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Abstract Poro-acoustoelastic theory has made a great progress in both theoretical and experimental aspects, but with no
publications on the joint research from theoretical analyses, experimental measurements, and numerical validations. Several key
issues challenge the joint research with comparisons of experimental and numerical results, such as digital imaging of het-
erogeneous poroelastic properties, estimation of acoustoelastic constants, numerical dispersion at high frequencies and strong
heterogeneities, elastic nonlinearity due to compliant pores, and contamination by boundary reflections. Conventional poro-
acoustoelastic theory, valid for the linear elastic deformation of rock grains and stiff pores, is modified by incorporating a dual-
porosity model to account for elastic nonlinearity due to compliant pores subject to high-magnitude loading stresses. A modified
finite-element method is employed to simulate the subtle effect of microstructures on wave propagation in prestressed digital
cores. We measure the heterogeneity of samples by extracting the autocorrelation length of digital cores for a rough estimation of
scattering intensity. We conductexperimental measurements with a fluid-saturated sandstone sample under a constant confining
pressure of 65 MPa and increasing pore pressures from 5 to 60 MPa. Numerical simulations for ultrasound propagation in the
prestressed fluid-saturated digital core of the sample are followed based on the proposed poro-acoustoelastic model with
compliant pores. The results demonstrate a general agreement between experimental and numerical waveforms for different
stresses, validating the performance of the presented modeling scheme. The excellent agreement between experimental and
numerical coda quality factors demonstrates the applicability for the numerical investigation of the stress-associated scattering
attenuation in prestressed porous rocks.
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1. Introduction

Acoustic velocities are sensitive to stresses in most porous
rocks. Conventional descriptions of the stress-induced ve-
locity variations in porous rocks are often based on micro-

crack models by assuming closure of microcracks or
compression of grain contacts. As stressed by Winkler and
McGowan (2004), a more general description that is model-
independent by ignoring microstructures is based on the
third-order nonlinear elasticity theory (i.e., poro-acoustoe-
lastic theory). Because of great interesting to the knowledge
of subsurface in-situ stresses in many application fields,
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poro-acoustoelastic methods have the potential to monitor
changes in the subsurface effective pressures and tectonic
stresses. The poro-acoustoelastic response of porous rocks
has been widely studied and well established, with most
focusing on theoretical and experimental aspects (e.g.,
Johnson and Shankland, 1989; Meegan Jr. et al., 1993;
Winkler and Liu, 1996). Theoretical solutions with effective
elastic properties are only applicable to very simple media
and cannot directly interpret laboratory measurements of real
cores. Numerical methods with digital cores are perhaps an
efficient alternative for general applicability, but to date, no
publications are available on the numerical poro-acoustoe-
lastic modeling. In this study, we attempt to develop a poro-
acoustoelastic modeling scheme for ultrasonic wave propa-
gation in prestressed, digital, and fluid-saturated hetero-
geneous rocks.
Stressed-induced scattering attenuation in ultrasonic

wavelengths for prestressed fluid-saturated rocks is another
major issue to motive the current study. With the extensive
publications, scattering attenuation, caused by small-scale
heterogeneities and commonly measured in the frequency
range of 1–30 Hz, has been well established (Aki and
Chouet, 1975). The resultant coda is a useful seismological
tool to estimate the strength of heterogeneities in the li-
thosphere (Sato, 1977; Wu and Aki, 1985). On the other
hand, scattering attenuation at high frequencies has long
been interesting to geophysicists, because coda character-
istics are more sensitive to small-scale microstructures in
rocks. There have been some attempts to study scattering
processes at high frequencies by physical modeling for dry
rocks (Matsunami, 1991; Nishizawa et al., 1997; Sivaji et
al., 2002; Fukushima et al., 2003). The resulting codas are
used as an index to characterize rock heterogeneities be-
cause of the significant scattering effect occurring when
wavelengths are comparable to the scale of pores and rock
grains (Wu, 1989).
Few studies on coda attenuation in the ultrasonic fre-

quency range are conducted for prestressed fluid-saturated
rocks. Ultrasonic codas, as the tail portion of ultrasonic
wavetrains in ultrasonic measurements, are important for
such studies. Ultrasonic waves interact with microstructural
heterogeneities on a scale of micrometers, where both the
prestress and microstructural effects account for strong
scattering attenuation at comparable wavelengths to the
scale of pores and grains. However, in the past decades,
ultrasonic codas from experimental measurements are often
ignored as noises, possibly because of the size limitation of
samples, the contamination of boundary reflections, the
unknown heterogeneity in rocks, and the complexity of
received waveforms (Stacey and Gladwin, 1981). As in-
dicated by Toksöz et al. (1979), attenuation values are more
difficult to obtain experimentally than velocities. Recent
researches begin to address the scattering attenuation of

experimental measurements from both the analytical solu-
tion (Galvin and Gurevich, 2007, 2009) and numerical
modeling (Fu et al., 2014; Zhang et al., 2014) of Biot’s
poroelastic equations. An attempt to measure stress-in-
duced ultrasonic scattering attenuation for prestressed
fluid-saturated rocks has been made based on the single-
scattering assumption (Guo and Fu, 2007; Guo et al., 2009)
and the Monte Carlo simulation (Wei and Fu, 2014; Hu et
al., 2018). The resulting conclusions from these studies,
however, may be controversial because of the theoretical
limitation of equations under prestressing conditions and
the contaminated coda waves by boundary reflections from
the side ends of a sample core. It is difficult to extract pure
coda waves from ultrasonic measurements. With a con-
trollable absorbing boundary, poro-acoustoelastic numer-
ical simulations compared to experimental measurements
for the same prestressed heterogeneous core can give im-
portant insights into the effect of core heterogeneities and
experimental environments on ultrasonic coda waves.
One of the key issues to challenge the experimental and

numerical comparison is the elastic nonlinearity due to
compliant pores under large-magnitude stresses. It is prob-
ably the reason for the uncertain dependence of elastic
moduli variations on effective pressures and strongly related
to microstructures and fluid inclusions. With the extensive
publications, the elastic nonlinearity of rocks due to the
presence of compliant mechanical defects (cracks, micro-
fractures, grain joints) has been well established by experi-
mental measurements (e.g., Zimmerman et al., 1986;
Johnson and McCall, 1994; David and Zimmerman, 2012). It
is also associated with the rock dilatancy due to fluid de-
formation (Winkler and McGowan, 2004) and the static
deformation of oriented microcracks (Sayers and Ebrom,
1997) as the confining pressure increases. Conventional
poro-acoustoelastic theory is based on the Taylor expansion
of strain energy functions, assuming homogeneous rocks and
neglecting the change of microstructures. The theory has
been experimentally confirmed for low-porosity rocks and
moderate loading stresses, but fails to describe the nonlinear
elastic deformation around compliant pores subject to high
loading stresses. The acoustoelastic deformation of porous
rocks consists of two different types of energy transforma-
tions that are related to grains/stiff pores and compliant
pores, respectively, with the latter inducing microstructural
changes under high-loading stresses (Berryman and Pride,
1998; Ba et al., 2013).
There have been several prediction models available to

describe the elastic nonlinearity. The dual-porosity model
(Shapiro, 2003; David and Zimmerman, 2012) is proposed
from a well-known three-term conceptual model (Cheng and
Toksöz, 1979; Zimmerman et al., 1986; Carcione and Ca-
vallini, 2002; Gei and Carcione, 2003). The model uses a
semi-empirical equation to formulate the influence of non-
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linear elastic deformations in compliant pores on velocity
variations. Under several natural assumptions, it clarifies the
physics of several quantities that are attached to the three-
term conceptual model. The resultant microstructural-de-
formation coefficients, however, seem difficult to estimate
because of their significant dependence on the stress-in-
duced microstructural change. The dual-porosity model,
although simple enough, is a semi-empirical model based
on the Taylor expansion, and more importantly, takes no
account of the energy transformation of compliant-pore
strains. Replacing the Taylor expansion used in the con-
ventional poro-acoustoelastic theory, Fu and Fu (2017) use
the Padé expansion to approximate the strain energy func-
tion for large-amplitude strains. The resultant Padé poro-
acoustoelastic theory can predict the elastic nonlinearity
well. However, the Padé coefficients a and b, characterizing
the microstructural dependence of elastic constants, may be
controversial and need more justification from numerous
experimental measurements. An ideal prediction model
should not only be able to express the elastic nonlinearity
with physically meaningful coefficients, but also explain
the energy transformation of compliant-pore strains. The
poro-acoustoelastic theory with compliant pores (Fu and
Fu, 2018) could be by now the best choice for this purpose.
It is formulated by incorporating the dual-porosity model of
second-order elastic constants into the conventional poro-
acoustoelastic equations by replacing the stress-invariant
terms with stress-dependent terms. Considering the strong
sensitivity of microcracks to effective stresses, the current
study will focus on the dual-porosity third-order elastic
constants to describe the elastic nonlinearity with a higher
accuracy. The resulting poro-acoustoelastic equations with
compliant pores support numerical simulations with high
fidelity for ultrasonic wave propagation in prestressed
fluid-saturated rocks.
Numerical simulations with digital rocks, bridging the gap

between experimental measurements and theoretical pre-
dictions, have been confirmed for general applicability to
complex rocks. It enables the investigation for the depen-
dence of velocity/attenuation variations on mineral compo-
sitions and microstructures. Targeted at numerical wave
propagation in poroelastic media, various finite-difference
(FD) numerical methods have been extensively studied with
poroelastic wave equations (Zhu and McMechan, 1991; Dai
et al., 1995; Carcione and Quiroga-Goode, 1995; Carcione
and Helle, 1999; Saenger and Shapiro, 2002; Wang et al.,
2003; Mason et al., 2006; Wenzlau and Müller, 2009). Hu et
al. (2009) present a boundary-element modeling of Biot’s
poroelastic integral equations at seismic frequencies for fluid
saturated porous media. Most of these studies focus on the
accuracy and applicability of poroelastic numerical schemes.
It is worth mentioning that poroelastic numerical modeling
has been used to investigate the effect of partial saturations

