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Abstract A deeper understanding of hyperthermal events in the Earth’s history can provide an important scientific basis for
understanding and coping with global warming in the Anthropocene. Two types of hyperthermal events are classified based on
the characteristics of the carbon isotope excursion (CIE) of the five representative hyperthermal events in the Mesozoic and
Cenozoic. The first type is overall characterized by negative CIEs (NCHE) and represented by the Permian-Triassic boundary
event (PTB, ~252 Ma), the early Toarcian oceanic anoxic event (TOAE, ~183 Ma), and the Paleocene-Eocene Thermal
Maximum event (PETM, ~56 Ma). The second type is overall characterized by positive CIEs (PCHE) and represented by the
early Aptian oceanic anoxic event (OAE1a, ~120 Ma) and the latest Cenomanian oceanic anoxic event (OAE2, ~94 Ma).
Hyperthermal events of negative CIEs (NCHE), lead to dramatic changes in temperature, sedimentation, and biodiversity. These
events caused frequent occurrence of terrestrial wildfires, extreme droughts, acid rain, destruction of ozone layer, metal poi-
soning (such as mercury), changes in terrestrial water system, and carbonate platform demise, ocean acidification, ocean anoxia
in marine settings, and various degree extinction of terrestrial and marine life, especially in shallow marine. In contrast,
hyperthermal events of positive CIEs (PCHE), result in rapid warming of seawater and widespread oceanic anoxia, large-scale
burial of organic matter and associated black shale deposition, which exerted more significant impacts on deep-water marine life,
but little impacts on shallow sea and terrestrial life. While PCHEs were triggered by volcanism associated with LIPs in deep-sea
environment, the released heat and nutrient were buffered by seawater due to their eruption in the deep sea, thus exerted more
significant impacts on deep-marine biota than on shallow marine and terrestrial biota. This work enriches the study of hy-
perthermal events in geological history, not only for the understanding of hyperthermal events themselves, large igneous
provinces, marine and terrestrial environment changes, mass extinctions, but also for providing a new method to identify the
types of hyperthermal events and the inference of their driving mechanism based on the characteristics of carbon isotopic
excursions and geological records.
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1. Introduction

The Intergovernmental Panel on Climate Change (IPCC)
Special Report “1.5°C global warming” in October 2018
shows that the Earth’s annual mean temperature has risen by

(1±0.2)°C since the industrial revolution (AD 1850) and
continues to increase at a rate of 0.2°C per decade (IPCC,
2018). Global warming is also supported by continuous
observations of the Earth’s surface temperatures and sea-
water temperatures over the past 30 years. Greenhouse gas
emissions released by human activities (mainly fossil fuel
emissions) are considered to be the main cause of global
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warming (Waters et al., 2016). Both society and the scientific
community are concerning about whether the continuing
increase in atmospheric CO2 will cause the global climate to
change from an icehouse climate, manifested by polar ice
caps, to a greenhouse climate of no polar ice caps. It is
imperative for the sustainability of human civilization to
deepen understanding of these changes and their environ-
mental and ecological effects.
To date, predictions of warming trends and the possible

climate, ecological, and environmental changes mainly de-
pend on climate simulations. Unfortunately, the under-
standing of the climatic mechanisms is neither thorough nor
comprehensive. The temporal-spatial resolutions of climate
models need to be further refined, and the constraints on
climate parameters need to be improved. Therefore, climate
simulations still have large uncertainties. Understanding the
past global warming and its eco-environment effects from
geological perspective will provide important insight. The
Earth’s climate has changed dynamically over geological
history, including icehouse climates and greenhouse cli-
mates. Each climate state included a series of extreme cli-
mate events, such as extreme cooling events (Snowball
Earth) and hyperthermal events, respectively. Multiple hy-
perthermal events occurred in the Mesozoic and Cenozoic,
including the characteristic Permian-Triassic boundary event
(PTB), the early Toarcian oceanic anoxic event (TOAE,
Early Jurassic), the early Aptian oceanic anoxic event
(OAE1a, Early Cretaceous), the Cenomanian-Turonian
oceanic anoxic event (OAE2, mid-Cretaceous) and the Pa-
leocene-Eocene Thermal Maximum (PETM) (Figure 1)
(Foster et al., 2018). This study provides a comprehensive
review of these hyperthermal events. By summarizing the
onset duration, the extent and rate of warming, environ-
mental and ecological changes of these events, we divide
these events into two types based on their characteristic
carbon isotope excursions. In addition, by systematically
comparing the environmental and ecological effects between
these two types of hyperthermal events, we propose that the
different responses of these two types of hyperthermal events
were closely related to the different eruption environments
where large igneous provinces (LIPs) were formed. This
study could provide scientific references for better under-
standing and coping with the current global warming.

2. Carbon isotopic characteristics and classifi-
cation of the five hyperthermal events in the
Mesozoic and Cenozoic

2.1 Carbon isotopic characteristics of the five hy-
perthermal events

The PTB event occurred at the end of the Permian (~252 Ma)
and shows the largest warming magnitude (~8–10°C) in the

Phanerozoic (Joachimski et al., 2012; Sun et al., 2012; Shen
et al., 2019) (Table 1). It has also been shown to be lower
than 6°C (Brand et al., 2012; Cui and Kump, 2015). The bulk
carbon isotopes experienced at least three cycles of negative-
excursion-then-recovery during the PTB event with a large
negative excursion of more than −7‰ (Cao et al., 2009).
The TOAE occurred in the Early Jurassic (~183Ma) with a

warming magnitude of 7–10°C in the middle latitudes in the
northern hemisphere (Suan et al., 2008a; Dera et al., 2009;
Korte et al., 2015) (Table 1). The negative CIE of TOAE is
characterized by a magnitude of −3‰ to −8‰ and consists of
several secondary negative excursions (Kemp et al., 2005;
Jenkyns, 2010).
The OAE1a is also called the Livello Selli event and oc-

curred at early Aptian in the early Cretaceous (~120 Ma)
with a warming of 5–6°C at low latitudes and 2–4°C at mid-
to-high latitudes (Mutterlose et al., 2010, 2014; Naafs and
Pancost, 2016). The CIE is characterized by an extremely
negative excursion and then a 2–5‰ positive excursion
(Menegatti et al., 1998).
The OAE2 is also known as the Bonarelli Event and oc-

curred at the end of the Cenomanian (~94 Ma). The warming
of 2–3°C in low latitudes, 4–5°C in middle latitudes, and 7–
10°C in high latitudes are reported (Jenkyns et al., 2004;
Forster et al., 2007; Huber et al., 2018) (Table 1). The CIE
was overall positive with a magnitude generally greater than
2‰ (Jenkyns, 2010), but appears to show a weak negative
excursion before the positive excursion in an expanded
section (Li Y X et al., 2017).
The PETM was a hyperthermal event that occurred at the

Paleocene-Eocene boundary (~55.8 Ma) (Kennett and Stott,
1991; Zachos et al., 2001). This event shows, on average,
~4–5°C warming of global sea surface temperature (Dunkley
Jones et al., 2013), 3°C at low latitudes (Frieling et al., 2017),
and 5–8°C at mid-to-high latitudes (Sluijs et al., 2006, 2011;
Zachos et al., 2006) (Table 1). The CIE shows a rapid ne-
gative shift, and then a 2–7‰ negative shift prior to the final
recovery (Kennett and Stott, 1991; McInerney and Wing,
2011).

