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Abstract Tight oil/gas medium is a special porous medium, which plays a significant role in oil and gas exploration. This paper
is devoted to the derivation of wave equations in such a media, which take a much simpler form compared to the general
equations in the poroelasticity theory and can be employed for parameter inversion from seismic data. We start with the fluid and
solid motion equations at a pore scale, and deduce the complete Biot’s equations by applying the volume averaging technique.
The underlying assumptions are carefully clarified. Moreover, time dependence of the permeability in tight oil/gas media is
discussed based on available results from rock physical experiments. Leveraging the Kozeny-Carman equation, time dependence
of the porosity is theoretically investigated. We derive the wave equations in tight oil/gas media based on the complete Biot’s
equations under some reasonable assumptions on the media. The derived wave equations have the similar form as the diffusive-
viscous wave equations. A comparison of the two sets of wave equations reveals explicit relations between the coefficients in
diffusive-viscous wave equations and the measurable parameters for the tight oil/gas media. The derived equations are validated
by numerical results. Based on the derived equations, reflection and transmission properties for a single tight interlayer are
investigated. The numerical results demonstrate that the reflection and transmission of the seismic waves are affected by the
thickness and attenuation of the interlayer, which is of great significance for the exploration of oil and gas.
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1. Introduction

Tight oil/gas is an important type of resource, which is
widely distributed in many parts of the world in different
forms such as tight sandstone oil and gas reservoirs, shale oil
and gas reservoirs and etc. Compared with that of the con-
ventional two-phase media, the matrix and saturated fluid of
tight oil/gas have special features (Wang, 2013; Kang, 2016).
Wave propagation theory in multi-phase media is the theo-

retical foundation for the tight oil and gas exploration. Two
approaches have been adapted in the development of the
wave propagation theory in multi-phase media (Pride et al.,
1992). One approach is through an application of the theory
of macroscopic continuum mechanics on observable mac-
roscopic quantities. The other approach is to derive the
macroscopic motion equations using the volume averaging
technique, starting with the microscopic equations for the
fluid and solid grains.
Biot’s theory or Biot’s model is based on the first approach
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(Biot, 1956a, 1956b) which is one of the most fundamental
wave propagation theories in porous media and has been
applied widely. Biot’s theory describes the wave propagation
in fluid-saturated porous media. In Biot’s theory, it is as-
sumed that effects at the microscopic level can be ignored,
and the theory of continuum mechanics can be applied to the
measurable macroscopic quantities; then the governing
equations of wave propagation are derived from the La-
grangian equations. Biot’s theory predicted the existence of
three types of waves in porous media: fast P wave, slow P
wave and S wave. The theoretical prediction was confirmed
by experiments which validated the Biot’s theory. In 1962,
Biot investigated the acoustic wave propagation in porous
media and extended the theory to cover heterogeneous, an-
isotropic and viscoelastic media. Thus, the prototype of wave
propagation theory in viscoelastic porous media was estab-
lished (Biot, 1962). Based on the theory of irreversible
thermodynamics and viscoelasticity, Biot (1973) further
developed a theory for nonlinear and semilinear mechanics
of porous solids.
However, it was found that Biot’s theory could not be used

to explain the dispersion and attenuation of waves in ultra-
sonic frequency band. In order to overcome this difficulty, a
new model known as Biot and squirt flow (BISQ) model was
proposed (Johnston et al., 1979; Winkler, 1985; Sams et al.,
1997). It was also found that Biot’s theory could not be used
to describe the attenuation phenomenon in seismic frequency
band; consequently, the patchy model was proposed (Mavko
et al., 1998).
Parra (1997) extended the BISQ theory for non-isotropic

media, and analyzed the dispersion of velocity and wave
attenuation in the media. Diallo and Appel (2000) modified
the BISQ theory, in which the fluid pressure is independent
of the squirt flow length. Diallo et al. (2003) used the pulse
transmission technique to measure the velocity and at-
tenuation of ultrasonic P and S waves from two sets of rock
samples. From experimental results on the velocity and at-
tenuation, it was found that the modified BISQ model pro-
vided better numerical prediction than the BISQ model.
Cheng et al. (2002) extended the BISQ model for viscoe-
lastic media.
We now briefly review the literature on wave propagation

