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Abstract The study of urban area is one of the hottest research topics in the field of remote sensing. With the accumulation of
high-resolution (HR) remote sensing data and emerging of new satellite sensors, HR observation of urban areas has become
increasingly possible, which provides us with more elaborate urban information. However, the strong heterogeneity in the
spectral and spatial domain of HR imagery brings great challenges to urban remote sensing. In recent years, numerous ap-
proaches were proposed to deal with HR image interpretation over complex urban scenes, including a series of features from low
level to high level, as well as state-of-the-art methods depicting not only the urban extent, but also the intra-urban variations. In
this paper, we aim to summarize the major advances in HR urban remote sensing from the aspects of feature representation and
information extraction. Moreover, the future trends are discussed from the perspectives of methodology, urban structure and
pattern characterization, big data challenge, and global mapping.
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1. Introduction

Urban area is the core of human habitation, and is also the
most active region for social and economic activities. Ac-
cording to the United Nations, the proportion of global urban
residents increased from 30% to 55% between 1950 and
2018, and it is predicted to reach 68% by 2050. About 90%
of this growth will take place in Africa and Asia, where the
level of urbanization is relatively low at present (United
Nations, 2018). Although cities account for only a small
share (< 3%) of the Earth’s land surface, they significantly
impact both natural and human systems from regional to
global scales (Gamba and Herold, 2009). The rapid urban
expansion is accompanied by the disappearance of the sur-

rounding cultivated land, forest, and water areas, which
brings a series of resource, environmental, and ecological
problems (Huang J K et al., 2007; Gong et al., 2012; Pesaresi
et al., 2015).
Urban remote sensing, as one of the most important

branches in the field of remote sensing, mainly refers to the
use of remote sensing technologies to obtain urban in-
formation for monitoring, understanding, and predicting the
various urban phenomena, and to support decision making in
urban planning, disaster response, and sustainable develop-
ment. In recent decades, with the considerable developments
of aerospace technology, a number of high-resolution (HR)
satellites have been launched (Table 1). The spatial resolu-
tion of civilian/commercial remote sensing imagery has
achieved meter and even sub-meter levels. Through different
observation modes, such as satellite networking and along-
track or cross-track imaging, many of the HR satellites (e.g.,
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QuickBird, Cartosat-1/2, ZiYuan-3 (ZY-3), and SPOT-6/7)
have the ability of stereo mapping. HR imagery can sub-
stantially reduce the phenomenon of mixed-pixels with en-
hanced spatial details of ground objects. Meanwhile, multi-
angle observation is able to provide three-dimensional (3D)
information, which increase the dimension of urban in-
formation extraction (Huang X et al., 2018; Huang et al.,
2017a; Peng et al., 2017). Nevertheless, the problems such as
spectral heterogeneity, shadow, occlusion, and disparity are
distinct in HR images, especially in urban settings, which
presents new challenges for urban information extraction.
Hence the traditional methods that rely purely upon spectral
characteristics may be insufficient to tackle these problems
(Huang et al., 2007b; Peng et al., 2015).
Compared to natural surfaces, urban areas have more

distinct textural and structural variations in HR images, due

to the inclusion of artificial surfaces such as buildings and
roads. Given these characteristics, many studies have in-
corporated both spectral and spatial features to improve the
interpretation accuracy of HR images over urban areas. In
this paper, we mainly focus on introducing state-of-the-art
urban features, as well as urban information extraction based
on HR remote sensing imagery from the following aspects:
(1) detection of urban targets, e.g., buildings, roads, im-
pervious surfaces, urban vegetation, and water bodies; (2)
classification of urban land use/land cover, such as urban
scene recognition and functional zone mapping; (3) change
detection, i.e., dynamic monitoring of the urban landscape;
and (4) urban ecology and climate, e.g., urban heat island and
ecosystem service assessment. A framework of HR urban
remote sensing is illustrated in Figure 1. Finally, the future
research trends in HR urban remote sensing are prospected.

Table 1 Typical high-resolution satellitesa)

Satellite Launch time Country Bands and spatial resolution Swath width Revisit cycle

IKONOS-2 1999-09 America
a) PAN: nadir 0.82 m; off-nadir 1 m

b) 4 MS (blue, green, red, near-infrared): nadir
3.20 m; off-nadir 4 m

11.3 km 3 days

QuickBird-2 2001-10 America a) PAN: 0.61 m
b) 4 MS (blue, green, red, near-infrared): 2.40 m 16.5 km 1–3.5 days