(Pham et al., 2002; Carcione et al., 2003a; Helle et al., 2003;
Picotti et al., 2007) and rock heterogeneities (Carcione and
Picotti, 2006). A comprehensive review of poroelastic nu-
merical modeling with mathematical details can be referred
to Carcione (2007). However, most of the poroelastic nu-
merical studies are based on conceptual rheological models,
disenabling a comparison with experimental measurements
of real cores. Gurevich (1996) suggest that all numerical
simulations based on the complex rheological models should
be compared to an equivalent elastic model. This invokes the
comparison of poroelastic effects between experimental and
numerical data. Gurevich et al. (1999) compare experiments
on a sample made of sintered glass beads to synthetic seis-
mograms by a global matrix approach. Arntsen and Carcione
(2001) simulate the Biot slow wave based on the experi-
mental data (Kelder and Smeulders, 1997) in water-saturated
Nivelsteiner Sandstone. Currently, digital core technologies
based on X-ray tomography can capture the mineral com-
ponents and microstructures of a sample at micrometer re-
solution, making it possible to simulate poroelastic wave
propagation in authentic heterogeneous rocks for the com-
parison with experimental measurements (Fu et al., 2014;
Zhang et al., 2014).
In the current study, we present a poro-acoustoelastic

numerical modeling of ultrasonic waves in prestressed,
digital, and heterogeneous fluid-saturated rocks. The poro-
acoustoelastic numerical simulation is more natural than
conventional poroelastic numerical simulations for ultra-
sonic wave propagation in prestressed porous rocks. Al-
though micro-tomographic images can map rock properties
in detail, including both pore and grain structures, several
key issues really challenge the comparison of numerical
simulations with experimental measurements: (1) the digi-
tal model of poroelastic properties that characterizes true
rocks in both mineral compositions and microstructures, (2)
the estimation of poro-acoustoelastic constants that ac-
counts for the elastic nonlinearity of rocks due to compliant
pores under large-magnitude stresses, (3) the high accuracy
to model subtle transmission/scattering effects across pores
and grains with minimal numerical dispersions at high
frequencies and strong heterogeneities, and (4) the special
requirement for a controllable and accurate absorbing
boundary to estimate the amount of boundary reflections
from the side ends of a sample in the experimental en-
vironment.
Poroelastic numerical modeling has been widely used for

digital cores (Garboczi and Day, 1995; Roberts and Gar-
boczi, 2000; Arns et al., 2002; Dvorkin et al., 2011, 2012;
Zhang et al., 2016). For general applicability to complex
rocks, we use a finite-element (FE) method to estimate the
poroelastic properties from a heterogeneous digital core. The
resulting poroelastic model allows its physical properties to
vary laterally and vertically, mapping heterogeneous rock
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properties in detail. For ultrasonic wave propagation, a
modified FE method (Meng and Fu, 2017) is employed to
discretize the poro-acoustoelastic equations with compliant
pores. We use triangular elements to mesh the digital por-
oelastic model, with its accuracy controllable to simulate the
subtle effect of microstructures on ultrasonic wave propa-
gation in prestressed fluid-saturated rocks. The nonlinear
poro-acoustoelastic constants are estimated by the prediction
model (Fu and Fu, 2018) through experimental measure-
ments, accounting for the elastic nonlinearity of rocks due to
compliant pores under large-magnitude stresses. The per-
fectly matched layer (PML) absorbing boundary is employed
in the simulation to investigate the influence of boundary
reflections on ultrasonic coda waves.
In this paper, we outline a general procedure for the poro-

acoustoelastic FE modeling with compliant pores for ultra-
sonic wave propagation. In the second section, we in-
corporate the dual-porosity model into conventional poro-
acoustoelasticity theory to account for nonlinear deforma-
tions in compliant pores under large-magnitude stresses.
Section 3 introduces laboratory ultrasonic measurements for
a fluid-saturated sandstone core along the stress path under a
constant confining pressure of 65 MPa with pore pressure
increasing from 5 to 60 MPa at an increment of 5 MPa.
Based on the experimental ultrasonic data, we demonstrate
how to estimate the nonlinear poro-acoustoelastic constants.
Section 4 deals with poroelastic FE numerical modeling of
elastic properties from digital rock images. The sandstone
used for experimental measurements in Section 3 is scanned
by X-ray CT to obtain digital images. Based on the scale of
pores and grains, we assess the heterogeneity of the digital
poroelastic model by calculating its scattering intensity using
some random medium methods. These stochastic character-
istics are useful for the interpretation of scattering attenua-
tion in simulated ultrasonic waves. The final section presents
poro-acoustoelastic FE modeling of ultrasonic waves based
on the digital poroelastic model, followed by the comparison
with experimental measurements in both waveform and coda
attenuation.

2. Poro-acoustoelasticity with compliant pores

Experimental measurements have been demonstrated that the
work of loading stress is transformed to strain energy by two
parts: one for grains and stiff pores with the linear variation
of elastic moduli and the other for compliant pores with the
nonlinear variation of elastic moduli (e.g., Cheng and Tok-
söz, 1979; Shapiro, 2003; Fu and Fu, 2018). Conventional
poro-acoustoelasticity is based on the third-order elastic
constants and generally valid for the former by neglecting the
effect of nonlinear deformations with compliant pores. The
elastic nonlinearity occurring at larger loading stresses leads

to exponential changes in experimental elastic wave velo-
cities (Winkler and Liu, 1996; Gurevich et al., 2010; Per-
vukhina et al., 2010). Fu and Fu (2018) incorporate the dual-
porosity model into the second-order elastic constants to
account for the elastic nonlinearity of compliant pores. For
more accurate poro-acoustoelastic prediction, we incorporate
the dual-porosity model into the third-order elastic constants.
The modified poro-acoustoelasticity becomes more accurate
to express the nonlinear elastic deformation in compliant
pores subject to high loading stresses.

2.1 The dual-porosity third-order elastic constants

Shapiro (2003) explains the stress-dependent elastic prop-
erties of porous rocks in terms of a dual distribution of
porosity, where the total porosity (ϕ) of an isotropic rock
can be divided into two parts: stiff porosity (ϕs) and com-
pliant porosity (ϕc). With the extensive publications, the
definition of stiff and compliant pores has been well es-
tablished (Cheng and Toksöz, 1979; Thomsen, 1995;
Hudson et al., 2001; Gurevich et al., 2010; David and
Zimmerman, 2012; Guéguen and Sarout, 2011). The stiff
porosity is supported by more or less isometric pores (i.e.,
equidimensional or equant pores) with the aspect ratios (γ)
typically larger than 0.01, whereas the compliant porosity is
supported by thin cracks and grain contact vicinities with
the aspect ratios less than 0.01. That is, the porosity can be
written as

= + . (1)s c

Variations in ϕs and ϕc with the effective pressure P can be
expressed as

( )P C C
PC

= + ,

= exp( ),
(2)s s gr drs

c c c drs

0

0

where ϕs0 and ϕc0 are the initial stiff and compliant porosities
at P = 0, respectively, and the compliant-pore bulk strain θc is
defined by

C
C= 1 . (3)c

drs

dr

c

Cdr, Cgr, and Cdrs are the bulk compressibilities of dry rock
skeleton, rock matrix, and dry rock skeleton when ϕc→0,
respectively, given by

C K

C K

C K

= 1 ,

= 1 ,

= 1 ,

(4)

dr
dr

gr
gr

drs drs
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where Kdr and Kgr are the bulk moduli of dry rock skeleton
and rock matrix, respectively, and Kdrs is the drained bulk
modulus of a rock with closed compliant pores.
Variations in the elastic parameter Λ (e.g., seismic velo-

city, stiffness, or compliance) with stiff and compliant por-
osities are generally given by (Shapiro, 2003; Shapiro and
Kaselow, 2005),