theories in porous media based on the second approach. de
La Cruz and Spanos (1985) proposed a complete system of
equations that describes the seismic wave propagation at a
low frequency in porous media filled with fluid. The method
was based on volume-averaging, combined with an order-of-
magnitude analysis and physical argument. They obtained
equations similar in form to Biot’s equations, and were able
to relate the parameters in Biot’s theory to physical quan-
tities. Taking the thermal effect into consideration on me-
chanical motions, de La Cruz and Spanos (1989) applied the
volume-averaging technique to derive the governing equa-

tions in fluid-filled porous media. Pride et al. (1992) derived
linear dynamic equations and a stress-strain relation in iso-
tropic two-phase (solid and fluid) media using the volume-
averaging technique. The macroscopic equations matched
the equations of motion and the stress-strain relation in Biot’s
theory. The effective fluid density is clearly defined with the
tractive effort on the interface between pores and fluid (the
wall of pores). Cruz et al. (1993) investigated the equilibrium
thermodynamics in porous media based on the volume-
averaging technique. Sahay et al. (2000) considered porous
media composed of interconnected pores and chemically
inserted viscous fluid. Macroscopic constitutive equations in
heterogeneous anisotropic porous media were derived by
averaging the constitutive equations at the pore scale, and a
relationship between these equations and the corresponding
equations in Biot (1962) was established. Sahay (2001) in-
vestigated the seismic wave propagation in heterogeneous
isotropic media, and developed the macroscopic equations of
motion and constitutive equations in heterogeneous isotropic
media. In the most general case, there are twenty-seven in-
dependent parameters in the equations. In 2002, Spanos and
Udey derived the complete Biot’s theory, taking into con-
sideration of diffusion and inertial terms through the volume-
averaging technique. Unlike the classical Biot’s theory, in the
complete Biot’s theory, the porosity is taken as a state vari-
able, depending on both the temperature and time (de La
Cruz and Spanos, 1985; Hickey et al., 1995; Spanos et al.,
2002). Spanos (2009) investigated the seismic wave propa-
gation in the combinatorial elastic media using volume-
averaging.
In summary, much work has been done in the investigation

of the porous media and various equations were proposed.
These equations are complicated and contain numerous
parameters. In applications, it is required to solve corre-
sponding inverse problems of these equations which re-
presents a very challenging task. For the particular case of oil
and gas reservoirs, we may focus on the principal factors and
ignore the secondary factors in order to reconstruct the
physical parameters of the underground. Using the simplified
equations to reconstruct the parameters appears to be a fea-
sible approach (Bourbié et al., 1987). Motivated by this
consideration, in this paper, we derive seismic wave equa-
tions for tight oil and gas media.

2. “Complete Biot’s theory” in porous medium

2.1 Microscopic motion equations in fluid and solid,
volume averaging theorem, micro-scale motion equation
of fluid and solid

2.1.1 Microscopic motion equations in fluid and solid
The stress-strain relation of pore fluid is (Zhao and Liao,
1983; Landau and Lifshitz, 1987)
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where pf is the fluid pressure and ρf is the density of the fluid.
The Euler equation is written as
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Substituting eq. (2) into eq. (3), we obtain the motion
equation of the fluid
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2.1.2 Micro-scale motion equation of elastic solid
If the thermal effect can be ignored in the mechanical pro-
cess, and the body force and gravity are negligible, the
motion equation of a solid particle can be written as

t u x= , (5)i
ij

j
s

s
s

where ui
s is the ith component of the displacement vector us

of the solid, ρs is the mass density of the solid, and ( )= ij
s s

is the stress tensor of the solid. For linear elasticity with
isotropic material (Mase and Mase, 2001), we have
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where Ks is the bulk modulus of the solid, μs is the shear
modulus of the solid, and uij

s is defined as
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2.1.3 The fluid-solid interface condition
Assuming that there is no slip on the interface of the fluid and
the solid (de la Cruz and Spanos, 1985), we have

v u
t= . (8)f
s

Assuming that the normal stress of the solid and the fluid is
continuous across the interface, we have

p n n n+ = , (9)i ij j ij j
f f s

where n=(ni) is the normal unit vector of the interface. Eqs.
(8) and (9) are the interface conditions between the fluid and
the solid.