Cartosat-1 2005-05 India PAN: 2.50 m 26 km 5 days

Beijing-1 2005-10 China a) PAN: 4 m
b) 3 MS (green, red, near-infrared): 32 m

a) PAN: 24 km
b) MS: 600 km 3–7 days

ALOS-
PRISM 2006-01 Japan PAN: 2.50 m 35 km 5 days

EROS-B 2006-04 Israel PAN: 0.70 m 7 km 2–10 days

Cartosat-2 2A: 2007-01
2B: 2008-04 India PAN: 0.80 m 9.6 km 4 days

TianHui-1
01: 2010-08
02: 2012-05
03: 2015-10

China
a) PAN: 5 m

b) HR PAN: 2 m
c) 4 MS (blue, green, red, near-infrared): 10 m

60 km 1 day

ZiYuan-3 01: 2012-01
02: 2016-05 China

a) PAN: nadir 2.10 m; off-nadir 3.50 m (01), 2.50
m (02)

b) 4 MS (blue, green, red, near-infrared): 5.80 m
50 km 5 days

SPOT-6/7 SPOT-6:2012-09
SPOT-7:2014-06 France a) PAN: 1.50 m

b) 4 MS (blue, green, red, near-infrared): 6 m 60 km 1–5 days

GaoFen-1 2013-04 China
a) PAN: 2 m

b) 4 MS (blue, green, red, near-infrared):
8 m and 16 m

68 km with two HR cameras
and 830 km with four wide-field

imager
≤ 4 days

WorldView-3 2014-08 America

a) PAN: nadir 0.31 m; off-nadir 0.34 m
b) 8 MS (red, red edge, coastal, blue, green,
yellow, near-infrared1, near-infrared2): nadir

1.24 m;
off-nadir 1.38 m

c) 8 short-wave infrared: nadir 3.70 m; off-nadir
4.10 m

d) 12 CAVIS: nadir 30 m

13.1 km 1–4.5 days

GaoFen-2 2014-08 China a) PAN: 0.81 m
b) 4 MS (blue, green, red, near-infrared): 3.24 m 45 km ≤ 4 days

SuperView-1 01/02: 2016-12
03/04: 2018-01 China a) PAN: 0.5 m

b) 4 MS (blue, green, red, near-infrared): 2 m 12 km 1 day with 4
satellites

a) PAN, panchromatic band; MS, multispectral bands

464 Gong J, et al. Sci China Earth Sci April (2020) Vol.63 No.4



2. Urban feature extraction from high-resolu-
tion remote sensing imagery

The widely used texture features are calculated based mainly
on statistical and spatial-frequency domain analysis, e.g., the
gray-level co-occurrence matrix (Haralick et al., 1973),
wavelet transform (Mallat, 1989), and local binary patterns
(Ojala et al., 1996). Moreover, a series of planar and stereo
features, e.g., the pixel shape index (Zhang et al., 2006),
PanTex (Pesaresi et al., 2008), morphological features (Pe-
saresi and Benediktsson, 2001), and angular features (Huang
X et al., 2018), were specially designed for HR images to
characterize urban environments. In addition, the recent ad-
vances in the domain of machine learning (e.g., deep learn-
ing) show strong abilities for high-level feature
representation, which show promising avenues to address
complex HR urban remote sensing problems (Zhu et al.,
2017).

2.1 Textural features

2.1.1 Gray-level co-occurrence matrix
The gray-level co-occurrence matrix (GLCM) is a classical

statistical texture extraction method. A series of statistical
measures, e.g., homogeneity (HOM), contrast (CON), an-
gular second moment (ASM), and entropy (ENT), were de-
fined to characterize the co-occurrence matrix to reflect the
grayscale changes and textural features of the image (Har-
alick et al., 1973). For HR urban remote sensing, Puissant et
al. (2005) and Su et al. (2008) combined the spectral in-
formation and the GLCM textures of HR images for urban
classification, demonstrating the effectiveness of the GLCM
features to complement the spectral information. To over-
come the influence of the “window effect” of the spatial
features, Huang et al. (2007a) presented an adaptive multi-
scale feature fusion method, which automatically selects the
best window size according to the spectral and boundary
information, and integrates the multi-scale features to extract
ground objects of different sizes. Standard GLCM textures
are calculated based on one band, therefore the first principal
component or one of the bands is widely employed when
dealing with multi/hyperspectral imagery (Pacifici et al.,
2009). In order to exploit all the useful information, Huang et
al. (2014b) proposed a multichannel GLCM calculation
method via image coding techniques to extract the synthe-
sized texture features from multi/hyperspectral bands.

Figure 1 The framework of urban information extraction from high-resolution remote sensing imagery.
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2.1.2 Wavelet transform
Wavelet transform (WT), which was developed in the 1980s
(Mallat, 1989), has been widely applied in texture analysis.
The standard WT is based on orthogonal wavelet basis,
aiming to obtain the multi-scale information, and extract the
high- and low-frequency features of each layer. Myint et al.
(2004) compared the WT, GLCM, spatial autocorrelation,
and fractal approaches for extracting urban textures from HR
images, suggesting that WT was more effective than the
other methods. Ouma et al. (2006) constructed multi-scale
textural features through WT, and combined them with the
spectral features to extract urban trees from QuickBird
imagery. The 3D-WT processes the multispectral imagery as
a cube and extracts spectral and spatial information si-
multaneously, hence it provides a more adequate feature
representation for multi/hyperspectral images (Guo et al.,
2014; Huang and Zhang, 2012b; Li Q et al., 2017; Qian et al.,
2013; Yoo et al., 2009). For instance, Yoo et al. (2009)
constructed the urban complexity index (UCI) based on 3D-
WT, in order to discriminate complex urban areas and natural
surfaces. Accordingly, Huang and Zhang (2012b) proposed
the multi-scale UCI (M-UCI) to further enhance the perfor-
mance over urban and suburban areas.