2.2 Classification and stage divisions of the five hy-
perthermal events based on the CIE features

Based on the CIE characteristics, we divided these five hy-
perthermal events into two types: Negative CIE Hy-
perthermal Event (NCHE) and Positive CIE Hyperthermal
Event (PCHE).
The NCHE events show negative CIEs, and include the

PTB, TOAE and PETM (Figure 2). These events show a
broad negative CIE from background carbon isotope values,
and the pre- and post-event stage is denoted as NC1 and
NC5, respectively. The broad negative CIE consists of an
initial one-step (PETM, TOAE) or stepwise (PTB) negative
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shift stage (onset stage, NC2), a stage of sustained low δ13C
values (the main stage, NC3), and a stage of gradual positive
shift in δ13C values (recovery, NC4) (Figure 2). The broad
negative CIE of the NCHE events including NC2–NC4
stages, is generally thought to be caused by the injection of
large amounts of light carbon into the atmosphere-ocean
system.

The PCHE events are overall characterized by a broad
positive CIE and are represented by OAE1a and OAE2
(Figure 3). The broad positive CIE of this type of events is
preceded by a transient strong (OAE1a) or weak (OAE2)
negative δ13C shift. The carbon isotope variations of these
events can be generally divided into four stages, an onset
stage (PC2) of the transient negative δ13C shift, a stage of

Figure 1 (a) An illustration of the middle Permian to Eocene timescale (Ogg et al., 2016), showing ages of the five Mesozoic and Cenozoic environmental
perturbations, LIP emplacements, and the Earth’s climate (NRC 2011). (b) Geographical map showing the locations mentioned in our studies (www.odsn.de).
PTB: Meishan section, Zhejiang; Burgess et al., 2014. TOAE: Peniche section, Portugal; Hesselbo et al., 2007. OAE1a: Yenicesilar section, Turkey; Hu et al.,
2012. OAE2: Gongzha section, southern Tibet; Li Y X et al., 2017. PETM: ODP site 690, Southern Ocean; Bains et al., 1999. (c) The two types of
hyperthermal events classified based on carbon isotopic profile: NCHE, the Negative Carbon isotopic excursion Hyperthermal Event that is characterized by a
negative carbon isotopic excursion profile, and PCHE, the Positive Carbon isotopic excursion Hyperthermal Event that is characterized by a positive carbon
isotopic excursion profile.
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positive δ13C shift (PC3), a sustained stage of enriched δ13C
values (main stage, PC4), and a stage of gradual decrease of
δ13C values (recovery stage, PC5) (Figure 3). These events
were generally thought to be caused by transient injection of
massive light carbon into the atmosphere-ocean system,
which triggered anoxia in bottom water and large-scale
burial of organic-rich black shales, leading to a broad posi-
tive CIE.

3. Timescale and duration of the two types of
hyperthermal events in the Mesozoic and Cen-
ozoic

With the high-precision dating and the application of cy-
clostratigraphy in recent years, durations of these two types
of hyperthermal events have been much better constrained,

allowing for discussing warming rates of each type of hy-
perthermal events. It is worth noting that duration estimates
of each event are usually obtained from cyclostratigraphy
that is anchored by the high-precision U-Pb age of zircon in
tuff layer. Interpolation with an average sedimentation rate
within an orbital cycle is often used to obtain the CIE
durations of these events. This analytical technique generally
carries uncertainties of about 10–100 kyr.

3.1 Timescale and duration of the NCHE

The timescale of the PTB event is mainly based on high-
precision U-Pb chronology of zircon from the global stra-
totype section and point (GSSP) section of the Permian-
Triassic boundary in South China (Shen et al., 2011, 2019;
Burgess et al., 2014), combined with carbon isotope strati-
graphy (Cao et al., 2009). The PTB duration was constrained

Table 1 Comparison of the two types hyperthermal events showing the magnitude of warming from low to high latitudes, carbon isotope excursion, and
onset duration

Hyperthermal
events

Duration of
onnset (NC2 or
PC2) (kyr)

CIE magnitude
of oneset (NC2
or PC2) (‰)

Temperature (°C)
References

Low latitude Middle latitude High latitude

PCHE
OAE2 50 >2 2–3 4–5 7–10 Jenkyns et al. (2004), Forster et al. (2007), Huber

et al. (2018)

OAE1a 75 2–5 5–6 2–4 2–3 Mutterlose et al. (2010), Naafs and Pancost
(2016)

NCHE

PETM 3 −2–−6 3–5 6–8 5–9 Thomas et al. (2002), Zachos et al. (2003, 2006),
Aze et al. (2014), Sluijs et al. (2011, 2014)

TOAE 150 −3–−8 – 7–10 – Suan et al. (2008a), Dera et al. (2009), Korte et al.
(2015)

PTB 60 >−7 8–10 – – Sun et al. (2012), Joachimski et al. (2012),
Burgess et al. (2014), Chen et al. (2016)

Figure 2 Characteristics of carbon isotopic profile and temperature across the NCHE including PTB, TOAE and PETM, and their environmental and biotic
effects. The negative CIE of the NCHEs can be broadly divided into four stages: an onset stage NC2, represented by one (PETM, TOAE) or multiple (PTB)
negative excursion (NC2, onset stage), a main stage NC3, represented by an isotopic negative plateau, and a recovery stage NC4, represented by a positive
excursion. The pre-NCHE interval is defined as stage NC1, and the post-NCHE interval is defined as stage NC5. Carbon isotopic and temperature data are
from: PTB (Burgess et al., 2014), TOAE (Hesselbo et al., 2007; Suan et al., 2010), PETM (Bains et al., 1999; Thomas et al., 2002).
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to ~660 kyr (Burgess et al., 2014), of which the onset (NC2)
duration is ~58 kyr, the duration of the sustained CIE (NC3)
is ~431 kyr, and the duration of the recovery stage (NC4) is
~170 kyr (Figure 2).
There are two different duration estimate for the TOAE.