( , ) = + + , (5)s c drs s s c c

where Λdrs is the stiff limit elastic parameter of dry rock
skeleton when ϕc→0. Δϕs = ϕs – ϕs0 is the deviation of stiff
porosity. θsΛ and θcΛ are the pressure-sensitivity coefficients
for stiff and compliant pores, respectively, defined by

= ,

= .
(6)

s
s

c
c

In general, the influence of stiff pores is associated with
linear elastic deformations, whereas the contribution of
compliant pores mainly involves nonlinear strains (Shapiro
and Kaselow, 2005). The elastic parameter of rocks due to
compliant pores for small variations in ϕc can be approxi-
mated as

( ) = + . (7)c drs c c

Substituting eq. (2) into eq. (7) yields
PC( ) = + exp( ). (8)c drs c c c drs0

We consider the second- and third-order elastic con-
stants in the initial state. Thus, with the influence of pre-
stressed compliant pores, both the elastic constants of
rocks become

( )
( )

c c PC

c c PC

( ) = + exp ,

( ) = + exp ,
(9)

IJKL c IJKL
drs

cc c c drs

IJKLMN c IJKLMN
drs

cc c c drs

0

0

IJKL

IJKLMN

with

c

c

= ,

= ,
(10)

cc
IJKL

c

cc
IJKLMN

c

IJKL

IJKLMN

where cIJKL
drs and cIJKLMN

drs are the second- and third-elastic
constants of dry rock skeleton when ϕc→0, respectively. We
define θccIJKL and θccIJKLMN as the pressure-sensitivity
coefficients for the second- and third-order elastic constants
of compliant pores, respectively. The order of magnitudes of
θc and θccIJKL can be obtained by various effective medium
theories of elastic moduli for the rock with penny-shaped
cracks (Mavko et al., 2009), with all coinciding in the case of
ϕc→ ∞ by the method of Shapiro (2003). That is, θccIJKL and
θccIJKLMN are usually on the magnitude order of 1/γ. Thus, we
have

K

c

c

,

,

.

(11)

c
drs

cc
IJKL
dry

cc
IJKLMN
dry

IJKL

IJKLMN

Based on the studies of David and Zimmerman (2012) and
Deng et al. (2015), the minimum initial compliant-pore as-
pect ratio versus differential pressures can be expressed as

( )
E P=

4 1
, (12)i drs

drs

2

where Edrs and νdrs are the static Young’s modulus and
Poisson’s ratio of dry rocks when ϕc →0, respectively. In
general, the order of magnitude of γi is the same as that of γ
(David and Zimmerman, 2012; Deng et al., 2015). Their
discrepancy could be small enough to be neglected with the
same effective medium model under the same order of
magnitude of compliant-pore aspect ratios. Therefore, we
assume

( )
E P=

4 1
. (13)i drs

drs

2

Equation (13) indicates the correlation of variations in the
aspect ratios of compliant pores with effective pressures. In
general, the extension deformation of compliant pores with
increasing effective stresses reduces aspect ratios (David and
Zimmerman, 2012), leading to the closure of compliant
pores.
Based on the compliant-pore influence on elastic constants

as shown in eq. (8), we can formulate the stress-induced
elastic constants (L, μ, K, M5, M6), expressed as

( )
( )

( )
L L PC

µ µ PC
K K PC

M M PC

M M PC

= + exp( ),

= + exp ,

= + exp( ),

= + exp ,

= + exp ,

(14)

drs cL c c drs

drs cµ c c drs

drs cK c c drs

drs
cM c c drs

drs
cM c c drs

0

0

0

5 5 0

6 6 0

5

6

with

L

µ

K

M

M

= ,

= ,

= ,

= ,

= .

(15)

cL
c

cµ
c

cK
c

cM
c

M c
c

5

6

5

6
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These microstructural-deformation coefficients character-
ize the third-order elastic constants and are sensitivity to
compliant porosity changes. Like the second-order elastic
constants of Shapiro (2003), these parameters are relevant to
the geometry and composition of microstructures. However
similar to the dual-porosity model of Shapiro (2003) and
David and Zimmerman (2012), these parameters seem dif-
ficult to estimate because of their significant dependence on
the stress-induced change of microstructures. More accurate
estimation could be obtained first by X-ray CT scanning the
prestressed rock sample to capture the stress-induced change
of compliant pores in detail, then by applying some effective-
medium approximations to the resulting digital core. How-
ever, for current study, we focus on poro-acoustoelastic FE
modeling, with the microstructural-deformation coefficients
known in advance. For an accurate estimation of these
coefficients to assure the comparison of numerical simula-
tions and experimental measurements, the best fitting is
adopted to experimental measurements, addressed in the next
section.
As for the effect of nonlinear deformations on the elastic

moduli, as demonstrated in eq. (14), we rewrite the strain of
rocks in the form

e P
K PC= 3[ + exp( )] . (16)i

drs Kc c c drs
0

0

With P→∞, we have

L L
µ µ
K K
M M
M M

,
,
,

,
,

0.

(17)

drs

drs

drs
drs

drs

c

5 5

6 6

Equation (17) indicates that the second- and third-order
elastic constants tend to be constants against effective

pressure since the compliant porosity decreases to zero.
Therefore, the influence of compliant pores can be ne-
glected at the limit of high effective pressures (i.e., with low
pore pressures).

2.2 Poro-acoustoelasticity for the elastic nonlinearity of
compliant pores

From Appendix A (https://link.springer.com), we see that
conventional poro-acoustoelasticity assumes the parameters,
such as elastic constants, porosities, densities and so on, to be
constants during the loading. That is, rock microstructures
remain unchanged. This assumption is valid for a small-
magnitude loading. As indicated by eq. (A-10) in Appendix
A, the conventional poro-acoustoelasticity provides an ana-
lytical expression for the effective elastic moduli of rocks, as
functions of elastic strains for small changes in stress. In
general, the second- and third-order elastic constants (L, μ,K,
M5, and M6) are dependent on microstructures (Berryman
and Pride, 1998), and therefore experience nonlinear de-
formations induced by high loading stresses. Based on the
dual-porosity model with the third-order elastic constants,
described previously for nonlinear elastic deformations, we
modify the classical poro-acoustoelasticity by representing
the elastic constants as functions of stress to build an ana-
lytical expression of effective elastic moduli for large-mag-
nitude changes in stress.
According to the dual-porosity model, both the linear and

nonlinear elastic influences on rocks can be linearly super-
posed for small compliant porosities. The stress-induced
variations in the effective elastic modulus consist of linear
and nonlinear components, with the former calculated by the
conventional acoustoelasticity and the latter handled by the
dual-porosity third-order elastic constants, as expressed by
eq. (14). Substituting eqs. (14) and (16) into eq. (A-10), the
modified acoustoelasticity with compliant pores can be for-
mulated as,

( )
( )
( )

D P V L PC M PC P
K PC

D P V L PC M PC P
K PC

D P V µ PC M PC P
K PC

D D D
D
D

( ) = = + exp( ) + + exp 3[ + exp( )] ,

( ) = = + exp( ) + + exp 3[ + exp( )] ,

( ) = = + exp( ) + + exp 3[ + exp( )] ,

= 2 ,
= 0,
= 0.

(18)

P drs cL c c drs
drs

cM c c drs
drs cK c c drs

P drs cL c c drs
drs

cM c c drs
drs cK c c drs

S drs cµ c c drs
drs

cM c c drs
drs cK c c drs

11
2

0 5 0
0

33
2

0 5 0
0

55
2

0 6 0
0

13 11 55

51

53

5

5

6

According to eqs. (11) and (15), we assume
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L a

µ b

K c

C
C d

M e

M f

= = ,

= = ,

= = ,

= 1 = ,

= = ,

= = ,

(19)

cL
c

cµ
c

cK
c

c
drs

dr

c

cM
c

cM
c

5

6

5

6

with

a b c c
d K
e f c

,
,

,

(20)
IJKL
drs

drs

IJKLMN
drs

where the microstructural-deformation coefficients a, b, c, d,
e, and f have the same physical meaning as their counter-
parts, but become more sensitive to stress-induced micro-
structural changes and therefore, easy to estimate by best
fitting to ultrasonic measurements.
Equations (18) to (20) represent the poro-acoustoelasticity

with compliant pores, where the exponential dependence of
the third-order elastic constants on effective pressures is
characteristic of the nonlinear influence of compliant pores.
When the effective pressure P tends to infinity, eq. (18) re-
duces to

D L M P
K

D L M P
K

D µ M P
K

D D D
D
D

( ) = + 3 ,

( ) = + 3 ,

( ) = + 3 ,

( ) = ( ) 2 ( ),
( ) = 0,
( ) = 0.