2.1.3 Local binary patterns
The local binary patterns (LBP) descriptor was proposed by
Ojala et al. (1996) to characterize the local textural features
of an image, and has been widely used in the fields of image
registration, target tracking, etc. The basic idea is to compare
the gray value of the center pixel with its neighboring pixels,
so that a set of binary codes of the center pixel can be ob-
tained. Furthermore, improved versions of LBP were de-
veloped with illumination and rotation invariant properties
(Ojala et al., 2002). LBP has been widely applied to char-
acterize the complex urban textures in HR images. For ex-
ample, Song et al. (2010) combined the LBP and spectral
features to classify HR imagery, and achieved higher accu-
racy with the addition of LBP. Musci et al. (2013) extracted
the LBP texture features of urban areas from QuickBird and
IKONOS images for land cover classification, and obtained
better results compared to the GLCM features. Li W et al.
(2015) extracted local features of HR hyperspectral imagery
based on LBP and obtained good classification results.

2.2 Spatial features for high-resolution imagery

2.2.1 Pixel shape index
The pixel shape index (PSI) is a spatial index describing
local shape features (Zhang et al., 2006). The idea of the
algorithm is to define a set of anisotropic direction lines
radiating from the central pixel to its surrounding pixels.
Under the constraints of the spectrum and the space, the
number of neighboring pixels with spectral similarity to the

central pixel along each direction line is counted as the
length of this direction line. The length values of all the
directional lines then constitute a histogram, and the mean
value of the histogram is finally defined as the PSI value of
the center pixel. PSI can detect more than 20 directions,
which makes up for the insufficient scanning directions of
the GLCM and sufficiently explores the spatial context
features in HR images. The authors combined the spectral
information and PSI to conduct urban classification, and
demonstrated the superiority of PSI by comparing it with
texture features such as the GLCM andWT. Furthermore, the
structural feature set (SFS) was defined as an extension of
PSI based on the histograms of the direction lines, including
six operators such as length-width ratio, weighted PSI, and
variance (Huang et al., 2007b). PSI is more efficient for
urban structures than natural surfaces (Huang and Zhang,
2012b), so it is often used as a local spatial feature together
with other features to classify complex urban areas (Li Q et
al., 2017; Zhang et al., 2013).

2.2.2 PanTex
PanTex (Pesaresi et al., 2008) is a rotation-invariant built-up
presence index computed based on the GLCM. Specifically,
PanTex extracts the GLCM from panchromatic imagery by
using the offset vectors in 10 directions and the CON mea-
sure. Only when the texture values in all the directions are
high can the pixel be considered as a built-up pixel. There-
fore, the minimum value of all the directions is taken as the
PanTex value of the pixel. Since PanTex has false alarms
from scattered trees, high-brightness bare soil, rocks, etc., it
was further improved by utilizing the normalized difference
vegetation index (NDVI) and morphological filtering, which
increased the accuracy by 2.44% and 20.76%, respectively
(Pesaresi and Gerhardinger, 2011). This index has also been
employed by the European Commission’s Joint Research
Centre in the Global Human Settlement Layer (GHSL)
project to extract large-scale built-up areas in Europe from
HR images (Florczyk et al., 2016; Pesaresi et al., 2011,
2013).