2.1.4 Volume averaging and phase averaging
Let V be a sub-region in the porous medium and assume that
all of the sub-regions have similar shapes, volumes, and di-
rections. In this paper, V is defined as a sphere or cuboid with
the bary-centric pointx , i.e., V B x r= ( ; ) for a sphere with
radius r centered at x , and ( )V B x l l l= ; , ,1 2 3 for a cuboid,
l l l, , and 1 2 3 being the lengths of three sides and the char-
acteristic length is max {l1, l2, l3}.
LetG x( )f be a physical quantity related to the fluid that is

defined as zero outside of the fluid region. There are two
kinds of averages: bulk average and phase average. The bulk
average of G x( )f over V is defined as

G V G x V= 1 ( )d , (10)
V

f f

which is a function of x . If the characteristic length of V is
longer than the scale of the solid particle, the bulk average
function can be considered continuous. The phase average of
G f is defined as

G V G x V= 1 ( )d , (11)
V

f

f
f

where Vf represents the volume of the fluid contained in V.
Define the porosity ϕ by

V
V= . (12)f

In general, x t= ( , ). Based on eqs. (10)–(12), the re-
lationship between bulk averages and phase averages can be
expressed as

G G= . (13)f f

The definitions of bulk averages and phase averages are
similar for functions related to the solid.
Moreover, the law of bulk averages demonstrates the re-

lationship between the averages of the derivatives of vari-
ables (time or space domain) and the derivatives of averages
(Whitaker, 1999; Fan and Zhu, 2005).
(1) Bulk averages 1: The relation between the time deri-

vative of the average and the average of the time derivative is
(Fan and Zhu, 2005; Whitaker, 1999):

G G V G v n A= + 1 d , (14)t
f

t
f

A

f f

fs

where Afs is the interface between the fluid and solid, v f is the
fluid velocity at the interface of the fluid and solid, n is the
unity vector of normal direction at the interface of the fluid
and solid, pointing outward from the solid.
(2) Bulk averages 2: The relation between the spatial de-

rivative of the average and the average of the spatial deri-
vative is (Fan and Zhu, 2005):
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G G V G n A= + 1 d , (15)i i
A
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where i represents xi
and ni is the ith component of the unit

vector of normal direction.
Taking G = 1f in eq. (15), one obtains (Whitaker, 1999):

V n A= 1 d . (16)i
A

i
fs

(3) Bulk averages 3: The relation between the divergence
of the average and the average of the divergence is (Whi-
taker, 1999; Fan and Zhu, 2005):

V n A= + 1 d , (17)
A

k k
fs

where is a differentiable vector-valued function, k is the
kth component of the vector .

2.2 “Complete Biot’s theory” in porous medium
equation

The following four basic assumptions in porous media are
used in derivation of corresponding equations.
Assumption (1): Both the fluid and solid may be viewed as

homogeneous on a scale much larger than the characteristic
pore size and much smaller than the wavelength of the
seismic wave. Thus, for either the fluid phase or the solid
phase, over the sub-region volume, medium parameters such
as densities of the fluid and solid as well as porosity may be
taken approximately as constants.
Assumption (2): Both the fluid and solid are isotropic, and

the thermodynamic effect can be ignored.
Assumption (3): Both the fluid and solid are in equilibrium

before the seismic wave arrives.
Assumption (4): The porosity gradient in the medium is

approximately zero on a scale several times larger than the
size of V before the seismic wave arrives.
Assumptions (1) and (2) together imply that the ratio of the

fluid area of the cross-section in any volume and the total
volume is the porosity (Pride et al., 1992). Under the stated
assumptions, the macroscopic motion equations for solid and
fluid can be obtained by applying the volume theories (14),
(15) and (17) to the microscopic eqs. (4), (5), (8) and (9) (De
la Cruz and Spanos, 1985; Spanos, 2001)
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In addition, Spanos (2001) introduced the porosity equa-
tion

t v v= , (24)s
s

f
f

where s
0 and f

0 represent the densities of the solid and fluid
at initial state before the arrival of the wave; is the porosity
and 0 is the initial porosity before the arrival of the wave; us

and uf refer to the average values of the displacements over
the volume V of the solid and fluid particles, respectively; vs

and v f represent the average values of the velocities of the
solid and fluid, respectively; ps and pf refer to the pressures in
the solid phase and fluid phase, respectively; Ks and Kf are
respectively the bulk modulus of solid and fluid; ξf refers to
the bulk viscosity of the fluid; μs is the shear modulus of
solid; κ is the permeability of the medium; ρ12 is the coupling
density of solid and fluid; δs and δf are flexibility of solid and
fluid, respectively (Quiroga-Goode et al., 2005). The sub-
script and superscript of “s” and “f” in physical variables
refer to the solid and fluid, respectively. A bar above a
variable means the average value of the variable over the
averaging volume V.