One suggests that it lasted for ~900 kyr, which is based on
the age constraints by cyclostratigraphy from Peniche (GSSP
section) in Portugal (Suan et al., 2008b; Huang and Hessel-
bo, 2014). This result is consistent with that from Dottern-
hausen (Germany), Valdorbia (Italy), Yorkshire (UK), and
Lorraine Sub-Basin (France) by cyclostratigraphy (Huang
and Hesselbo, 2014; Ruebsam et al., 2014), and Yorkshire
(UK) by strontium stratigraphy (McArthur et al., 2000). The
duration estimate is ~300–500 kyr (Kemp et al., 2005, 2011;
Boulila et al., 2014), which is mainly based on the magnetic
susceptibility cyclostratigraphy from Sancerre-Couy bore-
hole (France) and Yorkshire (UK). We employ the ~900 kyr
duration of the Peniche GSSP section, and the corresponding
NC2, NC3 and NC4 have a duration of ~150, ~450 and 300
kyr, respectively (Suan et al., 2008b) (Figure 2).
High-resolution timescales for the PETM have been de-

veloped using cyclostratigraphy and 3He chronology, but are
still controversial. The PETM duration has been constrained
to 150–220 kyr by cyclostratigraphy (Röhl et al., 2003, 2007)
(Figure 2), to 120–220 kyr by 3He chronology (Farley and
Eltgroth, 2003; Murphy et al., 2010). Recently, Westerhold et
al. (2018) constructed the timescales of Ocean Drilling

Program (ODP) core and continental core in Bighorn basin
and constrained the duration of PETM to ~200 kyr. The
PETM onset was generally considered to last at least several
thousand years, ranging from 8 to 23 kyr (Zachos et al.,
2005; Aziz et al., 2008; Charles et al., 2011). However,
Wright and Schaller (2013) showed that the PETM onset
lasted for 13 kyr based on the Millville borehole results,
although this constraint was considered to result from dril-
ling disturbances rather than the original sedimentary rhythm
(Zeebe et al., 2014; Pearson and Nicholas, 2014). Regarding
the duration of other CIE stages, the NC3 and NC4 stages
have been estimated to be 59 and 113 kyr, respectively, based
on the cyclostratigraphic data of ODP1266 borehole (Röhl et
al., 2007). In contrast, these two stages were constrained to
be 115 kyr (NC3) and 42 kyr (NC4), respectively, based on
the cyclostratigraphic results of the Bighorn terrestrial basin
(Aziz et al., 2008). Additionally, the duration of the NC3 has
been calculated to be 113 kyr, and the NC4 stage can be
further divided into two substages, including a rapid re-
covery substage (33 kyr) and a subsequent slow recovery
substage (50 kyr) (Murphy et al., 2010).

3.2 Timescale and duration of the PCHE

The duration of OAE1a is mainly constrained by cyclos-
tratigraphy. Based on the CIE characteristics, it was divided
into C2–C8 stages (Menegatti et al., 1998), among which the

Figure 3 Characteristics of carbon isotopic profile and temperature across the PCHEs including OAE1a and OAE2, and their environmental and biotic
effects. The positive carbon isotopic excursion of the PCHEs can be subdivided into four stages: an onset stage PC2, a positive excursion stage PC3, a main
stage PC4 as represented by an isotopic positive plateau, and a recovery stage PC5. The pre-PCHE interval is defined as stage PC1, and the post-PCHE
interval is defined as stage PC6. Carbon isotopic and temperature data are from: OAE1a (Hu et al., 2012; Naafs and Pancost, 2016), OAE2 (Forster et al.,
2007; Li Y X et al., 2017).
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C3–C6 stages are constrained to be 1.0–1.3 Myr (Li et al.,
2008; Bottini et al., 2012). Stage C2 shows a gradual nega-
tive δ13C shift (Socorro et al., 2017), and stage C3 is char-
acterized by sustained low δ13C values. In this study, both
stages C2 and C3 are combined to be defined as the transient
negative δ13C shift, i.e., the onset stage PC2, stages C4–C6 as
the gradually positive δ13C shift interval of PC3, C7 as the
enriched plateau interval of PC4, and C8 as recovery stage
PC5 (Figure 3). If the 1.11 Myr duration of the C3–C6 stages
is applied to the Gorgo a Cerbara section, Italy, the PC2, PC3
and PC4 has a duration of 70 kyr, 1.04 Myr, and 0.75 Myr,
respectively (Stein et al., 2012; Patruno et al., 2015; Li et al.,
2016). In the Yenicesilar section, Turkey, the durations of the
C2 and C3 stages are 75 and 320 kyr, respectively, and thus
the PC2 lasted for 395 kyr (Figure 3); the durations of the
PC3 and PC4–PC5 are 790 kyr and 1.3 Myr, respectively (Hu
et al., 2012).
The duration of the OAE2 is also mainly constrained by

cyclostratigraphy. Its duration is highly controversial, ran-
ging from 200 to > 900 kyr (Sageman et al., 2006; Li Y X et
al., 2017). In the GSSP section of Western Interior Seaway
(WIS) in North America, the duration of the PC3–PC4 was
constrained to be ~580 kyr, among which PC3 and PC4 are
estimated to last for ~230 and ~350 kyr, respectively (Sa-
geman et al., 2006). However, the duration estimate is
longer, up to ~870 kyr, in an expanded Tibetan section and
the PC2, PC3, PC4 and PC5 were estimated to last for ~50,
~280, ~370, and ~170 kyr, respectively (Li Y X et al., 2017)
(Figure 3).

4. Warming magnitudes and rates of the two
types of hyperthermal events in the Mesozoic and
Cenozoic

4.1 Temperature changes across the NCHE

During the PTB event, the oxygen isotopes of conodont from
the Meishan GSSP section in South China (Joachimski et al.,
2012) show that: (1) the paleotemperature was ~22°C before
the onset of this event (22nd–23rd layers); (2) the paleo-
temperature rose to 23–27°C in the NC2 stage (24th-26th
layers) and to 29–30°C or 33–35°C, as suggested by different
conodont genus, in the NC3 stage (27th layer). These results
indicate that warming by a conservative estimate of more
than 8–10°C (Joachimski et al., 2012) occurred in the NC2
stage (lasting for ~21 kyr, broadly corresponding to the re-
sults from the Shangsi section (Sichuan, China) (Cao et al.,
2009; Joachimski et al., 2012; Shen et al., 2019). The PTB
interval in Sun et al. (2012) further showed that the tem-
perature continued to increase in the NC3 stage, with a
magnitude exceeding 14°C. Chen et al. (2016) reconstructed
the paleotemperatures of the PTB interval from the Meishan,
Shangsi, Daijiagou and Liangfengya sections by SIMS.