2.2.3 Morphological features
Morphological feature refers to the spatial structure features
of an image obtained through basic morphological opera-
tions (e.g., erosion and dilation, opening and closing) with
the structural element (SE). Pesaresi and Benediktsson
(2001) proposed the multi-scale morphological profiles
(MPs) and applied it to HR image classification successfully.
Since the strength of the morphological feature response is
determined by the SE radius and the local structure size, MPs
extracts multi-scale bright and dark structures of the image
with a set of SEs of different sizes (Pesaresi and Bene-
diktsson, 2001). To detect the morphological features of
different scales more effectively, the derivative morpholo-
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gical profiles (DMPs) were further defined as the sequential
differences of the MPs between two adjacent scales. MPs and
DMPs have been utilized for HR image processing in many
studies, achieving satisfactory results (Benediktsson et al.,
2003; Chanussot et al., 2006; Chini et al., 2009; Tuia et al.,
2009). In order to apply MPs to hyperspectral imagery,
Benediktsson et al. (2005) proposed extended MPs (EMPs)
by using the principal components as the base images to
calculate the MPs. Since the spectral information of hyper-
spectral imagery was not sufficiently explored by EMPs,
Fauvel et al. (2008) further fused the spectral information
and MPs for urban classification. Dalla Mura et al. (2010b)
proposed morphological attribute profiles (APs) to obtain the
morphological attributes, such as area and standard devia-
tion. Similarly, extended APs (EAPs) have also been pro-
posed and applied to hyperspectral imagery (Dalla Mura et
al., 2010a). Huang et al. (2014a) investigated the influence of
the different base image strategies for MPs, and constructed
the multiple morphological profiles (MMPs) for hyperspec-
tral image classification. Ghamisi et al. (2015) reviewed and
summarized the different morphological features. Since
DMPs only consider the difference between adjacent scales
and ignore the cross-scale information, Huang et al. (2016)
developed generalized DMPs (GDMPs) to obtain the dif-
ference between arbitrary scales, which can better describe
the multi-scale property of complex urban scenes.
In recent years, the morphological building index (MBI)

was proposed for unsupervised building extraction (Huang
and Zhang, 2011). MBI describes the spectral and spatial
features of buildings, such as brightness, structure, and ani-
sotropy, based on morphological operators. Since buildings
and their shadows have similar structures and are spatially
adjacent, Huang and Zhang (2012a) also constructed the
morphological shadow index (MSI) for the automatic de-
tection of building shadows. Experiments were conducted on
GeoEye-1, IKONOS, and WorldView-2 images of Wuhan,
Hangzhou, and Washington DC, which confirmed the su-
periority of this algorithm. The MBI can effectively detect
buildings from HR remote sensing images, but it may also
induce false alarms from bright bare ground and roads. In
order to further strengthen the efficacy of the MBI in sub-
urban, mountainous, and agricultural areas, Huang et al.
(2017b) proposed a post-processing framework and obtained
more accurate building extraction results by applying spec-
tral, shadow, and shape constraints successively on the initial
MBI results, to filter out commission errors such as bright
vegetation, soil, playgrounds, and roads. In addition, a
number of studies combined the MBI, MSI, and spectral
features for urban classification, built-up area extraction,
change detection, etc. (Huang et al., 2017a; Li Q et al., 2017;
Wen et al., 2016; Zhang and Huang, 2018; Liu et al., 2019),
confirming the effectiveness of these indices in urban feature
extraction.

2.2.4 Stereo features
HR stereo observation satellites can acquire images from
multiple viewing angles, which can be employed to produce
a digital surface model (DSM), and applied to height esti-
mation and 3D reconstruction. In recent years, many re-
searchers have found that the application of stereo features,
e.g., a DSM, to urban classification can increase the separ-
ability of land cover types such as building structures and
roads (Longbotham et al., 2012; Peng et al., 2015; Qin, 2014;
Qin and Fang, 2014; Tian et al., 2014). In terms of the fact
that the elevation of roads, grassland, and bare land are re-
latively consistent while buildings have abrupt changes to
the surrounding ground surface, Peng et al. (2017) proposed
the stereo pair disparity index (SPDI) to extract built-up
areas by describing the intensity of the elevation change.
This method firstly generates disparity maps from multi-
view images by using stereo matching algorithm (e.g.,
semiglobal matching), and then calculates the disparity
gradients with multi-directional offset vectors. Finally, the
built-up areas can be extracted from the gradient features.
However, in dense urban areas, the quality of a DSM or
disparity map is susceptible to many factors such as the base-
height ratio, the image matching algorithm, and occlusions,
which further influence the accuracy of urban information
extraction. In order to fully exploit the angular information
of HR stereo imagery, Huang X et al. (2018) proposed the
angular difference feature (ADF) to describe the dissim-
ilarities between different viewing images from the pixel,
feature, and label levels. The ZY-3 multi-angle images were
utilized in the experiments, and the results indicated that the
joint use of ADF and spectral features can significantly im-
prove urban classification accuracy, and the ADF can help to
distinguish complex artificial structures with spectral simi-
larity (e.g., roads, high-rise houses, urban villages, and re-
sidential buildings).
Demonstrations of some typical spatial features are dis-

played in Figure 2. The eight textural, structural and stereo
features were extracted from ZY-3 imagery in central
Shanghai. Note that the stereo features (DSM and ADF)
were generated from multi-view images, while the remaining
features were calculated from the nadir panchromatic image.