3. Time-varying characteristics of porosity and
permeability in tight oil and gas media

The tight oil and gas reservoir has special properties in its
geological characteristics, the skeleton and saturated fluid, as
compared to general two-phase media. Firstly, the porosity of
tight reservoirs is small, which is generally less than 0.15
(Wang, 2016). Moreover, tight reservoirs have low perme-
ability, typically on the order of less than milli-darcy (Wang,
2013). The bulk modulus of the skeleton in tight reservoirs is
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nearly two orders of magnitude higher than that of the pore
fluid (Schon, 2011). Taking these features into consideration,
it is possible to simplify the existing porous theory, leading to
simpler governing equations in tight oil and gas media. In
this section, we will analyze the rate of change of porosity
and permeability with respect to time.
The relative motion will occur between the fluid phase and

the solid phase due to pressure gradient resulting from the
disturbance of passing waves. The motion of the fluid in
microscopic pores induced by the pressure difference due to
the passing waves in seismic frequency band is assumed to
satisfy the Poiseuille flow in circular pipes. Then the relation
between the permeability and the porosity is (Carman, 1961;
Mavko et al., 1998):

x t B x t d
x t

( , ) = ( , )
(1 ( , ))

, (25)
3 2

2

where κ(x, t) represents the permeability, ϕ(x, t) refers to the
porosity, both are allowed to depend on the temporal and
spatial variables. This relation is known as the Kozeny-
Carman equation. The coefficient B is related to tortuosity,
and d is the diameter of the solid particles in tight rocks.
The relationship between the change rates of porosity and

permeability with time can be obtained by differentiating eq.
(25) with respect to time,

x t
x t
t

x t
x t x t

x t
t

1
( , )

( , ) = 1 ( , )
3 ( , )

1
( , )

( , ) . (26)

For tight oil and gas media, ϕ(x, t) ∈ (0, 0.15]. Thus,

x t
x t

x t
x t1

( , )
( , )

t < 1
3

1
( , )

( , )
t . (27)

The left-hand side of the inequality (27) represents the
relative time rate of change of porosity, while the right-hand
side describes the relative time rate of change of perme-
ability. A derivation of eq. (27) is provided in the Appendix
online (http://link.springer.com). A physical interpretation of
eq. (27) is that the relative time change rate of porosity and
the relative time change rate of permeability are on the same
order of magnitude.
The study of change rate of permeability has important

theoretical significance and practical values in applications.
In particular, the permeability change of a fractured rock
under external forces has attracted extensive attention. It has
been a long time to study the static change of permeability in
porous media and many kinds of rock samples have been
measured. In recent years, the dynamic change of perme-
ability under excitation has attracted wide attention (Yang et
al., 2008; Zheng et al., 2019; Zheng and Liu, 2019). Yang et
al. (2008) studied the time-varying characteristics of per-
meability of core measurements in tight reservoirs and their
experimental results indicate that

x t
x t
t

1
( , )

( , ) < 10 . (28)12

In the inequality (28), the rate of relative change of per-
meability with respect to time is expressed in Hz. Combining
eq. (28) with eq. (27), we see that the absolute rate of por-
osity with time satisfies

x t
t

( , ) < 10 . (29)13

In this section, we studied the rate of porosity with time in
tight reservoirs based on the measurement of relative time-
varying characteristic of the permeability, where the pore
fluid motion is assumed a Poiseuille flow. The results show
that the rate of time change of porosity is less than 10−13 in
size for tight oil and gas reservoirs. The amplitude of oscil-
lation of the particle due to the passing waves is of the order
of 10−6 (Chen et al., 2009), and the induced pressure is much
less than MPa. Thus, we speculate that the rate of change in
the permeability and the porosity with respect to time due to
this pressure is much less than the measured values given by
Yang et al. (2008). We assume that the change of the porosity
induced by the seismic wave is a continuous function of time.
When seismic wave propagates in the tight oil or gas media,
the induced time-varying rate of the porosity is negligible.
This finding directly leads us to an assumption for the tight
media. Assumption (5): the porosity is independent of time.
It is therefore deduced that the corresponding second-order

time derivative of porosity equals zero.