(21)

drs
drs

drs

drs
drs

drs

drs
drs

drs

11 5

33 5

55 6

13 11 55

51

53

Equation (21) denotes the upper limit of the poro-acous-
toelasticity with compliant pores under higher effective
pressures. In the case of the maximum effective pressure, all
compliant pores tend to be closed, increasing the stiffness of
rocks and decreasing the permeability (Schoenberg, 2002).
With decreasing nonlinear deformations, the poro-acous-
toelasticity with compliant pores reduces to conventional
poro-acoustoelasticity.

3. Laboratory ultrasonic measurements for the
estimation of nonlinear poro-acoustoelastic con-
stants

Laboratory ultrasonic measurements for a cylindrical fluid-

saturated sandstone sample under different effective pres-
sures are employed to illustrate the applicability of poro-
acoustoelastic modeling with compliant pores. Compared to
the dual-porosity second-order elastic constants (Fu and Fu,
2018), the dual-porosity third-order elastic constants are
demonstrated to be more precise for the prediction of elastic
nonlinearity due to compliant pores.

3.1 Experimental setup and rock properties

A schematic diagram of the ultrasonic measurement system
is shown in Figure 1. The experimental setup consists of a
pulse generator (Panametrics 5077PR) and a digital oscil-
loscope (Tektronix TDS 420 A). Ultrasonic compressional
and shear waves with a characteristic frequency of 1 MHz
are emitted from the pulse generator in a PZT-crystal
mounted on the steel endplate. The receiving transducer is
connected to the digitizing board in a PC through a signal
amplifier. The characteristic frequencies of received com-
pressional and shear waves are approximately 600 and
300 kHz, respectively, because of the attenuation within the
sample. The amplitudes of transmitted elastic waves are
monitored by the digital oscilloscope at the opposite side of
the sample. Referring to ASTM standard (American Society
for the Testing of Materials, 2002), the length-to-diameter
ratio of a rock specimen is recommended between 2 and 2.5
to avoid end constraint effects (Franklin and Dusseault,
1989). Therefore, the rock sample is cut to a cylinder with
40 mm in diameter and 80 mm in length. The resulting
specimen is jacketed with rubber tubing to isolate it from the
oil which provides confining pressure. A pore fluid inlet
presents in each endplate to allow the passage of pore fluids
through the sample. The experiment is performed under
ambient pressure conditions along the stress path with a
constant confining pressure of 65 MPa and increasing pore
pressures from 5 to 60 MPa (using water as the pore fluid) at
an increment of 5 MPa. Waveforms are recorded after pore-
pressure equilibration at each effective stress increment.
The sample used is a medium-porosity (19%), moderate-

permeability (41 mD) quartz sandstone with the static bulk
modulus K = 13.20 GPa, the static Young’s modulus E =
14.26 GPa, ν = 0.32, and ρ = 2.27 g cm–3, all measured at P =
60 MPa. Figure 2 gives a close up of the center of the
sandstone sample, showing microstructures with various si-
zes of quartz grains and pores. It consists of moderately
sorted, subangular to subrounded quartz grains (0.1–0.3 mm
in diameter) with point contacts one another. Pore size varies
from about 0.1 mm to about 0.4 mm. Most grains and pores
are around 0.2 mm in size. Minor clays and glauconites that
are present generally reside in pores. Most grain boundaries
are direct contacts between rigid framework grains. In-
tragrain fractures are rare, but grain boundaries and cracks
are ubiquitous. These fracture surfaces, grain boundaries,
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microcracks, and contact faces between grains are all sen-
sitive to stress and generally constitute the compliant mi-
crostructure. The observed P- and S-wave velocities are
plotted against effective stress in Figure 3. The arrival-time
pick is based on the first break estimated from approximately

1% of the first peak amplitude.

3.2 Estimation of poro-acoustoelastic constants

Equation (18) will be used for poro-acoustoelastic FE
modeling for ultrasonic wave propagation. We first estimate
the parameters (Ldrs, μdrs, M5

drs, M6
drs) in eq. (18) through

experimental measurements. We investigate the stress de-
pendency of these parameters.
As shown in Figure 4, the observed ultrasonic data from

experimental measurements addressed in Section 3.1 de-
monstrate a distinct behavior of elastic moduli in the low and
high regimes of effective pressures. The variation of elastic
moduli versus effective pressure shows a linear/nonlinear
trend for the effective pressures greater/less than 30 MPa, as
marked by a line in the figure. The linear portion conforms to
the prediction of effective elastic moduli by conventional
poro-acoustoelasticity, assuming that the microstructures in
rocks tend to be stable with almost unchanged hetero-
geneities under loading with the effective-pressure points
greater than 30 MPa. Under such circumstances, compliant
pores tend to be closed with the nonlinear effect could be
neglected. We can use these measurements at the high ef-
fective-pressure points to calculate the elastic constants (Ldrs,
μdrs, M5

drs, M6
drs).

Based on eq. (21) for the upper limit of acoustoelasticity
with compliant pores under high effective pressures, we
could use the measurements at the two largest effective-
pressure points of P = 50 and 60 MPa to solve out four elastic
constants (Ldrs, μdrs, M5

drs, M6
drs). First, we assume that the

quartz sandstone at P = 60 MPa contains only stiff pores with
closed compliant pores. Based on the static parameters ofK =
13.20 GPa, E = 14.26 GPa, ν = 0.32, and ρ = 2.27 g cm–3, all
measured at P = 60 MPa, we have

K K
E E

= 13.20 GPa,
= 14.26 GPa,

= 0.32.
(22)

drs P

drs P

drs P

=60 MPa

 =60 MPa

=60 MPa

Secondly, substituting the measured velocities at P = 50

Figure 1 Schematic of the experimental apparatus. a, Transmitting pie-
zoelectric transducer; b, pore fluid inlet; c, jacketed rock sample; d, con-
fining pressure control; e, downstream pore fluid outlet; f, receiving
piezoelectric transducer.

Figure 2 Close up of the center of the sandstone sample under study,
showing microstructures with various sizes of quartz grains and pores.

Figure 3 The observed P- and S-wave velocities against effective stress for the sandstone core.
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and 60 MPa into eq. (A-10), we have

D D V

D D V

D V

D V

= = = 31.77 GPa,

= = = 31.47 GPa,

= = 12.41 GPa,

= = 12.33 GPa.

(23)

P P P P

P P P P

P S P

P S P

11 =60 MPa 33 =60 MPa
2

=60 MPa

11 =50 MPa 33 =50 MPa
2

=50 MPa

55 =60 MPa
2

=60 MPa

55 =50 MPa
2

=50 MPa

Substitution of eq. (23) into eq. (21) gives the following
expression for the effective elastic moduli (D11, D55),

D D L M
P

K

D D L M
P

K

D µ M
P

K

D µ M
P

K

= = 3 ,

= = 3 ,

= 3 ,

= 3 .

(24)

P P drs
drs P

drs

P P drs
drs P

drs

P drs
drs P

drs

P drs
drs P

drs

11 =60 MPa 33 =60 MPa 5
=60 MPa

11 =50 MPa 33 =50 MPa 5
=50 MPa

55 =60 MPa 6
=60 MPa

55 =50 MPa 6
=50 MPa

By substituting eq. (23) into eq. (24), we obtain an equa-
tion for the elastic constants (Ldrs, μdrs, M5

drs, M6
drs),

L M
L M
µ M
µ M

1.52 × 10 = 31.77 GPa,
1. 26 × 10 = 31.47 GPa,

1.52 × 10 = 12.41 GPa,

1. 26 × 10 = 12.33 GPa.

(25)

drs
drs

drs
drs

drs
drs

drs
drs

3
5

3
5

3
6

3
6

By solving eq. (25), we have

L
µ
M
M

= 29.98 GPa,
= 11.97 GPa,

= 1180.91 GPa,

= 289.59 GPa.

(26)

drs

drs
drs

drs
5

6

These elastic constants estimated by high effective-pres-
sure measurements can be used in eq. (18) to predict the
partial variation of elastic moduli induced by linear elastic
deformations in the sample, as shown in Figure 4 marked by

the dotted lines. These high effective pressures make
acoustoelasticity with compliant pores approach its upper
limit, as shown in eq. (21).