2.3 Deep learning-based feature representation

The previous features were designed based mainly on do-
main-specific knowledge. Nevertheless, their discriminative
ability may still be limited to tackle complex or large-scale
urban analysis. In recent years, deep learning-based methods
have been increasingly investigated in the field of remote
sensing, such as land use classification (Huang B et al.,
2018), scene recognition (Li Y C et al., 2017), and urban
expansion monitoring (He et al., 2019). Unlike handcrafted
features, deep neural networks (DNNs) can directly extract
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high-level features from data based on neural networks with
deep architecture in an automated fashion (Reichstein et al.,
2019; Zhu et al., 2017). Sufficient learning of a deep neural
network is very difficult and costly since it relies on massive
samples and computational resources. The pre-training and
fine-tuning strategies are widely adopted (Li et al., 2019).
For instance, Marmanis et al. (2016) directly extracted the
features by transferring the convolutional neural networks
(CNNs) pre-trained on natural images (e.g., ImageNet) for
HR remote sensing scene classification. Hu et al. (2015)
proposed two scenarios to generate global feature re-
presentations for HR image scenes by using the CNNs,
which achieved remarkable classification accuracies on two
public HR datasets. Nogueira et al. (2017) adapted the ex-
isting CNN architectures to HR image classification by fine-
tuning with a small sample set of HR images, demonstrating
the effectiveness of fine-tuned networks for performance
improvements compared with using only the pre-trained
networks.

3. Urban information extraction from high-re-
solution remote sensing imagery

3.1 Target recognition

Target recognition is one of the major tasks of information
extraction. Urban targets, mainly including buildings, built-

up, impervious surface, roads, vegetation, and water bodies,
are of great interest to researchers and city planners since
they are vital indicators of human distribution, economic
development and city’s livability (Weng, 2012). With the
availability of HR data, these detailed targets are now pos-
sible to be recognized. Numerous approaches have been
proposed to extract the thematic information of the urban
target of interest. In this section, some representative meth-
ods are briefly introduced.

3.1.1 Impervious surfaces, buildings, and roads
Impervious surface, or other similar semantic abstractions
such as artificial surfaces, urban footprint, human settlement,
and built-up areas, are the major components of urban land.
A large amount of researches have been focused on im-
pervious surface extraction from coarse and medium re-
solution images over large areas (Chen et al., 2016; Li X et
al., 2015; Schneider et al., 2010; Weng, 2012). HR imagery
can significantly reduce the problems of mixed-pixels and
blurred boundaries but also brings new challenges, such as
the confusion between different ground objects (e.g., bright
impervious layers and bare soil, dark impervious layers and
water) and the problems brought by shadows. To address
these issues, Hu and Weng (2011) proposed an object-based
method to extract impervious surfaces for residential and
central business district (CBD) areas from IKONOS ima-
gery, which obtained high accuracies and precise feature

Figure 2 Illustrations of the typical spatial features extracted from ZY-3 stereo imagery in central Shanghai.
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boundaries. The attributes considered in the rule set included
spectral, spatial, and textural features, which were used to
comprehensively describe the properties of impervious sur-
faces. To tackle the underestimation of impervious area
caused by shadows, Zhang and Huang (2018) presented a
two-stage object-based framework by integrating multiple
features. Specifically, the spatial relationships of different
land covers (e.g., the distance between shadow and vegeta-
tion) were further considered in the second stage to extract
more detailed impervious surface information in shaded
areas. Since synthetic aperture radar (SAR) is sensitive to the
structural or geometric features of built environment, in-
tegration of optical and SAR images at pixel, feature, and
decision levels are explored to improve the estimation of
impervious layers (Shao et al., 2016; Zhang et al., 2014).
More recently, Liu et al. (2019) proposed a framework for
built-up extraction by characterizing building properties
from structural, textural and vertical aspects, demonstrating
the complementation of multi-feature fusion. It was also
suggested that the employ of stereo features can effectively
reduce the omission errors of dark built-up areas.
For building extraction, knowledge-based automatic ap-

proaches, which construct the building extraction rules by
considering the spectral, shape, texture, and spatial char-
acteristics of buildings, are commonly adopted. Generally,
the sizes of most urban buildings are within a certain range;
buildings have vertical structures and high reflectivity;
buildings and their shadows are spatially adjacent (Huang et
al., 2017b; Pesaresi et al., 2008). These characteristics have
been extensively exploited to infer the existence of buildings
in HR images, by characterizing the brightness, local con-
trast, shape, height, and the spatial relationships between
buildings and their shadows with the information of solar
incident angle. For instance, in Ok et al. (2013), the shadow
areas in the image were firstly extracted, then the candidate
buildings were detected according to the spatial directional
relationship of shadows and buildings. Since this method
highly depend on initial shadow extraction accuracy, post-
processing and optimization of the shadow were conducted
in Ok (2013) in order to further improve building detection
accuracy. The MBI and MSI discussed in Section 2.2.3 were
also employed in many studies for automatic building de-
tection (Huang and Zhang, 2012a). When dealing with
complex urban scenes, supervised approaches are widely
used for building extraction. For example, the widely used
object-oriented multi-feature fusion methods, for which the
selection of the segmentation scale and feature extraction are
the two important steps. The optimization of the segmenta-
tion scale ensures the independence and integrity of the ex-
tracted buildings (Tian and Chen, 2007), while spectral,
texture, shape and stereo features are commonly applied to
depict the within-object information (Fauvel et al., 2008; Liu
C et al., 2017; Zhang et al., 2017).