4. Seismic wave equations for tight oil/gas
sandstone media

We apply the divergence operation to eqs. (22) and (23), and
make use of eqs. (18)–(21) and (24), as a result, an equation
coupling the porosity and the pressure is obtained

t a t b t

K
p
t a p

t b p
t v p

+ 2 2
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p p p
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For tight oil and gas media, f
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Use these relations in eq. (30) to obtain approximately that
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Recall the diffusive-viscous wave equation (Korneev et al.,
2004; Zhao et al., 2014a, 2014b)

p
t

p
t

p
t v p+ = 0, (38)

2 f

2

f
2

f
2 2 f

where γ and η are diffusive and viscous attenuation coeffi-
cients, respectively; v is the wave propagation velocity in a
nondispersive media. We note that eqs. (37) and (38) are
completely consistent in form. For a tight oil and gas med-
ium, the governing equation of the wave has the same form
as that of the diffusive-viscous wave equation, but the
coefficient of the equation can be determined by the physical
parameters of the medium. The diffusive-viscous wave
equation can be applied to explain the seismic low frequency
shadow phenomena (Goloshubin and Korneev, 2000; He et
al., 2008). One of the contributions of this paper is to relate
the parameters γ, η in eq. (38) to observable physical quan-
tities in the diffusive-viscous wave equation in tight oil and
gas media, i.e. γ = 2apf, η = 2bpf and v

2= v2pf,. In this section,
we have demonstrated that eq. (30) can be simplified to eq.
(37) for a tight oil and gas media based on the physical
principal and the range of the physical parameters in tight
rocks. In the next section, we will compare the difference
between the results of eqs. (30) and (37) through numerical
simulation to verify the simplification. The well-posedness
of initial-boundary value problems for eq. (37) or eq. (38)
has been addressed in Han et al. (2020).

5. Numerical examples

In this section, we report numerical simulation results on
wave propagation in tight reservoirs, using the finite-element
software COMSOL Multiphysics. We will first study the

seismic wave response characteristics of tight reservoirs
through numerical simulations using eqs. (30) and (37).
Then, we will study the reflection and transmission char-
acteristics of seismic waves induced by a highly attenuating
tight layer sandwiched in a low attenuating background
using eq. (37). In all numerical simulations, the source is a
Ricker wavelet with a central frequency of 20 Hz and a time
delay of 0.05 s. The amplitude of the force source is 105 N.
Since the spatial domain is unbounded, we use a perfectly
matched layer (PML) to truncate the physical region and to
prevent artificial reflections (He et al, 2019, 2020). The PML
contains 10 layers of grids. For spatial discretization, meshes
with square elements are adopted for the whole model in-
cluding the PML domain. We employ second-order poly-
nomials to interpolate the functions on each node. For time
integration, we use the generalized α method, which is si-
milar to the second-order backward finite difference scheme.
It is the default solver for wave problems in the software and
it can effectively avoid the stability issue during numerical
simulation. To ensure solution accuracy, the time step is
selected according to the criterion of CFL<0.4.

5.1 Validation model

We consider the seismic wave propagation in a gas saturated
tight reservoir to illustrate the usefulness of the proposed
theory. The physical domain has a dimension of 1000 m ×
1000 m and is surrounded by PML. The material parameters
are chosen to be apf =5 Hz, bpf=0.028 m

2 s−1, vpf=2000 m s−1,
μf =2.2×10−4 Poise, κ=0.001D. During the simulation, the
source is placed at the center of the model, and the source-
receiver distance is 550 m. Eqs. (30) and (37) are solved
separately and we show the results of the two cases in
Figure 1. The difference between the two results is insig-
nificant. Therefore, for this example, the contribution of the
first-order time derivative of the porosity in eq. (30) has little
influence on the results, illustrating the usefulness of our
simplification for the model.

