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Abstract Holding particular biological resources, the Tibetan Plateau is a unique geologic-geographic-biotic interactively unite
and hence play an important role in the global biodiversity domain. The Tibetan Plateau has undergone vigorous environmental
changes since the Cenozoic, and played roles switching from “a paradise of tropical animals and plants” to “the cradle of Ice Age
mammalian fauna”. Recent significant paleontological discoveries have refined a big picture of the evolutionary history of
biodiversity on that plateau against the backdrop of major environmental changes, and paved the way for the assessment of its
far-reaching impact upon the biota around the plateau and even in more remote regions. Here, based on the newly reported fossils
from the Tibetan Plateau which include diverse animals and plants, we present a general review of the changing biodiversity on
the Tibetan Plateau and its influence in a global scale. We define the Tibetan Plateau as a junction station of the history of modern
biodiversity, whose performance can be categorized in the following three patterns: (1) Local origination of endemism; (2) Local
origination and “Out of Tibet”; (3) Intercontinental dispersal via Tibet. The first pattern is exemplified by the snow carps, the
major component of the freshwater fish fauna on the plateau, whose temporal distribution pattern of the fossil schizothoracines
approximately mirrors the spatial distribution pattern of their living counterparts. Through ascent with modification, their history
reflects the biological responses to the stepwise uplift of the Tibetan Plateau. The second pattern is represented by the dispersal
history of some mammals since the Pliocene and some plants. The ancestors of some Ice Age mammals, e.g., the wholly rhino,
Arctic fox, and argali sheep first originated and evolved in the uplifted and frozen Tibet during the Pliocene, and then migrated
toward the Arctic regions or even the North American continent at beginning of the Ice Age; the ancestor of pantherines (big
cats) first rose in Tibetan Plateau during the Pliocene, followed by the disperse of its descendants to other parts of Asia, Africa,
North and South America to play as top predators of the local ecosystems. The early members of some plants, e.g., Elaeagnaceae
appeared in Tibet during the Late Eocene and then dispersed and were widely distributed to other regions. The last pattern is
typified by the history of the tree of heaven (Ailanthus) and climbing perch. Ailanthus originated in the Indian subcontinent, then
colonized into Tibet after the Indian-Asian plate collision, and dispersed therefrom to East Asia, Europe and even North
America. The climbing perches among freshwater fishes probably rose in Southeast Asia during the Middle Eocene, dispersed to
Tibet and then migrated into Africa via the docked India. These cases highlight the role of Tibet, which was involved in the
continental collision, in the intercontinental biotic interchanges. The three evolutionary patterns above reflect both the history of
biodiversity on the plateau and the biological and environmental effects of tectonic uplift.
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1. Introduction

Tibetan Plateau, the highest and youngest plateau all over the
world, with the unique geologic-geographic-ecologic inter-
actions, has long been considered as the “natural laboratory”
for the research on the environmental changes and life’s
evolutionary history (Zheng and Yao, 2006; Chang and
Miao, 2016; Yao et al., 2017). Part of Tibetan Plateau has
been taken on the mantle of “forbidden zones” for its severe
coldness, lack of oxygen, scarce precipitation and strong
ultraviolet radiation. Having said that, the Tibetan Plateau
and its adjacent areas in the southwestern mountains of
China, the eastern Himalayas, and the Central Asian moun-
tains are among the 36 biodiversity hotspots identified by
Conservation International (Myers et al., 2000), indicating
that its biodiversity is at a fairly high level. The Tibetan
Plateau has undergone complex and large-scale environ-
mental changes during geological history (An et al., 2001;
Zheng and Yao, 2006; Royden et al., 2008; Wang et al., 2008;
Zhu et al., 2013; Spicer, 2017; Su et al., 2019a, 2019b). Such
geological movements and geomorphological evolution
triggered and formed the climate pattern in the Tibetan
Plateau and its surrounding areas, such as the monsoon cli-
mate in southwestern China, characterized by seasonal
rainfall (Jacques et al., 2011; Xing et al., 2012; Su et al.,
2013). These changes in landforms and climate undoubtedly
affect the distribution and evolution of organisms, which
may have promoted the development of the biodiversity in
the region and also led to the extinction of some organisms
(Huang et al., 2016). Therefore, the formation of the Tibetan
Plateau not only has a tremendous impact on shaping the
modern biodiversity of the region, but also plays an im-
portant role in promoting the intercontinental dispersal of
many species originating from the plateau and even the an-
cestors of many modern widespread groups (Tseng et al.,
2014; Wang et al., 2014, 2016; Favre et al., 2016; Fuentes-
Hurtado et al., 2016; Deng et al., 2019).
Taking mammals as an example, the mammalian fauna in

modern Tibetan Plateau is characterized by high-altitude
habitat, low diversity, and strong adaptability to cold and
hypoxic environment. Half of the mammalian fauna are en-
demic to the region, which is mainly due to the strong bar-
riers formed by the surrounding mountains (such as the
Himalayas) and the harsh environment of the plateau
(Hoffmann, 1991). Jiang et al. (2018) found that the total
number of ungulates in the Tibetan Plateau accounts for 42%
of the total in China, and the proportion of endemic species is
as high as 32%. In recent years, more and more fossil records
have provided important evidence for understanding the