Road detection from HR images is a challenging task be-
cause of the spectral and spatial complexity of road net-
works. Similar to building extraction, the spectrum, shape,
and topology properties of road are extensively considered.
For example, roads generally present a curvilinear shape; the
width of a road does not change drastically; and roads have
apparent edge lines and crossings, and often form networks.
Based on this knowledge, Huang and Zhang (2009) proposed
an object-based method to extract road centerlines from HR
imagery, by integrating multi-scale spectral-structural in-
formation based on support vector machine (SVM). Poullis
(2014) presented an automatic road extraction method that
combined tensor encoding, Gabor filter, and Graph-Cuts for
the inference of road features. Shanmugam and Kaliaper-
umal (2015) proposed the active deformable model for semi-
automatic road extraction. This method first selected the road
seed points manually, from which the propagation started
and was restrained by the width and color of the road. Then,
the interconnected road networks can be extracted. Sghaier
and Lepage (2016) applied the beamlet transform in road
border detection to find the most suitable scale for each road
in HR image. The SFS structural feature, mathematical
morphology, and Canny detector were also employed in
preprocessing steps for edge candidate selection.

3.1.2 Urban vegetation and water areas
Vegetation and water have distinct spectral characteristics,
hence some classic spectral indices, such as the NDVI, the
normalized difference water index (NDWI), and the mod-
ified NDWI (MNDWI), were designed for their detection
based on simple band operations. However, most of the ex-
isting indices are not very appropriate to be directly applied
to HR images in urban environment due to the spectral si-
milarity of some urban structures (e.g., temporary building,
shadow) which also show high response of these indices.
Moreover, many HR imagery have only four spectral bands
(i.e., blue, green, red, near-infrared), hence lack the pre-
requisite channel to calculate some indices (e.g., MNDWI).
To tackle these problems, Kumar et al. (2012) created a new
vegetation index by taking advantages of the NIR-2 and red
edge bands of WorldView-2 imagery to extract vegetation,
which obtained improved accuracy compared to the con-
ventional NDVI. Xie et al. (2016) proposed a HR water in-
dex based on combinations of WorldView-2 eight-band data.
This new water index was further combined with the MSI, in
order to alleviate the disturbance from shadows. According
to their tests, the water index calculated by coastal-NIR2 or
green-NIR2 bands achieved the best performance to high-
light urban water areas in multiple big cities.
In addition to the binary extraction of vegetation and water,

some studies further concerned the identification of their
subclasses. For instance, Wen et al. (2017) conducted se-
mantic classification of the urban tree functions from HR
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imagery. Unlike general vegetation extraction and tree spe-
cies classification, this study considered the location and
function of trees, by dividing trees into park trees, roadside
trees and residential-institutional trees based on a multi-level
framework (pixel-object-patch). Specifically, the vegetation
index was firstly calculated for vegetation extraction at the
pixel level. Object-oriented segmentation was then per-
formed over the vegetated area, and the spectral and texture
features were extracted at the object level to distinguish
between trees and ground vegetation. Finally, the semantic
functions of the trees were obtained based on the area, shape,
structure, and spatial relationships at the patch level. Huang
et al. (2015b) identified different water-body types including
lakes, rivers, canals and ponds in Wuhan and Shenzhen. A
two-layer machine learning framework was presented, which
first detected preliminary water areas by using water, sha-
dow, and vegetation indices. The geometrical and textural
features were then extracted at the object level, and the dif-
ferent urban water types were finally identified.
In general, courtesy of the rich spatial details in HR ima-

gery, massive efforts have been devoted to propose auto-
matic or semi-automatic approaches for urban object
extraction, by characterizing the physical properties (i.e.,
texture, shape, height) of the target of interest. Although
impressive results were obtained, their applicability may be
limited since the spatial contexts of complex and varying
urban scenes are often difficult to be described as a set of
“rules”. Current studies that integrate domain knowledge
with machine learning techniques (e.g., deep learning) show
a promising direction for urban target detection from HR
imagery (Zhou et al., 2016; Zhu et al., 2017).