Figure 1 Seismic response in tight gas medium. Case 1 corresponds to
the result using eq. (30) and Case 2 corresponds to the result using eq. (37).
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5.2 Single inter-layer model

In this section, we consider the interaction between seismic
waves and a horizontally isotropic thin layer embedded in a
background medium. The model configuration is shown in
Figure 2. The background medium has the same material
parameters as those in Section 5.1. The attenuation property
of the interlayer is adjusted by varying the value of apf. The
vertical distance between the source and the upper surface of
the tight reservoir is l1 = 300 m. The source parameters are
kept unchanged. Two arrays of receivers were placed in the
model to record seismic signals. The vertical distances from
the receivers at the top and bottom to the center of the model
are 1200 and 800 m, respectively.
We consider two cases to analyze the seismic response

induced by the tight layer. In the first case, we analyze the
influence of the reservoir attenuation characteristics on
seismic wave propagation by varying the value of viscous
coefficients while keeping the layer thickness h unchanged.
In the second case, we investigate the influence of the layer
thickness where the attenuation property in the tight re-
servoir remains unchanged. For simulations, we place two
receivers at (300 m, 200 m) and (300 m, −200 m) to record
seismic signals. The results are shown in Figure 3. In
Figure 3a, we can observe the direct wave, which is not
affected by the sandwiched layer. We observe reflected
seismic waves at approximately 0.36 s. The amplitude of the
reflected wave is significantly influenced by the attenuating
properties of the sandwiched layer. The amplitude of the
reflected signal becomes larger for a smaller value of the
viscous coefficient apf inside the layer. It should be noted that
the viscous property of the background media is kept un-
changed during simulations. When apf inside the sandwiched
layer increases, the attenuation of the layer becomes stron-
ger, resulting in a more intensive reflected signal. Another
important observation is on the influence of the layer at-
tenuation on the transmitted wave. An increase in the at-
tenuation of the layer reduces the amplitude of the
transmitted waves. Note that all signals in Figure 3 are
normalized for the convenience of analysis and comparison.

We perform similar simulations to investigate the influ-
ence of the layer thickness on seismic reflection and trans-
mission. The material properties of the background and the
layer are the same as previously. We study the seismic re-
sponse by varying the layer thickness h from 10 to 40 m. The
simulated results are shown in Figure 4. One can see that the
layer thickness has a similar influence to that of the viscous
coefficient on seismic reflection. An increase in the layer
thickness results in a stronger reflected wave. In addition, the
layer thickness has a significant effect on the phase of the
reflected wave, for the combined effect of the layer at-
tenuation and thin-layer tuning. The layer thickness also
influences the amplitude of the transmitted waves, but it has
no significant influence on the phase. The transmitted wave
has a smaller amplitude for a thinner layer.
It is important to study the characteristic of seismic signals

changing with the offset distance, which is a key content in
seismic exploration. During the simulation, properties of the
background medium are kept unchanged; the thickness of the
embedding layer is 60 m; and the viscous coefficient of the

Figure 2 Configurations of numerical simulation for the single inter-
layer model.

Figure 3 Influence of apf on seismic signals for the single inter-layer model. (a) Direct and reflected seismic signals and (b) transmitted seismic signals.
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reservoir is apf = 60 Hz. We depict the synthetic seismogram
of the signals recorded by the receivers in Figure 5. The
direct wave signals are not presented in the synthetic seis-
mogram due to their much larger amplitudes. Since only a
single thin layer exists in the model, one can spot only one
reflected wave (see Figure 5a) and one transmitted wave (see
Figure 5b). The amplitude of the seismic reflected wave and
the transmitted wave decreases with the increase of offset. It
should be noted that the reflected signals are mainly caused
by the attenuation characteristic of the embedding layer in
this model. We observe that the amplitude of reflected sig-
nals varies slowly with offset when the offset is small. For
large offset, the transmitted signal varies significantly.

5.3 Heterogeneous inter-layer model

In Section 5.2, based on a single inter-layer model, we
analyze properties of seismic reflection and transmission for
different viscous coefficients, layer thickness and offset. In
this section, we consider the heterogeneity of the sandwich
layer to investigate whether seismic wave can reflect the
lateral heterogeneity of the reservoir. The model configura-
tions are shown in Figure 6. Three tight layers denoted by A,

B and C are sandwiched in a background medium. All layers
have the same thickness h = 60 m. The horizontal length of
the layer B is l2 = 1300 m. The material parameters of the

Figure 5 Synthetic seismograms for the single inter-layer model. (a) Reflected seismic signals and (b) transmitted seismic signals.