Their results indicated a rapid warming of approximately 10°
Crecorded in the layer equivalent to the 26th layer of the
Meishan section, but no obvious temperature changes were
observed before the mass extinction and during the extinc-
tion maximum.
The TOAE paleotemperature data are mainly based on the

brachiopods, bivalves, belemnite and fishbones in the mid-
dle-latitudes of western Tethys in England, France, Spain and
Portugal. The oxygen isotopes show a rapid negative ex-
cursion during the NC2, suggesting that the temperature of
shallow seawater in the northern hemisphere increased by
~7–10°C (Dera et al., 2009, 2011; Korte et al., 2015). The
warming and negative CIE onset were synchronous. The
temperature reached its maximum in NC3 stage, then de-
creased rapidly by 2–3°C, and showed slight decrease or
remained stable in the late NC3 stage (Dera et al., 2009,
2011; Korte et al., 2015).
During the PETM, the warming phase was synchronous

with the CIE onset (NC2). In low-latitudes, Sr/Ca and Mg/Ca
ratios indicated that the sea surface temperature (SST) in-
creased by 4–5°C in the Pacific equatorial region (Zachos et
al., 2003); Oxygen isotopes of planktonic foraminifera in-
dicated an increase in SST of at least 3°C, and the maximum
temperature exceeded 40°C in Tanzania of East Africa (Aze
et al., 2014). In mid-latitudes, the paleotemperatures inferred
from biomarker compounds (MBT-CBT and TEX86) in Gulf
of Mexico showed that SST increased by 6–8°C ( Sluijs et
al., 2014); TEX86 and oxygen isotopes of planktonic for-
aminifera in Wilson Lake indicated that SST increased by at
least 8°C with a maximum temperature of 33°C (Zachos et
al., 2006). In high-latitudes, TEX86 data of ODP site 1772 in
the southwestern Pacific indicated that SST increased by ~7°
C (Sluijs et al., 2011); Oxygen isotopes of planktonic for-
aminifera from ODP site 690 in the Southern Ocean in-
dicated that SST increased by ~5–9°C (Thomas et al., 2002);
TEX86 data from the Arctic Integrated Ocean Drilling Pro-
gram (IODP) Expedition 302 site suggested that sea surface
warming by 5°C (Sluijs et al., 2006). These data together
show that SST increased by 3–5°C at low latitudes and 5–9°C
at mid- to high-latitudes during the NC2 stage of the PETM,
indicating a significant amplification effect in high-lati-
tudes.

4.2 Temperature changes across the PCHE

The SST of the low-latitude Atlantic was ~30–36°C during
OAE1a, decreased by ~4°C at the beginning of stage PC3,
and then rapidly increased by ~6°C (Dumitrescu and Bras-
sell, 2006). TEX86 data from the mid-latitude Atlantic
showed a SST increase by ~2–4°C during stage PC2 and a
decrease of ~4–6°C during stage PC3 (Naafs and Pancost,
2016). In the mid-latitudes of Boreal area, TEX86 and be-
lemnites oxygen isotopes indicated that SST increased by
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~3–4°C during stage PC2 (Mutterlose et al., 2010, 2014). In
the high-latitudes of the Southern Ocean, SST increased by
~2–3°C during stage PC2 and then cooled with a temperature
decrease of 3°C after stage PC3 (Jenkyns et al., 2012).
During the OAE2, SST increased significantly at different

latitudes (Gustafsson et al., 2003; O’Brien et al., 2017; Huber
et al., 2018). In equatorial Atlantic, oxygen isotopes of
planktonic foraminifera and TEX86 data indicated that SST
increased by ~2–3°C (Forster et al., 2007). In mid-latitude
Atlantic, TEX86 data showed a rapid cooling of ~4–5°C
during stage PC3 and a rapid warming of ~4–5°C during the
early phase of stage PC4, with a SST of as high as 34°C
(Sinninghe Damsté et al., 2010; Huber et al., 2018). The SST
at high latitudes in the northern hemisphere increased by ~7–
8°C (Jenkyns et al., 2004), whereas SST increased by ~10°C
in the southern hemisphere (Huber et al., 2018). There were
also short-term temperature changes during the OAE2
(Forster et al., 2007; O’Brien et al., 2017). A cooling event
during OAE2 was observed in Europe that interrupted the
overall warming trend (Jenkyns et al., 2017). The cooling
event was thought to be mainly due to large-scale burial of
organic matter (Jarvis et al., 2006) or enhanced continental
weathering (Pogge von Strandmann et al., 2013), which
caused the drawdown of atmospheric CO2 concentration.

4.3 Comparison of the magnitudes and rates of tem-
perature increase

The warming intervals of all these five hyperthermal
events were almost synchronous with the onset of CIEs.
Therefore, we use the duration of the CIE onset and the
magnitude of corresponding temperature increase to cal-
culate warming rates of each event. When calculating rate
of warming, duration estimates from GSSP or typical
sections were preferentially used and the magnitude of
temperature increase is based on the reported data in the
literature (Figure 4).

4.3.1 Warming magnitudes and rates of the NCHE
The paleotemperature during the PTB is mainly based on the
oxygen isotopes of low latitudes, and its increase (~8–10°C)
starts at the onsets and the lower part of the negative CIE
plateau. Based on the Meishan GSSP section, the onset
duration of the PTB is ~60 kyr (Burgess et al., 2014), and
thus the warming rate is ~0.133–0.167°C kyr−1. Paleo-
temperature data of the TOAE are mainly based on bra-
chiopods, bivalves, arrow stones, and fishbones in middle-
latitude regions, suggesting warming of ~7–10°C. The
TOAE duration estimated from the Peniche GSSP section is
~150 kyr (Suan et al., 2008b) and thus the warming rate for
TOAE is ~0.047–0.067°C kyr−1. Paleotemperature data of
the PETM are mainly from foraminifera oxygen isotope and
TEX86, and warming occurred during the CIE onset stage, by
3–5, 6–8 and 5–9°C at low-, mid-, high-latitudes. The PC2
duration of the PETM was estimated to be 3–5 kyr (Zeebe et
al., 2009; Bowen et al., 2015; Frieling et al., 2017; Turner,
2018), and thus the minimum warming rate is ~0.6–1.0,
~1.2–1.6, 1.0–1.8°C kyr−1, respectively, if the onset duration
of 5 kyr is used.