3.3 Estimation of microstructural coefficients

To assure the comparison of numerical simulations and ex-
perimental measurements, we need an accurate estimation of
microstructural coefficients. The best fitting of experimental
measurements is performed for the estimation of micro-
structural-deformation coefficients (a, b, c, d, e, f, and ϕc0) in
eq. (19). The results are listed in Table 1, by which we
perform poro-acoustoelastic predictions with/without com-
pliant pores for the effective elastic moduli as functions of
effective pressure, as shown in Figure 5.
From the comparison of experimental measurements,

conventional poro-acoustoelastic predictions, and poro-
acoustoelastic predictions with compliant pores, we see that
both the poro-acoustoelastic predictions are nearly the same
for the effective pressures higher than 30 MPa, with a pre-
diction error of 1.3%, which characterizes the linear elastic
effect of rocks. However, they differ substantially for the
effective pressures less than 30 MPa, particularly for shear
waves. The poro-acoustoelastic prediction with compliant
pores shows a remarkable agreement with experimental
measurements, with a 1.8% maximum error at P = 5 MPa,
much better than the dual-porosity model with the second-
order elastic constants (Fu and Fu, 2018).
These microstructural-deformation coefficients character-

ize the significant dependence of the third-order elastic
constants on stress-induced microstructural changes. In
general, fracture surfaces, grain boundaries, microcracks,
and joint faces in rocks are all sensitive to stress. Strong
hydrostatic stresses tend to compress the pore linings of clays
adjacent to framework grain contacts, increasing the stiffness
for normal compressions and decreasing the resistance to
tangential displacements (Dvorkin et al., 1991). The resultant
changes in compliant pores, in turn, affect the second- and

Figure 4 Variations of longitudinal (a) and shear (b) elastic moduli versus effective pressure, with the conventional poro-acoustoelasticity prediction
(dotted lines) for linear elastic deformations.
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third-order elastic constants. It is worth mentioning that
conventional poroelastic descriptions of the stress depen-
dence of acoustic velocities in rocks are often based on mi-
crostructure models. The classical poroelastic theories as a
first approximation can handle the stress-induced velocity
changes as an anisotropic effect and still obtain a good fit (e.
g., Carcione et al., 2003b). A more general solution with
model-independent descriptions that ignore microstructures,
as indicated by our studies, can be obtained based on the
poro-acoustoelastic theory with third-order elastic constants.

4. Numerical experiments for a prestressed,
heterogeneous, fluid-saturated, and digital sand-
stone

As described in Appendix B (https://link.springer.com), we
employ a modified FE method (Meng and Fu, 2017) for
poro-acoustoelastic modeling with the second-order PML
absorbing boundary. The sandstone sample with its observed
ultrasonic waveforms described in Section 3 has been ex-
tensively studied previously. For example, the stress-asso-
ciated scattering attenuation is estimated by the single-
scattering model based on the weak scattering assumption
(Guo and Fu, 2007; Guo et al., 2009). Monte Carlo simula-
tion of stress-associated scattering attenuation (Wei and Fu,

2014) is conducted by minimizing the residual between the
observed and synthesized envelopes for all the effective
pressures, which indicates that the sandstone sample presents
moderate heterogeneities with respect to the used wave-
length. Numerical simulation of Biot’s poroelastic equations
using the digital image of the sample (Fu et al., 2014; Zhang
et al., 2014) is approximately implemented to evaluate the
effect of boundary reflections from the side ends of a sample
core on ultrasonic coda waves in experimental environments.
For wave propagation in prestressed porous rocks, it is nat-
ural to use poro-acoustoelastic numerical methods. The
current study focuses on a general procedure of poro-
acoustoelastic FE modeling with compliant pores for pre-
stressed heterogeneous rocks. The observed stress-associated
ultrasonic waveforms for this sandstone sample are the best
for numerical experiments in this study.

4.1 Setup of digital elastic model

How to create a realistic elastic model as a double-phase
medium from digital core images is quite complicated and
always controversial because of the correlation of image
resolution scales, wavelengths used, and effective medium
methods. Improper model settings or errors in numerical
elastic properties will destroy the comparison of numerical
simulations and experimental measurements. A typical
workflow of digital rock physics (DRP) comprises three
steps (Saenger et al., 2011): scanning the sample into digital
images, separating the pore volume from the matrix phase to
obtain segmented images; and predicting volume properties
(bulk modulus K, shear modulus μ, as well as density ρ).
The sandstone sample usedis scanned by X-ray CT with a

proper resolution, resulting in a huge 3D image data. We
select a section along the center line of the cylindrical
sample, as shown in Figure 6a with its part magnified into
view in Figure 6b. The reconstructed 2D image with a re-
solution of 0.05 mm is obtained based on the differential
absorption to the X-rays, with the grayscale adjusted to show

Figure 5 Variations of longitudinal (a) and shear (b) elastic moduli versus effective pressure, with the conventional poro-acoustoelasticity prediction
(dotted lines) for linear elastic deformations and the poro-acoustoelasticity prediction (solid lines) with compliant pores for nonlinear elastic deformations.

Table 1 The values of microstructural coefficients for the sandstone core
measured

Coefficients Values

a –2.50 GPa

b –2.25 GPa

c –7.00 GPa

d 0.25 GPa

e –1700.00 GPa

f –1300.00 GPa

ϕc0 0.06%
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different minerals. We see clearly the pore and grain geo-
metries as two major components of the sandstone. It also
presents varying amounts of interstitial clays residing in
pores. The off-white color indicates quartz grains and the
remainder mainly indicates clays residing in pores. For nu-
merical simulations of wave propagation, it seems reason-
able to reduce the complex mineral composition into two
major components: quartz grains and clays, which basically
captures the heterogeneity scale controlled by pore and grain
geometries.
We first define proper elastic properties in each pixel point

of the model. With such a matrix of digital core images, the
volume ratio of two parts, quartz grains and interstitial clays
residing in pores, can be easily calculated as 70%∶30%
averagely. Based on the volume ratio and mineral bulk and
shear moduli, we can calculate the equivalent bulk and shear
moduli for each pixel by the average modulus estimation
(Klimeš, 2002), for more details referred to Zhang et al.
(2014).
The key problem is how to convert the digital elastic model

into a double-phase medium to make poro-acoustoelastic
equations applicable for numerical modeling. Considering
that fluids in a real reservoir of oil/gas exist always as a

mixture with sands/clays rather than a pure fluid pool.
Therefore, water in this study is set to fill in the whole
background of the digital core. That is, every point of the
model is a mixture of water with either quartz grains or
interstitial clays residing in pores, and therefore can be taken
as a sort of effective double-phase medium. Such a sig-
nificant simplification to realistic cores aims to approximate
the main characteristics of the true model. Parameters of the
digital elastic model are shown in Table 2.

4.2 Heterogeneities of digital elastic model

Digital core with a random distribution of grains and pores is
a typical random heterogeneous medium that can be char-
acterized by both direct (e.g., stochastic medium modeling)
and indirect (e.g., scaling law of waves) methods. The
change of microstructures can be regarded as a kind of small-
scale random heterogeneities superposed on the background
elastic modulus. In general, the small-scale variations can be
estimated by stochastic medium modeling with spatial au-
tocorrelation functions.
For the digital elastic model as shown in Figure 6, the

elastic properties can be expressed as

x z x z

K x z K x z

µ x z µ x z

( , ) = 1 + ( , ) ,  = 0,

( , ) = [1 + ( , )],  = 0,

( , ) = 1 + ( , ) ,  = 0,

(27)K K

µ µ

0

0

0

where the spatially mean values (ρ0, K0, μ0) of density, bulk
modulus, and shear modulus are superposed by the fluctua-
tions (ερ, εK, εμ) of elastic properties. As a precondition, the
statistical average of the fluctuations ε vanishes. We suppose
the spatial random fluctuation ε = ε (x, z) is a second-order
stationary process with zero mean. Its autocorrelation func-
tion can be expressed as functions of variation σ2 and cov-
ariance function C (x, z),

x z C x z( , ) = ( , ) / . (28)2

Three kinds of autocorrelation functions, Gaussian, ex-
ponential, and Von Karman (Klimeš, 2002) have been widely
used for stochastic medium models, with each being its own
characteristics and suiting for different geological condi-
tions. Based on the shape feature of grains and pores in the
digital core shown in Figure 6, we select the following ex-
ponential-ellipse autocorrelation function,

Figure 6 A section of digital cores (a) selected along the center line of
the cylindrical sample and its part magnified into view (b), with the white
and black colors indicating quartz grains and interstitial clays (pores), re-
spectively. The oil saturated in pores is assumed to fill in the whole
background as a double-phase medium. The positions of the source and
receiver are indicated by star and triangle, respectively.