3.2 Land use/land cover mapping

Urban land use/land cover (LULC) information are crucial
data to understand the complex interactions between human
and the environment (Kuang et al., 2016; Yu et al., 2016).
Land cover focuses on the physical property of the land
surface, e.g., impervious surfaces, vegetation and water,
while land use places emphasis on the social functional at-
tributes, such as residential, industrial or commercial. Nu-
merous methods have been proposed for LULC mapping,
which can generally be categorized into three types accord-
ing to their basic processing units (i.e. pixels, objects, and
moving windows). Pixel- and object-based approaches are
widely used for land cover mapping (Myint et al., 2011).
While classifying land use is more difficult since it relates to
human activities and one land use type is often mixed by
multiple land covers. The texture, geometry, contexture, land
cover proportion, or other auxiliary data (e.g., Google Street
View) are often incorporated to recognize land use patterns
and configurations (Li X et al., 2017; Zhang et al., 2019).
Machine learning techniques for supervised classification

have been extensively exploited for urban LULC mapping
from HR imagery, such as the classification and regression
tree (CART), k-nearest neighbor (KNN), random forest (RF),
SVM, and multilayer perceptron (MLP) (Qian et al., 2015;
Zhang and Huang, 2018). Since traditional low-level features
may be insufficient to characterize urban land use, mid-level
features are constructed by means of dictionary learning and
sparse coding such as the popular bag-of-visual-words
(BOVW) and latent Dirichlet allocation (LDA) models.
Based on these scene models, Huang et al. (2015a) extracted
the urban villages from QuickBird and WorldView-2 images
covering Wuhan and Shenzhen; Zhang and Du (2015) em-
ployed city blocks as the processing unit to map the urban
functional zones in Zhuhai and Beijing. Moreover, a variety
of landscape metrics were calculated in order to better de-
scribe complex urban scenes. For example, Voltersen et al.
(2014) combined HR images and a normalized DSM
(nDSM) to classify basic urban features. Several landscape
metrics of buildings and vegetation, e.g., volume, height, and
vegetation fraction, were then extracted at the block level to
describe the urban structure types, dividing the urban land
use into residential, commercial, and industrial areas, parks,
woodland, etc. Liu H et al. (2017) correlated the physical
structure properties of urban villages (e.g., high building
density and scarce vegetation) and the landscape metrics for
urban village mapping. Recently, more endeavors have been
devoted to employ the new deep learning methods for LULC
mapping, which achieved state-of-the-art performances by
learning the most discriminative features hierarchically
(Huang B et al., 2018; Zhang et al., 2019; Zhu et al., 2017).

3.3 Change detection

In developing regions, many cities are undergoing rapid ur-
ban expansion as well as internal formation and demolition.
Timely and efficient monitoring of urban changes helps us to
understand human activity and provide a decision-making
basis for urban planning (Marin et al., 2015). HR remote
sensing imagery enables detection of subtle urban changes,
but also poses great difficulties to the traditional methods.
The major challenge of change detection from HR imagery is
the confusion of radiometric and real semantic changes.
False alarms are mainly induced by the distinct spectral
heterogeneity of the multi-temporal HR images (i.e., the
spectral behavior of the same object varies at different dates),
due to different imaging conditions, mis-registration, dis-
parity of vertical structures, etc. (Bruzzone and Bovolo,
2012). The widely used change detection methods include
machine learning approaches (Volpi et al., 2013) and auto-
matic methods such as the multilevel change vector analysis
(Bovolo, 2009), the pulse-coupled neural networks (Pacifici
and Del Frate, 2010), and the multi-temporal morphological
attribute profiles (Falco et al., 2013). In order to tackle the
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problems of spectral complexity and mis-registration of the
multi-temporal HR images, Wen et al. (2016) employed
several basic urban primitives (building, vegetation, and
water) to represent complex urban scenes and utilized blocks
as the basic unit to calculate their composition and ar-
rangement. The information of the primitive features in the
corresponding blocks between multi-temporal images were
compared, and then the changed area and type can be iden-
tified. In addition, Huang et al. (2017a) proposed a multi-
level (pixel, grid, and city block) framework for urban
change analysis from HR images. The ZY-3 stereo images
were employed to produce the multi-temporal orthographic
images covering Wuhan and Beijing, and the multi-features
and rules were integrated for land cover classification. The
authors also compared the results of ZY-3 and Landsat
images, suggesting that HR imagery was indispensable for
subtle urban change detection.

3.4 Ecology and climate analysis

Urban LULC types have profound impacts on the urban
ecological environment and climate (Kuang et al., 2017; Shi
et al., 2016). On the basis of LULC data, more in-depth
information of a city can be explored, such as the quantitative
assessment of ecosystem service capacities or simulation of
local climate. Burkhard et al. (2012) proposed a clear and
applicable conceptual framework for ecosystem service
mapping. The authors linked the different land cover types to
ecosystem service supply and demand, and synthesized the
expert knowledge from many studies to give the capacity
scores of different land cover types. Following the ecosystem
service concept and assessment scheme, Haas and Ban
(2017) assessed the ecological changes in the urban core
districts of Shanghai in China. The authors first generated the
basic urban LULC types from multi-temporal IKONOS and
GeoEye-1 images. The LULC changes were then analyzed in
terms of ecosystem service supply and demand, and the
ecosystem balance of central Shanghai from 2000 to 2009
was modeled.
On the other hand, the distribution and variation of the

urban climate have received broad attention, as the urban
climate is closely related to environmental and human health
issues. The dense population and heterogeneous landscapes
in urban areas make the intra-urban climate distinctly dif-
ferent. Stewart and Oke (2012) introduced a universal clas-
sification scheme for the land surface, called local climate
zones (LCZ), for urban climate studies. According to the
building properties (e.g., height, density, material), the LCZ
system classifies 10 built types, such as compact high-rise,
open low-rise, and heavy industry. Meanwhile, seven land
cover categories, including dense trees, low plants, water,
etc., are also defined to represent natural landscapes. The
spatial scale of LCZ studies is generally between 100 and