Figure 4 Influence of h on seismic signals for the single inter-layer model. (a) Direct and reflected seismic signals and (b) transmitted seismic signals.

Figure 6 Configurations of numerical simulation for the heterogeneous
inter-layer model.
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background and the embedding layer are shown in Table 1
(Zhao et al., 2014a). The vertical distance between the source
and the center of the model is 600 m, and they are 1200 and
600 m for receivers 1 and 2, respectively. Other data for the
simulation setting are the same as those in Section 5.2.
Figure 7 shows snapshots of the simulated wave field.

Figure 7a corresponds to the reflected and transmitted waves
generated after the pressure wave impinging layer B at the
time 0.7 s, and the situation is similar to that in Section 5.2.
As the time increases to 1 s, the reflected, transmitted as well
as scattered waves are shown in Figure 7b. Figure 7c shows
the situation at the time 1.21 s. Since the thickness of the
sandwiched layer A is larger than the wavelength, multiple
scattering waves can be observed and they propagate gra-
dually to the far field over the time, as shown in Figure 7d.
These scattering waves provide the possibility for the lateral
heterogeneity detection of tight reservoirs.
In Figure 8, we present the synthetic seismograms re-

corded by the two arrays of receivers. In Figure 8a, the
amplitude of the reflected seismic signal has a maximum
value when the offset is 0 m and it decreases gradually with

the increase of the offset distance. In addition, the wave-
length of seismic signals changes with the offset increasing
from −1400 to 1400 m. Another important observation is the
scattered waves occurring at the position of sandwiched
layer A. The scattering waves corresponding to the position
of layer C were not observed due to their rather small am-
plitudes. For the result in Figure 8b, one can observe the
scattered waves in addition to the transmitted wave. We can
locate the interface between A and B as well as that between
B and C by carefully processing the scattering waves. The
scattered waves are not observable in the synthetic seismo-
gram due to their small amplitudes. This model clearly
shows that the seismic signal contains information of lateral
heterogeneity of the reservoir, which provides a theoretical
basis for well positioning.

6. Conclusion and discussion

Based on the complete Biot’s theory and experimental re-
sults, we derived the wave equations for tight oil/gas media

Table 1 Material parameters for the heterogeneous inter-layer model (Zhao et al., 2014a)

Medium Velocity
(m s−1)

Density
(kg m−3)

Viscous coefficient
(Hz)

Diffusive coefficient
(m2 s−1)

Background 1190 1800 10 0.056

Layer A 630 140 15 0.008

Layer B 1015 800 90 0.2

Layer C 1470 2100 56 0.056

Figure 7 Snapshots of pressure distribution for the heterogeneous inter-layer model. (a) 0.7 s, (b) 1.0 s, (c) 1.21 s, (d) 1.4 s.
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under reasonable assumptions (Assumption 5 in the paper)
which have the same forms as the diffusive-viscous wave
equations. In addition, relations between the coefficients in
diffusive-viscous wave equations and the physical para-
meters are provided as well. It potentially enables us to di-
rectly estimate porosity, permeability from seismic data
because fewer coefficients are present in the equations. The
numerical results demonstrate the usefulness of the proposed
equations. Moreover, reflection and transmission properties
of the seismic wave passing through tight reservoir model are
investigated, which shows that attenuation of the interlayer
significantly affects the reflection and transmission. In ad-
dition, the seismic wave contains transversal heterogeneity
information.
Future work includes testing the derived equations through

practical applications, and evaluating the accuracy of the
solutions for both forward and inverse problems. Moreover,
we need rock physical experiments to verify the applicability
of the equations for different tight oil/gas media. If the time-
dependent porosity could not be ignored, the machine
learning approach would be used to acquire the relationship
between fluid pressure and porosity variation, which is im-
portant for refining the theory in porous media. In this paper,
the media are assumed to be isotropic, which is not sa-
tisfactory if the goal is to completely characterize the actual
cases. Therefore, we will extend our work for the anisotropic
case. In addition, we do not consider the temperature effect
in this paper. Since the fluid bulk modulus and viscosity are
sensitive to the temperature, we will consider the tight oil/gas
wave equations for the coupled thermo-elastic case, which is
significant for the deep hydrocarbon exploration.
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