Table 2 Physical parameters for the numerical core model

Parameters Κs (GPa) Κd (GPa) μs (GPa) ρs (g/cm
3) ϕ κ (mD) ν Κf (GPa) ρf (g/cm

3) η (Pa S)

Quartz grain 37.00 – 44.00 2.65 – – 0.08 – – –

Clay 25 – 9 2.56 – – 0.34 – – –

Water – – – – – — – 2.25 1.00 0.001
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x z r
a

r x z

( , ) = exp ,

= + ,
(29)

2 2

where the correlation length a depicts the mean scale of
heterogeneous abnormalities for an isotopic stochastic
medium in the spatial domain. As one of key statistical
characteristics, it is strongly related to the sizes of mineral
grains and pores in the sample. The correlation length for the
sandstone sample under study is estimated through the au-
tocorrelation calculation over all the digital points of Figure
6a. We can identify different minerals in the sample in terms
of their X-ray absorptivity. Since the main mineral of sample
is quartz, the heterogeneity of sample depends on the size
and distribution of quartz grains, i.e., the correlation length.
The resulting autocorrelation function is shown in Figure 7
on which we estimate the correlation length as 139.4 μm
corresponding to the value of 1/e (e = 2.71828…) in the
autocorrelation function Φ.
The mean values of bulk/shear moduli and density at dif-

ferent effective pressures are determined by poro-acoustoe-
lasticity with compliant pores, expressed as

K D D
µ D

= 4
3 ,

= ,

= ,

(30)
0 11 55

0 55

0
0

where D11 and D55 are calculated by eqs. (18) to (20) . Thus,
the standard deviation in the random disturbance ε = ε(x, z)
can be calculated with the normalized disturbance up to σ =
35%. We can reconstruct a digital elastic model based on the
mean values (ρ0, K0, μ0), the normalized disturbance σ, and
the correlation length a. The model basically reflects the
statistical characteristics of its counterpart as shown in Fig-
ure 6. The correlation length is the intrinsic property to assess
the heterogeneity of digital elastic models. Based on its
correlation with wavelengths, which is measured by scaling
law, we can examine the scattering intensity for wave pro-
pagation in digital elastic models.
Scattering intensity for wave propagation in random het-

erogeneous media is classified into different regimes, de-
pending upon the parameters ka and kL (Sivaji et al., 2002;
Wu and Aki, 1988), where k is the wavenumber and L is the
travel distance of waves. Wei and Fu (2014) investigate the
scaling law of ultrasonic waves and conduct a rough estimate
of a for the same sandstone as used in this study. That is, the
correlation length is approximately the averaging size of
grains and pores of the sample. The resulting ka-kL dis-
tribution diagram indicates that the sample presents moder-
ate heterogeneities with respect to wavelengths used. In this
study, we use the exactly estimated correlation length
(139.4 μm) to investigate the scattering intensity of the
sandstone sample.

For the present experiment, the characteristic frequencies
of P- and S-waves are approximately 600 kHz and 300 kHz,
respectively, with their velocities of different pore pressures
measured by the travel time of direct waves. We choose L =
80 mm (the distance of ultrasonic transmission equaling to
the sample length). The calculated ka-kL distribution is
shown in Figure 8. We see that the corresponding scale
length ka varies from 10–2 to 10–1 for both P- and S-waves as
pore pressure increases from 5 to 60 MPa. Based on the
scattering division of the ka-kL distribution (Wu and Aki,
1988), the sample presents moderate to weak scattering
strength with respect to wavelengths.

4.3 Numerical experiments with prestressed and fluid-
saturated digital elastic model

Comparisons of numerical and experimental ultrasonic wa-
veforms can provide a major impetus to the understanding of
detailed characteristics of ultrasonic wave propagation in
prestressed heterogeneous rocks. We conduct numerical ex-
periments for the digital elastic model shown in Figure 6,
with the source point and receiver located at the positions
(20, 80) mm and (20, 0) mm, respectively. The ultrasonic
source used for numerical modeling is from the laboratory
experiment, as shown in Figure 9, with the center frequencies
of 600 kHz and 300 kHz for P- and S-waves, respectively.
Because of the homogenization consideration in the for-

mulation of poro-acoustoelastic equations, the wavelength of
numerical experiments must be larger than a typical aver-
aging elementary volume. That is, the wavelength must be at
least 10 times larger than the size of grains and pores (Pride
et al., 2004; Martin et al., 2008) to avoid some nonphysical
behaviors, numerical instabilities, and numerical dispersions
appearing in the simulation. Considering the maximum fre-
quency (less than 600 kHz) and the lowest velocity (higher
than VSmin = 2000 m s–1) of elastic waves, we compute the

Figure 7 Autocorrelation function of Figure 6a with its correlation length
estimated at Φ = 1/e.
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minimum wavelength as about 2 mm. It is about 40 times the
averaging diameter of pores and grains. The minimum edge
length h of triangular grid cells is 8×10–5 m. From the sta-
bility condition (see eq. (B-4) in Appendix B) and the
maximum phase velocities (VPmax = 3742.2 m s–1 and VSmax =
2336.3 m s–1) of ultrasonic measurements, the time sampling
interval of numerical modeling should satisfy Δt ≤ 8×10–9 s.
In the current study, we take the time sampling interval Δt =
2×10–9 s, in accordance with that of the source. Numerical
simulation is performed with 100000 time steps for a total
duration of 0.0001 s.
In the simulation, the heterogeneous digital model is sur-

rounded by the PML layer. The radial and vertical compo-
nents of wavefields are recorded at the receiver. The PML-
layer thickness is varied to determine the level of boundary
reflections on coda waves by comparing with experimental
coda waveforms. Considering the effect of rubber jackets
around the sample to weaken boundary reflections to some

degree in the laboratory, Fu et al. (2014) compare the nu-
merical and experimental amplitude levels in the ultrasonic
coda waveforms, which demonstrates that the boundary re-
flection from the side ends of a sample core may contribute
about one-third of the ultrasonic coda attenuation observed
in laboratory experiments. More details for the effect of
boundary reflections on coda waves in rock physics experi-
ments can be referred to Fu et al. (2016). The current study
focuses on the poro-acoustoelastic FE modeling with com-
pliant pores to assure the agreement between numerical si-
mulations and experimental measurements. For this purpose,
we change the PML-layer thickness from 10 to 60 mm in the
simulation, and conclude that the 40 mm-thick PML layer is
the optimal to assure a consistent amplitude level of ultra-
sonic coda waves between the numerical and experimental
results.
Figure 10 compares the numerical and experimental wa-

veforms for ultrasonic P- and S-waves at different effective

Figure 8 A ka-kL diagram of scattering intensity with the P-wave at f =600 kHz (a) and the S-wave at f = 300 kHz (b) for the sandstone sample under study.
The ka-kL distribution for the present experiment with a=139.4 μm, L = 80 mm, and the measured velocities, characterizes the heterogeneity scale of the
sample with respect to wavelengths, as indicated by a hatched region in the figure.

Figure 9 Source wavelets ((a), (c)) with their frequency spectra ((b), (d)) for P-waves ((a), (b)) and S-waves((c), (d)), respectively.
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pressures. We see a general agreement between these two
wavetrains in both amplitude and phase, even for waveforms
particularly in the period of direct waves and in the initial
portion of coda waves. The agreement for P-waveforms is
much better than that of S-waveforms. Arrival times for both
the numerical and experimental ultrasonic records are cal-
culated and marked in the corresponding figures. We see that
these arrival times agree well between numerical and ex-
perimental records, with the errors lower than 0.5%. Some
discrepancies, however, are observed in waveforms for
several effective pressures, possibly because of the imperfect
poroelastic imaging of digital rocks in both mineral com-

positions and microstructures, the underestimation of poro-
acoustoelastic constants at some effective pressures for
elastic nonlinearity due to compliant pores, or the limitation
of numerical methods in accuracy and absorbing boundary.
Particularly, the laboratory experiment is carried out on a 3D
cylindrical rock sample, whereas the presented numerical
modeling is limited to 2D cases.
From Figure 10, we see that the amplitude of each wave-

train attenuates at almost the same level between the nu-
merical and experimental records for all the effective
pressures. Coda waves as a continuous wavetrain for the
development of ultrasonic scattering waves exist in the tail