1000 m. Bechtel et al. (2015) investigated the feasibility of
using remote sensing imagery for LCZ mapping, and de-
veloped the World Urban Database and Access Portal Tools
(WUDAPT) for global HR LCZ mapping. Some follow-up
studies were carried out, for instance, Bechtel et al. (2016)
integrated multispectral data and SAR imagery for LCZ
mapping in arid areas. Wang et al. (2018) performed LCZ
classification in arid desert cities using open-source image
data and software. The LCZ properties were evaluated and
compared to the original value ranges in Stewart and Oke
(2012), and their relationships with the surface urban heat
island effect were also analyzed.

4. Conclusions and perspectives

As an emerging research field, the development of high-
resolution (HR) urban remote sensing is inseparable from
sensor technology, photogrammetry, image processing
technique, etc. High-resolution, multi-temporal, multi-angle,
and multi-platform urban observations allow more elaborate
urban application, which also call for more effective data
interpretation approaches. In this paper, we examined the
major advances in HR urban remote sensing from the feature
level to the scene level. A series of advanced textural,
structural and stereo features, as well as the new techniques
for urban information extraction were summarized. Al-
though HR urban remote sensing has achieved substantial
improvements, many of the existing researches only involve
small-scale applications and their robustness and general-
ization ability are unproved. There are still great challenges
to meet the requirements of practical production or com-
mercialization. The trends for future development are dis-
cussed from the following perspectives.
(1) Progress in methodology. Recent developments in

machine learning, especially deep learning, have achieved
notable success in plenty of scientific fields. For instance,
convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) are the two important branches for spatial
learning and sequence learning, respectively, which are
highly effective in urban remote sensing tasks. Nevertheless,
applying deep learning to remotely sensed image inter-
pretation is still in its infancy mainly due to the strong data
heterogeneity, inadequate sample annotation, and high
complexity of the model. Specialized training datasets for
HR remote sensing imagery are still few in number. There is
an urgent need for creating large-volume benchmark data
with abundant, diverse, and reliable representation of various
urban landscapes. Unsupervised, semi-supervised, or weakly
supervised learning approaches are also promising to reduce
the work of manual annotation.
(2) Characterizing urban structure and pattern. Identifying

the internal pattern, configuration or functional attributes (e.
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g., commercial/residential/industrial areas, urban villages,
ecological/leisure land) of urban land is significant for ef-
fective urban management and planning. By virtue of HR
stereo imagery (e.g., ZY-3, WorldView), 3D urban form can
be conveniently derived, which can support the future re-
searches on urban dynamics in both horizontal and vertical
dimensions, as well as providing new avenues for multi-
disciplinary applications such as socioeconomic research,
disaster response, environmental assessment, and ecological
modelling.
(3) Big data challenge. The astonishing geospatial data

acquisition ability and the trend of elaborating urban in-
formation extraction over time and space calls for in-
creased computational power to address the big data
challenges (Ma et al., 2015). The abundant high-perfor-
mance computing resources and cloud technology offer
promising solutions (Li et al., 2016; Sun et al., 2019). One
such example is GEE (Gorelick et al., 2017), which has
archived petabytes of EO data and allows interactive data
process and algorithm development over its online system,
facilitating lots of researchers to carry out global or con-
tinental urban mapping and studies (Gong et al., 2019a,
2019b; Liu et al., 2018).
(4) Global mapping. The exponentially growing HR data

facilitates urban remote sensing towards larger scales hence
increase our knowledge about the fast urbanizing world.
Historically, urban mapping at the global scale are mostly
relied on coarse resolution imagery (e.g., MODIS). With the
availability of the global Landsat archives, some fine re-
solution global products were generated in recent years, such
as the FROM-GLC30 (Gong et al., 2013), GlobeLand30
(Chen et al., 2015), GHSL (Pesaresi et al., 2015), and MGIS
(Liu et al., 2018), which provide us valuable information
about the location and extent of urban areas worldwide.
More recently, the global land cover map at 10 m resolution,
i.e., FROM-GLC10 (Gong et al., 2019), was derived from
Sentinel-2 data at so far the highest spatial resolution. In
addition, new satellites, such as GaoFen series, ZY-3 con-
stellation, PlanetScope, and Luojia-1, can acquire optical,
SAR and nighttime light data at high spatial/temporal re-
solution, which have great potentials for global urban in-
formation extraction in the future.
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