditions during the LGM (Shakun and Carl-
son, 2010; Clark et al., 2012). Subtropical forests dis-
tributed in low-altitude regions along the southeastern and
eastern margins. Between 18.5–17 ka BP, meadow and
steppe biomes increased in the eastern region of the Tibetan
Plateau, but they have not formed a zonal vegetation pattern
to date.
In Stage II (16.5–12 ka BP), the steppe biomes expanded

in the central and eastern Tibetan Plateau, and gradually
developed a zonal steppe belt. The subtropical forest, steppe
and desert biomes generally exhibited a latitudinal pattern
from south to north. The meadow biome was more evident in
the eastern portion of the Tibetan Plateau than in Stage I.
Biome distributions of this stage are posited to be a response
to climate change during the last deglaciation (Clark et al.,
2012; Shi et al., 2021). A general amelioration of biomes on
the Tibetan Plateau occurred from 16.5 to 13 ka BP with a
gradual shrinking of the deserts and expansion of the steppes.
At the end of this stage, the desert biome expanded south,
probably corresponding to the Younger Dryas.
During the early Holocene (Stage III, 11.5–8 ka BP), the

meadow biome began occupying the eastern and south-
eastern Tibetan Plateau, and gradually became zonal vege-
tation. The desert biome was restricted to the north and west,
and the forest biome expanded toward the north. A forest-
meadow-steppe-desert pattern was established during this
stage from southeast to northwest, similar to that of the
present Tibetan Plateau vegetation zonation. The biome
changes were consistent with the early Holocene global

climate-warming trend (Marcott et al., 2013) and Asian
monsoon enhancement (Dykoski et al., 2005). Notably, that
desert biome invaded the central Tibetan Plateau between 9.5
and 8 ka BP, which may be related to millennial-scale cli-
mate variations such as the 8.2 ka cooling event (Alley et al.,
1997; Bond et al., 1997).
Biome distributions on the Tibetan Plateau during Stage IV

(7.5–6 ka BP) revealed an “optimum” situation, which cor-
responds with the mid-Holocene climatic optimum of the
East Asian monsoon region (Chen et al., 2019; Zhang et al.,
2021). In this stage, subtropical forest biomes expanded to
their northernmost extents observed in the study period, and
the desert biomes were restricted to the northern and western
regions.
In the last stage (Stage V, 5.5–0 ka BP), the subtropical

forest biomes shifted south, and the meadows also expanded
south. The steppe biomes occupied the modern alpine steppe
zone and intermittently invaded the modern alpine meadow
zone. The mid-to late Holocene climate generally showed a
gradual deterioration (Chen et al., 2020; Marcott et al.,
2013), and the Tibetan Plateau biomes experienced a corre-
sponding change.
Noticeably, subtropical forest biomes were reconstructed

at sites in the southern part of the Tibetan Plateau in multiple
time windows, which are believed to be misidentifications by
the random forest model attributed to two aspects: (1) the
“pollution” of the long-distance transportation of arboreal
pollen, particularly saccate pollen from the conifer forests in
the southeastern Tibetan Plateau; and (2) relatively low
prediction power of the random forest model for the alpine
steppe and temperate steppe biomes in the central Tibetan
Plateau (Table 1).
Generally, deserts covered most of the Tibetan Plateau

during the LGM, and then gradually shifted north, occupying
the northern and western regions of the Tibetan Plateau.
Steppes started playing an important role at ~ 15 ka BP, and
meadows expanded towards the eastern and southeastern
portions of the Tibetan Plateau during the Holocene. Sub-
tropical forests maintained dominance in eastern and
southeastern regions throughout the study period, and ex-
panded north during the early and mid-Holocene. Biomes in
the eastern and southern parts of the Tibetan Plateau ex-
perienced the most frequent variations, which were exhibited
as contests among the forest, meadow, and steppe biomes.
Vegetation responded to climate change in different ways
during different time intervals. For example, deserts ex-
panded on the Tibetan Plateau during relatively cold and dry
periods like LGM, Old Dryas and Younger Dryas, but they
were restricted to the northern and western regions of the
Tibetan Plateau after the mid-Holocene when the climate
deteriorated.
The biome reconstructions using the random forest algo-

rithm revealed the biome changes on the Tibetan Plateau
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along a continuous timeline since the LGM at 500-year in-
tervals. Comparisons between reconstructed biome changes
and model simulations or pollen-based quantitative climate
reconstructions in the future should provide new insights into
the responses of alpine vegetation to climate changes. The
strong correlation between the reconstructed biome changes
on the Tibetan Plateau and contemporary global climate
changes to some extent verified the reliability of random
forest algorithms in reconstructing past biome changes. It’s
expected that the random forest algorithm should be a pro-
mising approach for quantitative biome reconstructions in
other regions.

5. Conclusions

The lack of suitable methods hindered the quantitative biome
reconstruction on the Tibetan Plateau since the LGM, which
in turn hampered our understanding of alpine vegetation
responses to climate changes and the model-proxy compar-
ison to elucidate the responsible mechanisms for the vege-
tation changes. In this study, we introduced a supervised
machine learning method to reconstruct past biome changes
on the Tibetan Plateau. A pollen-based biome reconstruction
model for the Tibetan Plateau was developed using the
random forest algorithm based on the modern pollen as-
semblages. The random forest model had high accuracy for
predicting modern biomes based on modern pollen data on
the Tibetan Plateau and its vicinity. Comparison between
random forest model and biomisation method indicated that
the former exhibited a greater performance for predicting
modern biomes in the study region, although both methods
have strengths and weaknesses. Therefore, the random forest
algorithm provides a valid tool to reconstruct past biome
changes on the Tibetan Plateau using fossil pollen data.
The random forest model was used to reconstruct the Ti-

betan Plateau biome changes from 22 ka BP to the present
based on fossil pollen records from 51 sites. A series of
biome distribution maps of the Tibetan Plateau through time
were constructed, and five stages reflecting the major
changes of biome pattern over the last 22 ka were observed.
The biome pattern changes on the Tibetan Plateau generally
corresponded to global climate changes and Asian monsoon
variations since the LGM. This study represents the first
application of a machine learning method in palaeovegeta-
tion reconstruction in China. The good performance of the
random forest algorithm in reconstructing past biome chan-
ges on the Tibetan Plateau implies that this method has great
potential to be a powerful tool for quantitative biome re-
constructions in other parts of China following the same
procedure as this study. The quantitatively reconstructed
biome changes on the Tibetan Plateau could provide evi-
dence for model-proxy comparison, which would improve

our understanding of the mechanism under alpine vegetation
dynamics.
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