Figure 10 Comparisons of experimental (solid line) and numerical (dotted line) waveforms for ultrasonic P-waves ((a)–(h)) and S-waves ((i)–(p)) at
different effective pressures. Arrival times for both the numerical and experimental ultrasonic records are calculated and marked in the corresponding figures.
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section of both the numerical and experimental records. The
distribution and strength of coda waves exhibit strong ap-
parent attenuation due to small-scale random heterogeneities
as well as microstructures in the digital core. Since the
sample presents moderate to weak scattering strength with
respect to wavelengths, we estimate scattering attenuation by
Sato (1977) the single scattering model (the simplest model
to describe the coda). Compared to multiple scattering
models, it is more suitable for cases where the lapse time
measured from the origin time to the onset of the time
window is much shorter than the mean free time in which
waves propagate without scattering.
As shown in eq. (18), the acoustoelastic parameters with

compliant pores are relevant to original microstructures.
They are seldom influenced by effective pressures which
only affect the effective elastic constants (D11, D13, D33, D51,
D53, and D55). For isotropic pressure loading, only D11, D33,
andD55 are affected, as shown in Figure 5a and 5b. The effect
of effective pressures on the detail properties of waveform
can be seen in Figure 10.
Following Guo et al. (2009), we calculate the coda quality

factorsQP andQS from the simulated amplitudes with time in
the coda window by fitting the linear part of ln[A(f, t)] versus
t, where A(f, t) represents the observed root-mean-square
(rms) amplitudes of the narrow bandpass-filtered waveforms
with the centre frequency f. It is worth mentioning that the
calculations of QP and QS assume no S-to-P conversion. For
the S-wave excitation as pointed by Aki (1992), S-to-S
scattering is more efficient than S-to-P scattering. As a result,
the whole S coda mainly consists of scattered Swaves with S-
to-P scattering waves being neglected. Hence, the waveform
motivated by a shear source can be approximated as the S
coda. For the P-wave excitation, we only receive the dis-
placement normal to the sample surface so that the tail
portion of wavetrains can be regarded as the P-wave coda.
Figures 11 and 12 show the calculation procedures for P-

and S-coda waves with the coda windows marked in the
figures. As shown in Figure 4 from the experimental ultra-
sonic data, the stress-associated velocity variations demon-
strate a distinct behavior in the low and high regimes of
effective pressures, separated at P = 30 MPa. The corre-
sponding experimental records between these two regimes of
effective pressures show quite different features in both
waveform and scattering attenuation. With the effective
pressures greater/less than 30 MPa, we divide the simulated
waveform data into two groups for best least-square fitting.
According to Guo and Fu (2007) and Guo et al. (2009), the
Qs andQp can be obtained by P and S-wave coda. In addition,
fluid flow in the saturated rocks will not influence the coda
wave (Ma and Ba, 2020; Guo et al., 2018). Therefore, the
values of Qs and Qp can be approximated as the scattering Qs

and Qp.
From Figures 11 and 12, we estimateQP andQS at different

effective pressures by the best least-square fitting to selected
coda windows. The resulting QP and QS can be used to assess
the stress-associated effect on scattering attenuation as well
as on microstructures. Figure 13 compares the numerical and
experimental QP

–1 and QS
–1 versus effective pressure. We see

that the scattering attenuation due to small-scale hetero-
geneities seems sensitive to stress changes, presenting a
strong nonlinear variation versus effective pressure. More
importantly, we see an excellent agreement between the
numerical and experimental results, implying the presented
poro-acoustoelastic numerical modeling scheme for ultra-
sonic wave propagation in prestressed and fluid-saturated
heterogeneous rocks can be reliably used to investigate the
stress-associated scattering attenuation.

5. Discussions

The poro-acoustoelastic modeling with compliant pores for
ultrasonic wave propagation in prestressed and hetero-
geneous fluid-saturated rocks, addressed in this article, in-
volves with many issues. The most important problems
should be stress-induced variations in both elastic modulus
and scattering attenuation in laboratory environments. We
will detail these aspects in this section.
The effect of effective pressures on the elastic wave ve-

locity strongly depends on the stress-induced variation of
static elastic moduli in porous rocks, which can be parti-
tioned into background and local anomalous components.
The former can be described by the traditional acoustoelastic
theory for prestressed rocks without pores, whereas the latter
becomes extremely complex because of the stress-induced
deformation in microstructures and fluid-solid interactions
under a large-magnitude stress loading. The Biot’s dissipa-
tion by fluid-solid interactions under stress loading could be
ignored for fluid-saturated rocks (Ba et al., 2013; Guo,
2008), whereas the microstructural deformation could be
linear elastic, nonlinear elastic, and inelastic, depending on
the loading magnitude and pore structures. In general, the
conventional poro-acoustoelasticity theory accounts for lin-
ear elastic deformations (Winkler and Liu, 1996; Ba et al.,
2013), possibly related to rock grains/stiff pores or limited to
intermediate loading stresses for general pores, as demon-
strated in Figure 4 for the effective pressures greater than
30 MPa. The nonlinear elastic deformation is usually subject
to compliant pores (e.g., cracks, microfractures, grain joints,
organic pores) under large loading stresses, as demonstrated
in Figure 4 for the effective pressures less than 30 MPa. The
stress-induced nonlinear deformation in compliant pores can
be described by the dual-porosity model (Shapiro, 2003;
David and Zimmerman, 2012), the Padé poro-acoustoelastic
theory (Fu and Fu, 2017), and the poro-acoustoelastic theory
with compliant pores for the second-order elastic constants
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(Fu and Fu, 2018) and the third-order elastic constants de-
veloped in this study (see Figure 5).
Based on the previous studies (Cheng and Toksöz, 1979;

Zimmerman et al., 1986; Berryman and Pride, 1998; Kubair
and Bhanu-Chandar, 2008; Cerit et al., 2009; David and
Zimmerman, 2012), compliant mechanical defects, such as
fracture surfaces, microcracks, and joint faces are all sensi-
tive to stress. With decreasing aspect ratios, the strains of
compliant pores increase with increasing pore pressures,

intensifying the stress concentration and inducing the oc-
currence of an extensional process. In general, with in-
creasing pore pressures under a stable confining pressure in
saturated porous rocks, crack extension will increase the
compliant-pore strains and decrease the rock stiffness. In
general, the stress σc around a compliant pore could be re-
lated to the effective pressure P by

LP, (31)c

where the stress concentration factor L, according to Kubair

Figure 11 Calculation of coda quality factors QP for simulated P-coda waves at different effective stresses, with the coda windows marked in the figures.
(a) & (b) Unfiltered P-waveforms and the corresponding envelope lines of logarithmic amplitudes for effective stresses from 30 to 60 MPa; (c) & (d)
Unfiltered P-waveforms and the corresponding envelope lines (lower panel) of logarithmic amplitudes for effective stresses from 5 to 20 MPa.

Figure 12 Calculation of coda quality factors Qs for simulated S-coda waves at different effective stresses, with the coda windows marked in the figures. (a)
& (b) Unfiltered S-waveforms and the corresponding envelope lines of logarithmic amplitudes for effective stresses from 30 to 60 MPa; (c) & (d) Unfiltered
S-waveforms and the corresponding envelope lines of logarithmic amplitudes for effective stresses from 5 to 20 MPa.
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and Bhanu-Chandar (2008), can be expressed as functions of
the quantities θc(X) (i.e., θcL, θcμ, θcK, θcM5, θcM6),

L 1 + 1 . (32)c X( )

We see that the stress concentration factor increases with
increasing quantities θc(X), significantly enhancing the stress
σc around compliant pores possibly by hundreds of times
higher than P. It implies that the work of loading stress could
transform into dissipation induced by nonlinear deformation
during the stress loading. The nonlinear elastic deformation
of compliant pores tends to transform into inelastic de-
formation with further increasing loading stresses, as de-
monstrated by Sinha and Plona (2001) for plastic crack
deformation attributed to sliding along crack surfaces. In this
case, there are residual strains around compliant pores after
stress disappearing, which has been manifested in experi-
mental measurements by the misfit between loading and
unloading variations in stress-induced velocity/attenuation
(Guo et al., 2009). Figure 14 shows the stress-induced ve-
locity variations versus pore pressure for ultrasonic P- and S-
waves along the stress path under a constant confining
pressure of 65 MPa with pore pressure increasing from 5 to
60 MPa at an increment of 5 MPa (loading procedure) and
then returning to 5 MPa as fluid drains (unloading proce-
dure). We see that the observed P- and S-wave velocities
during unloading procedure (square) are less than those with
loading procedure (circle). It implies a misfit crack opening
and closure alternately during the cyclic loading and un-
loading procedures, with residual strains left around com-
pliant pores after pore pressures unloading.
Scattering attenuation, as a result of changes in the phy-

sical state of material, is more sensitive to stress changes.
The stress-induced scattering attenuation is mainly affected
by boundary reflections, ultrasonic wavelengths, and stress-
loading magnitudes. Stress-induced scattering attenuation
from experimental ultrasonic records has been estimated
using the single-scattering assumption (Guo et al., 2009), but

may be controversial because of the potentially contaminated
coda waves by boundary reflections from the side ends of
sample. The effect of boundary reflections on ultrasonic coda
waves in laboratory environments has been extensively ad-
dressed by numerical experiments (Fu et al., 2014; Zhang et
al., 2014; Wei and Fu, 2014; Fu et al., 2016). In the current
study, we employ a controllable PML absorbing boundary in
numerical modeling to assure a consistent amplitude level of
ultrasonic coda waves between the numerical and experi-
mental results. That is, the equivalence of numerical and
experimental boundary reflections implies that the coda
waves might be contaminated to some degree by boundary
reflections from the side ends of the sample. Based on the
elaborate analyses (Fu et al., 2016) for the boundary reflec-
tions in laboratory environments, however, the emitted ul-
trasonic waves can be regarded approximately as a plane
wave propagating mainly along the vertical direction, with
few towards side directions. The side-direction waves are
further attenuated by scattering in actual heterogeneous
rocks, with fewer reaching the side ends to reflect. Further-
more, the rubber jackets around the sample can weaken
boundary reflections to some degree. In contrast, the re-
verberations between the top and bottom surfaces are quite
strong, which, however, are scattered by small-scale het-
erogeneities and reduced to less than 1/10 of the amplitude of
direct wave in the time domain. In addition, the window
length of coda waves can be selected to avoid the con-
tamination of reverberations.
The ka-kL distribution of experimental measurements, as

shown in Figure 8, demonstrates that the sample presents
moderate to weak scattering strength with respect to wave-
lengths. From Figure 13, we see that scattering attenuation
due to small-scale heterogeneities in the sample reduces with
increasing effective pressures. Based on the previous studies
(Kawahara and Yamashita, 1992), the scattering strength of
small-scale heterogeneities depends strongly on ka. Figure
15 shows ka variations versus effective pressure in this study,
indicating a consistent variation trend similar to that of coda