4.3.2 Warming magnitudes and rates of the PCHE
Paleotemperature reconstruction of the OAE1a is mainly
based on TEX86 data, which show warming at the CIE onset,
by ~5–6, ~2–4, and ~2–3°C at low, middle, and high lati-
tudes, respectively. The onset duration of the OAE1a is 75
kyr, which is based on the Yenicesihlar section in Turkey (Hu
et al., 2012), and therefore the warming rate in low, middle
and high latitudes is ~0.067–0.080, ~0.027–0.053, and
~0.027–0.040°C kyr−1, respectively. Paleotemperature data
of the OAE2 are mainly based on oxygen isotopes of
planktonic foraminifera and TEX86. The warming of the
OAE2 occurred in the CIE onset stage and the magnitude of
warming increased from 2–3°C at low latitudes, through, 4–
5°C at middle latitudes, to 7–10°C at high latitudes. In this
study, we used the PC2 duration of 50 kyr from the Gongzha

Figure 4 (a) Plots of CIE magnitude versus onset duration of the NCHEs and PCHEs showing the different rates of carbon release; (b) plots of temperature
increase versus onset duration of the NCHEs and PCHEs showing the different rates of warming . Warming rate for the PTB is calculated using temperature
data from low latitudes. For other events, warming rates are calculated using temperature data from high latitudes and the references are shown in Table 1.
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section in southern Tibet (Li Y X et al., 2017) and obtained
warming rates of ~0.04–0.06, ~0.08–0.1 and ~0.14–0.2°C
kyr−1 for the low, middle and high latitudes, respectively.
Among the five hypothermal events, the PTB event ex-

hibited the greatest warming, followed by TOAE, OAE1a,
PETM and OAE2 (Figure 4). For the rate of warming, the
PETM is the highest (greater than 1°C kyr−1), followed by
the PTB, OAE1a, OAE2 and TOAE (Figure 4). In compar-
ison, the rate of modern global warming (1°C in 150 years) is
4.2−5.6 times of that in middle-latitude area during the onset
of PETM.

5. Environmental changes caused by the two
types of hyperthermal events

5.1 Marine depositional environmental changes across
the two types of hyperthermal events

While all the five hyperthermal events are recorded in
shallow-marine environment settings, OAE1a, OAE2 and
PETM have also been recorded in deep-sea environment
settings.

5.1.1 Marine depositional response to the NCHE
(1) Demise of carbonate platforms in shallow-marine en-
vironment. Carbonate platform drownings were widely re-
ported related the NCHE (Godet, 2013). For the PTB, the
demise of carbonate platforms and the disappearance of la-
minated siliceous rocks and coals disappeared were accom-
panied by the emergence of black shale, argillaceous
dolomite, pyrite layer, ash clay, and microbialites (Cao and
Zheng, 2009). There were also demise of carbonate plat-
forms during the TOAE, where the Lithiotis bivalves lime-
stones were replaced by dark-gray spotted and micritic
limestones (Sabatino et al., 2013; Han et al., 2016, 2018) or
transformed to unfossiliferous, oolitic limestone (Trecalli et
al., 2012). During the PETM, the growth of shallow-water
carbonate platform was temporarily interrupted by deposi-
tion of siliciclastic mudstone in Spain (Pujalte et al., 2014),
or channelized conglomerates in southern Tibet (Li J et al.,
2017).
(2) Anachronistic deposition in marine environment. The

‘anachronistic’ sediments widely appeared in the continental
margin environment during the PTB including flat-pebble
conglomerates, vermicular limestone, microbialites, carbo-
nate seafloor fans, banded limestone, and giant oolitic
limestone (Zhao et al., 2008; Li et al., 2010) (Figure 4).
During the TOAE, in low-middle latitudes of the Tethys
Ocean, intensified storm deposits with erosive surfaces,
gutter casts, and hummocky cross stratification structures are
present (Krencker et al., 2015; Han et al., 2018; Izumi et al.,
2018). In shallow marine environment, an abrupt lithological
change from shallow-marine carbonates to channelized

conglomerates in southern Tibet (Li J et al., 2017) and to
siliciclastic mudstone in Spain are observed during the
PETM (Pujalte et al., 2014), while pelagic mudstone was
replaced by dark-red clay in deep-sea environment (Zachos
et al., 2005).

5.1.2 Marine depositional response to the PCHE
(1) Partial demise of carbonate platform in shallow-marine
environment. For the OAE1a, the demise of carbonate plat-
forms was accompanied by the occurrence of a condensed
interval and hardgrounds in the northern Tethys margin
(Skelton and Gili, 2012), whereas deposition continued and
strata rich in Lithocodium-Bacinella and or orbitolinid are
deposited in the southern Tethys margin (Husinec et al.,
2012). For OAE2, the demise of carbonate platforms only
occurred in the Pyrenees area, northern Spain (Drzewiecki
and Simo, 1997), western Croatia (Korbar et al., 2012) and
southeastern Turkey (Mülayim et al., 2019).
(2) Organic-rich black shales common in deep-sea en-

vironment. The pelagic limestone was replaced by either
black shale or organic-rich deposits during both OAE1a and
OAE2 (van Bentum et al., 2009; Hu et al., 2012; Patruno et
al., 2015; Li et al., 2016).

5.2 Marine environmental changes

Marine environmental response to these hyperthermal events
including redox conditions, ocean acidification, and sea level
change are examined in this study.

5.2.1 Marine environmental changes caused by the NCHE
(1) Different degree of anoxia occurred in marine environ-
ment, but spatial extent of anoxia needs to be better defined.
The occurrence of organic-rich black shales, framboidal
pyrite, and green sulfur bacteria bloomed indicates anoxic
environment during the PTB (Cao et al., 2009). During the
TOAE, the northern Europe experienced strong anoxia
(Hesselbo et al., 2000), while the southern part was hyoxic or
oxic (Hesselbo et al., 2007). The global atmospheric O2

concentration decreased during the PETM (Harding et al.,
2011; Winguth et al., 2012), and the deep-sea was dominated
by anoxia or suboxic conditions (Pälike et al., 2014). How-
ever, continental shelf and slope environments are char-
acterized by seasonal anoxic or hyoxic conditions (Speijer
and Wagner, 2002; Sluijs et al., 2014).
(2) Ocean acidification was widespread, but degree of

acidification in shallow marine and deep sea environment
needs to be clarified. The timing of ocean acidification
during the PTB is controversial. Some studies show that
ocean acidification occurred within the onset stage based on
carbonate calcium isotopic negative excursion (Payne et al.,
2010; Hinojosa et al., 2012), while other studies suggest that
ocean acidification occurred within the negative carbon
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isotopic plateau stage based on boron isotopic composition
(δ11B) (Clarkson et al., 2015). The carbonate calcium iso-
topic negative excursion during the TOAE indicates ocean
acidification (Brazier et al., 2015). During the PETM, the
deep-sea environment is characterized by widespread dis-
solution of deep-sea carbonates that intensified with depth
(Zachos et al., 2005). Also, δ11B of planktonic foraminifer
shows a decrease and B/Ca ratio of shell declined, in-
dicating a drop in pH of the surface and lysocline (Penman
et al., 2014).
(3) Sea level changes are still controversial. Jiang et al.