history of mammal diversity in the Tibetan Plateau (Wang et
al., 2015b; Li Q et al., 2017; Wang et al., 2019). Most of the
modern mammals in the Tibetan Plateau have a long history
on the plateau, at least dating back to the Pliocene, which
proves that they have a long-term adaptation process in the
high-altitude plateau areas. Some of them expanded their
distribution in the Pleistocene and became an important
member of the Holarctic realm fauna at high latitudes (Deng
et al., 2012; Wang et al., 2015b). In extreme cold climates
and rarefied air, the Tibetan Plateau may have become an
adaptation base for these animals during the Pliocene. When
the Ice Age came, the ecological environment of the Arctic
and the north regions began to expand, and the fauna of the
Tibetan Plateau occupied a dominant position in the com-
petition with other fauna in northern Eurasia and even North
America (Wang et al., 2015b; Deng et al., 2019).
As plants are concerned, the Tibetan Plateau and its ad-

jacent regions bear rich plant diversity (Wu, 1987; Wu, 2008;
Zhang et al., 2016), and are the centers of distribution and
diversification for many taxa (Gao et al., 2015; Yu et al.,
2015). The complex topography caused by rapid uplift of the
plateau during the Neogene, together with the regular fluc-
tuation of climate during the Quaternary, further accelerated
the radial differentiation and diversification of plants (Qiu et
al., 2011; Wen et al., 2014). The diversification at both genus
and species levels related to not only the adaptable radiation
of local species stimulated by the rapid uplift of the plateau,
but also the species vicariance caused by the complexity of
topography (Yu et al., 2018). During the late Quaternary,
some species extensively migrated and spread (Cun and
Wang, 2010), and some other cold-tolerant species migrated
in long distance from the Tibetan Plateau into East Asia,
North America, Europe, and even alpine or cold regions of
Arctic (Matuszak et al., 2016). Therefore, the Tibetan Pla-
teau is often considered as the radiation region of plants in
the North Temperate Zone (Wu, 1987).
The formation of biodiversity patterns is usually con-

sidered to be related to geological activities and past climate
changes, and is a moment in the long history of geological
and biological evolution (Wiens and Donoghue, 2004; San-
del et al., 2011; Spicer, 2017). Not only the organisms ori-
ginating in the Tibetan Plateau affect the Neogene
biogeographical pattern through dispersal, but the evolution
of biodiversity in China and its neighboring areas is also
strongly influenced by the uplift of the Tibetan Plateau
(Deng et al., 2015). The Tibetan Plateau has created condi-
tions for the origin, differentiation and global dispersal of
species, and influenced the formation and succession of
modern flora and fauna, making it one of the important
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centers of global species formation, differentiation and dis-
persal (Jiang et al., 2018). In recent years, a series of new
discoveries of plateau paleontology have greatly enriched the
knowledge of the life history of the Tibetan Plateau. Com-
pared with the past, we can have a more comprehensive look
at the significant role that the plateau has played in the
evolution of biodiversity of the Cenozoic world from the
perspective of a longer history and greater space (from the
Neogene to the Paleogene). This paper systematically re-
views the latest research results of plateau paleontology and
summarizes the status of the Tibetan Plateau as an evolu-
tionary junction of the development of biodiversity, which is
embodied in three forms: (1) Local origination of endemism;
(2) Local origination and “Out of Tibet”; (3) Intercontinental
dispersal via Tibet.

2. Local origination of endemism

Due to its unique physical conditions, the Tibetan Plateau has
become an “ecological island” that is isolated from the sur-
rounding lower areas, thus forming a unique high-altitude
biogeographical biota containing many endemic animal and
plant species. The biodiversity of the modern Tibetan Plateau
is represented by fish and mammals, which have left fossil
records during the uplift of the plateau, clearly depicting the
evolutionary history of their respective groups (Figure 1).

2.1 Schizothoracine fishes (snow carps)

Living schizothoracine fishes are a special group of cyprinid
species that adapt to the high-altitude environment in Asia. It
lives in water systems of the Tibetan Plateau and its sur-
rounding areas and consists of 11 to 12 genera, more than
100 species and subspecies (Berg, 1912; Hora, 1953; Wu and
Wu, 1992; Chen and Cao, 2000). They are considered to be a
group that evolved with the uplift of the Tibetan Plateau
(“Ascent with Modifications”, refer to Chang et al., 2010;
Chang and Miao, 2016) as the staged differentiation of their
morphological characteristics and the step-wise distribution
of the elevation of the gathering place are consistent with the
history of plateau uplift (Chen et al., 1996). Morphologically,
they form a monophyletic group (Chen, 1998; Kullander et
al., 1999; Chen and Cao, 2000), and are divided into three
levels: primitive, specialized and highly specialized levels.
The classification is based on the morphology of scales, the
number of tentacles, the rows of pharyngeal teeth, and their
distribution in three consecutive altitude ranges with de-
creasing water temperature (Cao et al., 1981; Chang et al.,
2010; Chang and Miao, 2016). The species of the primitive
level are covered with fine scales and provided with 3 rows
of pharyngeal teeth and 2 pairs of tentacles, living in the
water system with an altitude of 1250–2500 m; the specia-