Figure 13 Comparisons of experimental (square) and numerical (circle) coda quality factors versus effective pressure for ultrasonic P-waves (a) and S-
waves (b).
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quality factors shown in Figure 13. We see that with in-
creasing effective pressures, compliant pores tend to be
closed and scattering attenuation decreases nonlinearly. At
this stage, increasing pore pressures tend to compress the
pore linings of clays adjacent to framework grain contacts,
increasing the stiffness for normal compression, decreasing
the resistance to tangential displacements (Dvorkin et al.,
1991), and consequently enhancing scattering attenuation.
The resultant changes in compliant pores, in turn, affect the
second- and third-order elastic constants. After the critical
point occurring around 30 MPa, scattering attenuation re-
duces slowly to be stable with closed compliant pores.
We have noticed that in previous works, the stress-induced

velocity variations in porous media are studied parallelly by
poroelastic and poro-acoustoelastic methods, respectively.
As indicated by Winkler and Liu (1996), the former ap-
proaches the stress-induced effect based upon closure of
microcracks or compression of grain contacts, whereas the
latter ignores microstructures and resorts to the third-order
elastic constant. Comparing with poroelasticity, poro-
acoustoelasticity can explain the physics of energy trans-
formations through the elastic constant. The acoustoelastic
deformation of porous rocks physically consists of two dif-

ferent types of energy transformations that are related to
grains/stiff pores and compliant pores, respectively. The
ideal prediction model should not only be able to express the
elastic nonlinearity with physical meaning coefficients, but
also explain the physics of the energy transformation of
compliant-pore strains.
The poro-acoustoelastic theory with compliant pores could

be by now the best choice for this issue based on the fol-
lowing three aspects. First, the conventional poro-acoustoe-
lasticity approximates the strain energy function using third-
order Taylor expansion by assuming small-amplitude strains.
It accounts for the linear deformation of grains/stiff pores.
For the model of Shapiro (2003) and David and Zimmerman
(2012), the energy transformation induced by complaint-
pore deformations is not considered. We improve the con-
ventional theory by incorporating the dual-porosity model to
account for nonlinear elastic deformations around compliant
pores subject to high loading stresses. Secondly, the pre-
diction model not only explains the energy transformation of
compliant-pore strains, but also be able to express the elastic
nonlinearity with physical meaning coefficients. Finally, the
model only uses three parameters to provide better fitting of
stress-induced variations in elastic moduli, whereas other

Figure 14 Stress-induced velocity variations versus pore pressure for ultrasonic P-waves (a) and S-waves (b) under a constant confining pressure of
65 MPa with pore pressure rising incrementally from 5 to 60 MPa (loading procedure) and then returning to 5 MPa (unloading procedure).

Figure 15 Variations of ka for ultrasonic P-waves (a) and S-waves (b) versus effective pressure in this study, indicating a consistent variation trend similar
to that of coda quality factors shown in Figure 13.
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models involve more than three fitting parameters..

6. Conclusions

Elastic wave propagation and scattering in prestressed por-
ous rocks can be approached by both poroelastic and poro-
acoustoelastic methods. The former is often based on mi-
crostructural models and tends to make the problem ex-
tremely complex for real rocks with complicated pore
structures. The latter, as a more general and model-in-
dependent description, is based on effective elastic constants
by which to explain the physics of energy transformations of
loading stresses. The acoustoelastic deformation of porous
rocks could be linear elastic, nonlinear elastic, and inelastic,
depending on the loading magnitude and pore structures.
Linear elasticity is possibly related to grains/stiff pores or
limited to intermediate loading stresses for general pores,
whereas nonlinear elasticity is usually subject to compliant
pores under large-magnitude loading stresses. Conventional
poro-acoustoelasticity is based on the third-order elastic
constant and accounts for linear elastic deformations. Mod-
ified poro-acoustoelasticity by incorporating the dual-por-
osity model can account for nonlinear elastic deformations
around compliant pores subject to large-magnitude loading
stresses. The nonlinear elasticity often leads to exponential
changes in the experimentally observed elastic wave velo-
cities.
By integrating theoretical analysis, experimental mea-

surement, and numerical validation, we conduct a compre-
hensive study for elastic wave propagation and scattering in
prestressed porous rocks. As an efficient alternative to ex-
perimental measurements, poro-acoustoelastic numerical
simulations can provide a comprehensive investigation of the
scaling dependence of velocity/attenuation on stresses and
microstructures. We present a poro-acoustoelastic FE nu-
merical modeling with compliant pores for ultrasonic wave
propagation in prestressed and fluid-saturated heterogeneous
digital rocks. We address in detail several key issues that
challenge the comparison of numerical simulations and ex-
perimental measurements, such as digital imaging of het-
erogeneous poroelastic properties, estimation of
acoustoelastic constants, numerical dispersion at high fre-
quencies and strong heterogeneities, and contamination by
boundary reflections. We conduct numerical simulations for
a sandstone model from the experimental measurement with
a fluid-saturated sandstone under a constant confining
pressure of 65 MPa and increasing pore pressures from 5 to
60 MPa. The main conclusions can be summarized as fol-
lows:
(1) Experimental measurements with a fluid-saturated

sandstone under different effective pressures demonstrate
that the stress-induced velocity variations present a linear/

nonlinear trend for the effective pressure greater/less than
30 MPa. The linear portion is possibly relevant to the de-
formation of grains/stiff pores and conforms to the prediction
by conventional poro-acoustoelasticity, where compliant
pores tend to be closed and their nonlinear effect could be
neglected. For the nonlinear portion, the strong strain around
compliant pores significantly decreases the stiffness of rocks,
inducing an exponential drop in elastic wave velocities.
(2) We formulate a poro-acoustoelasticity with dual-por-

osity third-order elastic constants to describe the elastic
nonlinearity of compliant pores. The prediction of elastic
nonlinearity by the modified poro-acoustoelasticity shows a
remarkable agreement with measurements, much better than
the poro-acoustoelastic prediction with dual-porosity sec-
ond-order elastic constants (Fu and Fu, 2018). Estimations of
poro-acoustoelastic constants and microstructural coeffi-
cients are conducted carefully based on the experimental
measurements.
(3) A typical digital rock workflow is used to create the

digital imaging of the sandstone sample under study, which
captures the composition and microstructure of sample.
Identification of different minerals in in terms of their X-ray
absorptivity demonstrates that the main mineral of sample is
quartz, that is, the heterogeneity of sample depends on the
size and distribution of quartz grains. We measure the het-
erogeneity of sample by extracting its autocorrelation length
from digital cores with an attempt to obtain a rough esti-
mation of scattering intensity. The resulting ka-kL distribu-
tion indicates that the sample presents a moderate scattering
strength with respect to wavelengths.
(4) To guarantee the comparison of numerical and ex-

perimental waveforms for different loading stresses, poro-
acoustoelastic numerical modeling of ultrasonic waves re-
quires a high numerical accuracy to simulate subtle trans-
mission/scattering effects across pores and grains in digital
cores with minimal numerical dispersion. A modified finite-
element method with triangular elements to mesh the digital
poroelastic model is employed to discretize the modified
poro-acoustoelastic equations. The second-order PML ab-
sorbing boundary is employed with alterable precision to
estimate the amount of boundary reflections from the side
ends of a sample core in the experimental environment.
(5) Numerical simulations demonstrate a general agree-

ment with experimental wavetrains in both amplitude and
phase for different effective pressures, particularly for wa-
veforms in the period of direct waves and in the initial por-
tion of coda waves. Comparisons of the scattering
attenuation QP

–1 and QS
–1 at different effective pressures

show an excellent agreement between numerical and ex-
perimental results, implying the presented numerical poro-
acoustoelastic modeling scheme can be reliably used to in-
vestigate the stress-associated scattering attenuation.
(6) Numerical examples validate the applicability and
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performance of poro-acoustoelastic FE modeling scheme to
the stress-induced variations in both velocity and attenuation,
which, in turn, could enable us to monitor changes in the
subsurface in-situ stresses.
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