(2014) and Yin et al. (2014) suggested a regression at the
onset of the PTB, which is marked by the pyrite layer on the
top of bed 24e in Meishan section and/or the dissolution
surface at the bottom of microbialites in the Daguizhou
beach. However, Cao and Zheng (2009) suggested that this
dissolution surface resulted from ocean acidification. A brief
regression was detected just before the TOAE onset, and
followed by a transgression (Haq, 2018; Krencker et al.,
2019). In several instances, an eustatic rise was observed
during the PETM, which began 20 to 200 ka before the event
with shorelines migrating towards the land (Speijer and
Wagner, 2002; Harding et al., 2011; Sluijs et al., 2008).
However, in other instances, a regression was observed in the
latest Paleocene, followed by a transgression during the
PETM (Schmitz and Pujalte, 2003, 2007; Pujalte et al.,
2014).

5.2.2 Marine environmental response to the PCHE
(1) Redox conditions were not uniform, and varied spatially
and temporally. For example, anoxic conditions were ob-
served in deep settings of the Western Tethys, whereas the
shallow-water and continental margin environments were
dominated by hyoxic or oxic conditions during the OAE1a
(Westermann et al., 2013). The deep proto-North Atlantic
experienced anoxia and euxinia during the OAE2 (Pancost
et al., 2004) and its southern part showed more severe an-
oxia and euxinia (van Bentum et al., 2009; van Helmond et
al., 2014). In equatorial Atlantic, anoxic conditions are
found to alternate between ferrigenous and euxinic in De-
mera Rise and in the Moroccan shelf (van Bentum et al.,
2009). Northern and middle latitudes of the proto-North
Atlantic also documented a brief episode of oxygenation
punctuating the major anoxia during the OAE2 (van Hel-
mond et al., 2014; Goldberg et al., 2016).
(2) The oceanic currents may be reorganized. Nd isotopes

have been used to track oceanic flow patterns. Fish debris
from ODP site 1258 in North Atlantic exhibits a dramatic
positive excursion of 8εNd units during OAE2 (MacLeod et
al., 2008), and the fish debris from the Eastbourne section in
the UK shows a negative excursion of 1εNd units, followed by
a positive excursion of 3εNd units during the OAE2 (Zheng et
al., 2013).

(3) Ocean acidification and sea level changes across the
PCHEs were still unclear. Eustatic sea level changes were
observed during the Turonian hot greenhouse climate (Haq
and Huber, 2017).

5.3 Changes in terrestrial environment

5.3.1 Terrestrial environmental response to the NCHEs
(1) Extreme droughts were widespread in terrestrial en-
vironment. Red sediments occurred widely in northern China
with decreasing coal accumulation and increasing heat- and
drought-tolerant plants during the TOAE (Deng et al., 2012).
A distinct shift to drier soils occurred just prior to the PETM,
and continued until the PETM recovery stage, followed by
wetter conditions (Wing et al., 2005; Kraus and Riggins,
2007).
(2) Enhanced hydrological cycle and altered river mor-

phology. The PTB was characterized by a rapid and appar-
ently basin-wide change from meandering to braided river
systems, as evidenced by preserved sedimentary facies
(Ward et al., 2000; Shen et al., 2011; Zhu et al., 2019). Water
discharge increased by at least 1.35 times and potentially up
to 14 times during the early phase of the PETM in northern
Spain where an abrupt transition from overbank palaeosol
deposits to conglomeratic fluvial sequence, indicating ex-
treme floods, quick channel mobility and increase of channel
dimensions (Chen et al., 2018). Stratigraphic intervals at the
main part of the PETM in northern Bighorn basin correspond
to thick paleosols and thin avulsion deposits, and the
anomalously thick channel-belt sandstone, while strati-
graphic intervals below and above the main part of the
PETM correspond to thinner paleosols and thick avulsion
deposits (Kraus et al., 2015).

5.3.2 Terrestrial depositional response to the PCHEs
The impacts of the PCHEs on terrestrial environment are not
well known, mainly because there are few of terrestrial re-
cords. In lakes, increases in nutrient input and primary pro-
ductivity led to anoxia or seasonal anoxia with deposition of
organic rich black shales (Jenkyns, 2010). Arid and humid
conditions were not uniform, and varied spatially and tem-
porally. For example, the Changma Basin in China docu-
ments a humid condition with seasonal aridity (Suarez et al.,
2017), while the Utah foreland basin in North America
documents an arid climate during OAE1a (Ludvigson et al.,
2010).

6. Biotic changes caused by NCHE and PCHE

Statistical analysis reveals that the family-level extinction
rates across the PTB, TOAE and PETM of NCHE, and
OAE1a and OAE2 of PCHE are 55.7%, 17.3%, 7.6%, 9.9%
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and 13.6% (Sepkoski, 1996), respectively. The PTB, TOAE,
and OAE2 events were three of the eighteen largest biotic
crises in the Phanerozoic (Bambach, 2006). The NCHEs
have more significant impacts on biota than the PCHEs,
except for the PETM that is likely related to the short
duration of warming.

6.1 Biotic changes caused by the NCHE

6.1.1 Marine biotic changes
(1) Migration from low to higher latitudes. Most marine
biota was affected including ammonites, foraminifera, os-
tracods, and belemnites and migrated poleward across the
TOAE and PTB (Dera et al., 2011; Bernardi et al., 2018). In
the Tethys Ocean, the shallow platform organisms at low to
middle latitudes show a gradual replacement from reef-
building corals, to large benthic foraminifera during the
PETM, and the coral reefs migrated from low latitudes to
higher middle latitudes (Scheibner and Speijer, 2008).
(2) Extinctions or/and turnover were widespread in marine

biota, but varied in extent. In several instances, biota were
sensitive to marine environmental changes including tem-
perature, [O2] and pH often experienced extinction or/and
turnover. Calcareous algae, fusulinids, rugose corals, tabu-
late corals, trilobites and radiolarians were entirely lost in the
latest Permian (Shen and Zhang, 2017). Small foraminifers,
ostracods, brachiopods, bivalves, gastropods, ammonoids
and conodonts seems to be less affected by this end-Permian
mass extinction (Song et al., 2013). The shallow platform
Lithiotis bivalves experienced extinction at the low latitudes
of the southern margin of Tethys during the early Toarcian
(Trecalli et al., 2012; Sabatino et al., 2013). In deep-sea
environment, the extinction rates are 30% in small benthic
foraminifera (Takeda and Kaiho, 2007) and up to 18 species
appeared or disappeared in calcareous nannofossils across
the PETM (Gibbs et al., 2006). Late Paleocene larger-for-
aminifera assemblages represented by Ranikothalia and
Miscellanea were replaced by early Eocene taxa represented
by Nummulites and Alveolina in shallow marine carbonate
platform (Scheibner et al., 2005).
(3) Altered biotic morphology and species abundance. The

size of most marine biota decreased including small for-
aminifers, bivalves, gastropods, brachiopods, ostracods,
conodonts and fish, while cyanobacteria boomed during the
PTB (Wilson and MacArthur, 1967). The TOAE coincided
with size reductions in microplankton and molluscan shells
(Morten and Twitchett, 2009). Apectodinium bloomed during
and shortly before the PETM and shows variations in
abundance (Sluijs and Brinkhuis, 2009). An unusual increase
in the size of surface-water planktonic in contrast to deep-
water benthic foraminifera which decreased in size during
the PETM (Kaiho et al., 2006).

6.1.2 Terrestrial biotic changes
(1) Migration from low to higher latitudes. Thermophilic
and drought-tolerant plants increased and immigrated to
the higher latitudes across the TOAE (Deng et al., 2012).
The conifers and broad-leaved lineages were replaced by
bean family in Bighorn basins of North America, which
immigrated 650–1500 km from southern latitudes during
the PETM (Wing et al., 2005), accompanied by the dis-
perse of new mammals and lizards (McInerney and Wing,
2011).
(2) Extinctions or/and blooms were widespread in con-

tinental biota. The tropical rainforests represented by Gi-
gantopteris flora disappeared in South China, (Shen et al.,
2011; Yu et al., 2015; Bernardi et al., 2018), and Dicynodon
that dominated the latest Permian was replaced by Lystro-
saurus at the earliest Triassic (Ward et al., 2005; Gastaldo et
al., 2019). The Champsosaurus and Plesiadapidae dis-
appeared, while Perissodactyla, Artiodactyla, rodents and
primates bloomed across the PETM (Gingerich, 2003).

6.2 Biotic changes caused by the PCHE

The effects of the PCHE on the terrestrial and shallow-
marine biota are negligible, but were much more significant
on the deep-sea biota. Biota sensitive to marine environ-
mental changes often experienced extinction or/and turnover
such as the nanoconid crisis across the OAE1a (Erba et al.,
2010). Some Rotalipora genus experienced significant ex-
tinction, while some Heterohelix genus showed proliferation
across the OAE2 (Leckie et al., 2002; Erba, 2004). Radi-
olaria experienced significant extinction during both the
OAE1a and OAE2, and the extinction rates were 41% and
58%, respectively (Erbacher et al., 1996).

7. Driving mechanisms of the two types of
hyperthermal events

7.1 Driving mechanisms of the NCHE

The NCHE are characterized by a negative carbon isotopic
excursion, which resulted from volcanic eruption associated
with the formation of continental LIPs (Figure 5a).
(1) Strong temporal association between LIP volcanism

and NCHE and a causal link between the two phenomena are
indicated by proxy evidence for volcanism in stratigraphic
horizons recording the onset of environmental change. The
PTB, TOAE and PETM were associated with end-Permian
Siberian Traps, Pliensbachian-Toarcian Karoo-Ferrar Pro-
vince, and North Atlantic Igneous Province, respectively
(Wignall, 2001; McElwain et al., 2005; Bond and Wignall,
2014; Burgess et al., 2015, 2017; Ernst and Youbi, 2017). All
these LIPs associated with the NCHE are of continental
nature. That is the volcanism was predominantly subaerial
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(Continental Flood Basalts).
(2) Sources of carbon released during the NCHE are highly

uncertain and have been proposed to be related to methane
hydrates, massive flood basalts, and sill emplacement.
Magmatic emissions and thermogenic volatiles resulting
from intruded volatile-rich sediments such as organic-rich
shales, coals, and evaporates by LIP magmas may explain

the observed negative carbon-isotope excursions (Gutjahr et
al., 2017).
(3) The eruption of continental LIPs resulted in distinct

changes of temperature, environment and biota in both
marine and continental environments. The effects on atmo-
spheric and continental environments include global warm-
ing, increase of wildfires and droughts, intensified

Figure 5 Driving mechanisms and environmental impacts of the NCHEs and PCHEs (modified from Robinson et al, 2017). (a) The NCHEs were driven by
terrestrial LIPs causing the increase of terrestrial and nutrient input, the demise of shallow-water carbonate platform and lowered O2 content; (b) the PCHEs
were driven by submarine LIPs causing high surface productivity, partial demise of shallow-water carbonate platform, anoxia and deposition of black shale.
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continental weathering and terrigenous input, acid rain,
ozone layer destruction (Ernst and Youbi, 2017). Impacts on
non-marine environments include the demise of carbonate
platforms, ocean acidification, oceanic anoxia, as well as the
extinction, turnover and migration of marine biota (Rong and
Huang, 2014; Song and Tong, 2016; Bond and Grasby, 2017;
Shen and Zhang, 2017; Benton, 2018).

7.2 Driving mechanisms of the PCHE

The PCHE are characterized by a positive carbon isotopic
excursion, which resulted from the submarine volcanic
eruption associated with the formation of LIPs (Figure 5b).
(1) Strong temporal association between LIP volcanism

and PCHE and a causal link between the two phenomena are
indicated by proxy evidence for volcanism in stratigraphic
horizons recording the onset of environmental change.
OAE1a was associated with the Ontong Java Plateau and
OAE2 was associated with four LIPs including the Car-
ibbean-Columbian Plateau, the High Arctic LIP, the Ontong-
Java Plateau, and the Madagascan Province (Wignall, 2001;
Ernst and Youbi, 2017). All these LIPs associated with the
PCHE are Oceanic Plateau, where volcanism occurred pre-
dominantly below the sea surface.
(2) Sources of carbon released during the PCHE have been

proposed to be related to massive flood basalts. Initial
magmatic emission caused increase in atmospheric pCO2,
leading to the initial negative carbon-isotope excursion,
global warming, intensification of continental weathering,
and enhanced delivery of nutrients to oceans. This weath-
ering-derived magmatic and emissions stimulation of ocean
export productivity combined with decreased O2 delivery to
deep ocean as a result of solubility-temperature relationships
to further reduce oxygen content in deep water. Abundant
organic matter was buried as a result of oceanic anoxia,
causing the observed positive carbon-isotope excursions.
(3) The effects of submarine LIPs eruption on environment

include widespread anoxia, large-scale burial of organic
matter, and partial demise of carbonate platform. The effects
on the continental and shallow-marine biota are negligible,
but were much more severe on the deep-sea biota such as the
nanoconid crisis across the OAE1a (Erba et al., 2010).

8. Implications for identifying driving me-
chanisms of other hyperthermal events

Based on previous studies of the above five hypothermal
events, we infer that the Triassic-Jurassic boundary event
(~201 Ma), which was associated with CAMP LIP, and the
Cretaceous-Paleogene boundary event (~66 Ma), which was
related to Deccan LIP, belong to the NCHEs and were likely
caused by terrestrial LIPs. Similarly, the early Cretaceous

Valanginian oceanic anoxic event (~132 Ma), which was
associated with Parana-Etendeka and Bunbury-Comei LIPs
(Appendix Table S1, https://link.springer.com), belongs to
the PCHE and was likely caused by marine LIPs. Well pre-
served magmatic records of these hyperthermal events allow
us to link the LIP volcanism with onset of environmental
change. For details of these hyperthermal events, readers are
referred to the related literature. On the other hand, as we
know, LIPs prior to the late Jurassic are not well preserved as
a result of plate subduction. Most of these LIPs disappeared
or/and are preserved sporadically. Thus, it has been very
difficult to link the LIP volcanism and the major environ-
mental changes before the Late Jurassic. The findings of this
study allow us to deduce driving mechanisms of major
geological events if the type of these events can be classified
based on the sedimentation, environmental, carbon isotopic,
and biotic records. Three examples are given below to show
the applications of the findings of this study.
Case study 1. The Carnian Pluvial Event (~234–232Ma,

CPE). The CPE is characterized by ~6–8°C warming and a
negative carbon excursion of −4.2‰ in South China and
Oman (Dal Corso et al., 2012; Sun et al., 2019). The effects
on environment include a distinct shift to more humid con-
ditions, an increase in precipitation and terrigenous input,
and the temporary demise of carbonate platform (Simms and
Ruffell, 1989; Jin et al., 2015). Terrestrial plants and shal-
low-marine invertebrates experienced varying extinction or/
and replacement. For example, high extinction rates of am-
monites and crinoids, and a dramatic increase in conifers are
recorded. The first known dinosaurs and calcareous plank-
tons occurred shortly after the CPE. Thus, we infer that the
CPE belongs to the NCHE and was driven by continental
LIPs. The CPE has been linked to Wrangellia flood basalts
which are exposed in Alaska, Yukon and British Columbia.
The Wrangellia flood basalt overlies black shales with
middle to Ladinian Daonella and is overlain by middle to
late Norian shallow marine carbonates. Thus, the eruptions
of the Wrangellia flood basalts occurred in a submarine en-
vironment (Stanley, 1989), supporting our inference men-
tioned above.
Case study 2. The early mid-Cambrian Event (~510 Ma).

This event is characterized by a negative carbon isotopic
excursion, a positive sulfur isotopic excursion, a sea level
rise (Montañez et al., 2000; Hough et al., 2006), widespread
anoxic conditions (Zhuravlev and Wood, 1996), and a sig-
nificant biotic extinction (Sepkoski, 1996). Thus, we infer
that this event belongs to the NCHE and was related to
continental LIPs. Recently, the eruptions of Kalkarindji LIP
in western Australia was dated at 510.7±0.6 Ma (Jourdan et
al., 2014), and coincided with the onset of the early mid-
Cambrian Event, suggesting that a causal relationship might
exist. The eruption of Kalkarindji LIP occurred in a con-
tinental environment (Jourdan et al., 2014), supporting the
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mentioned inference.
Case study 3. The Frasnian-Famennian Event (~372 Ma,

F/F). The F/F event is characterized by a ~9°C warming, a
3.0‰ positive carbon excursion (Joachimski et al., 2002,
2009; Xu et al., 2012), anoxic conditions, and widespread
deposition of black shale (Murphy et al., 2000). The F/F
event is one of the five largest biotic crises of the Phaner-
ozoic and its impacts on low latitudes and shallow marine
biota were much more severe than that on high latitudes and
continental biota. Although multiple episodes of mercury
enrichment are reported to indicate volcanic eruption (Racki
et al., 2018), no large-scale volcanic rocks are observed
across the F/F event. According to its sedimentation, en-
vironmental, carbon isotopic, and biotic characteristics, we
infer that the F/F event belongs to the PCHE and was likely
caused by submarine LIPs. Further studies of the inferred
link is required.

9. Conclusions and perspective

This study provides systematic review and summary of se-
dimentation, environmental, carbon isotopic, and biotic
characteristics of five major hyperthermal events in the
Mesozoic and Cenozoic and obtains interesting quantitative
measures of these hyperthermal events, which provide an
important basis for understanding global warming and con-
straining the driving mechanisms of the hyperthermal events.
The main conclusions are as follows:
(1) The hyperthermal events are classified into two types

based on carbon isotope profiles of these event: the negative
carbon isotopic excursion hyperthermal Event, NCHE, and
the positive carbon isotopic excursion hyperthermal event,
PCHE. The NCHE include the PTB, TOAE and PETM, and
was caused by continental LIPs. The PCHE include OAE1a
and OAE2, was driven by submarine LIPs.
(2) The negative CIE of the NCHE was related to large-

scale injection of light carbo into the ocean-atmosphere
systems. Their effects on environment include global
warming, increase of wildfires and droughts, intensified
continental weathering and terrigenous input, the demise of
carbonate platforms, ocean acidification and oceanic anoxia,
and the extinction, turnover and migration of marine biota.
(3) The PCHE resulted from large-scale burial of organic

matter. The effects on environment include widespread an-
oxia, deposition of black shale and partial demise of carbo-
nate platform. The effects on the continental and shallow-
marine biota were negligible, but were much more severe on
the deep-sea biota.
The past can be the key to the future. Studying deep-time

hyperthermal events provides an important reference for
understanding the current global warming. In 2017, a special
topic “Cretaceous greenhouse paleoclimate and sea-level

changes” was published in Science China Earth Sciences
(Hu et al., 2017). This special issue focused on the Cretac-
eous greenhouse climate and sea level change. In 2018, the
Royal Society of UK organized a seminar “Hyperthermals:
rapid and extreme global warming in our geological past”
with 11 thematic articles (Foster et al., 2018). All these
studies focused on greenhouse climate and hyperthermal
events. Our understanding of past hyperthermal events is
impeded by incomplete geological records and imprecise or
inaccurate climate-environment parameters, but it can be
improved by collecting more accurate and reliable data.
Understanding past climate, especially hyperthermal events,
has important theoretical and practical significance for un-
derstanding both the past and the future (Wang et al., 2017).
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