lized species are degraded in the chest and abdomen scales,
reduced to 2 rows of pharyngeal teeth and 1 pair of tentacles,
living in the water system with altitude of 2750–3750 m; the
highly specialized species are completely bare and scale-
free, with 2 or even 1 row of pharyngeal teeth, distributed in
the water system of 3750–4750 m above sea level (Cao et al.,
1981) (Figure 1). Although molecular analysis suggests that
the Schizothoracinae does not constitute a natural taxon, the
primitive class and the specialized and highly specialized
classes belong to two different clades, and each group also
contains several barbine species (Yang et al., 2015). How-
ever, the classification of Schizothoracinae has not been fi-
nalized at the current research level. Following the viewpoint
of morphology, the subfamily Schizophrenidae in this paper
is considered as a monophyletic group for the time being.
Based on the morphological characteristics, it is believed

that the Schizothoracinae evolved from some primitive bar-
bine species of the family Cyprinidae during the uplift of the
Neogene Tibetan Plateau (Cao et al., 1981; Wu, 1984; Chen
et al., 1996). The Paleogene fish fauna in Tibet are sig-
nificantly different from today’s, including members of
Perciformes and Cyprinidae. The main components of Cy-
prinidae are widely distributed barbine-like species. During a
certain period from Paleogene to Neogene, there should be a
remarkable change from barbine-like species to Schi-
zothoracinae. Wang and Wu (2015) discovered Tchunglinius
tchangii in the Late Oligocene strata of the Nima Basin,
northern Tibet. It is small and closely related to living small
fishes of the subfamily Barbinae in South Asia and Africa,
such as Puntius. During the Oligocene, the uplift of the Ti-
betan Plateau was not significant, so the tropical-subtropical
lowland fish such as T. tchangii lived in this area.
An important shift occurred at the turn from the Oligocene

to the Miocene. Plesioschizothorax macrocephalus, an early
schizothoracine fish, was discovered in the Dingqing For-
mation of the Lunpola Basin, central Tibetan Plateau. It is a
primitive schizothoracine fish with 3 rows of pharyngeal
teeth (Wu and Chen, 1980; Chang et al., 2008), living in the
Early Miocene (Deng et al., 2012a). The present altitude of
the fossil site is 4540–4550 m, which belongs to the dis-
tribution range of present highly specialized schizothor-
acines, which indicates the strong uplift of the Tibetan
Plateau since the Miocene. After the Pliocene when the
plateau reached its modern height and overall scale (Deng et
al., 2012b), highly specialized schizothoracines with 2 or
even 1 row of pharyngeal teeth appeared in the Zanda Basin
in the southwestern part of the Tibetan Plateau and the
Pliocene Qiangtang Formation in the Kunlun Pass in the
northeastern part of the Tibetan Plateau (Chang et al., 2010;
Wang and Chang, 2010; Chang and Miao, 2016). Recently, a
fossil cyprinid was reported in the Qaidam Basin, and it was
classified in the Schizothoracinae (Yang et al., 2018).
However, the ichthyologists have some reservations about
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the details of the interpretations of the anatomy and the result
of the phylogenetic analysis.
Gymnocypris is a major member of the highly specialized

schizothoracines, composed of 10 living species and sub-
species, occupying most of major water systems on the Ti-
betan Plateau (Wu and Wu, 1992; Chen and Cao, 2000). The
Pliocene highly specialized schizothoracine fossils found in
the Kunlun Pass Basin are the genus Gymnocypris, which
were collected at the present altitude of 4769 m and origi-
nated near today’s Golmud River (Figure 1). Nowadays,
Gymnocypris still exists in the north and south of the East
Kunlun Mountains. A large number of fish fossils in the
Kunlun Pass Basin suggest that there was still a relatively
wide distribution of water in this area during the Pliocene,
and the water bodies on the north and south sides of the East
Kunlun Mountains may be connected, which provides living
conditions for highly specialized schizothoracines. The uplift
of the Eastern Kunlun Mountains after the Late Pliocene
separated water bodies in this area and promoted the dif-

ferentiation of Gymnocypris (Wang and Chang, 2010).

2.2 Triplophysa (plateau loaches)

There are about 140 valid species of Triplophysa (Li J X et
al., 2017), mainly distributed in the Tibetan Plateau and its
adjacent areas (Chen and Yang, 2005). Morphological stu-
dies suggest that the Noemacheilidae is a family within
Cobitoidea (Nalbant and Bianco, 1998), and recent mole-
cular biological studies support similar conclusions (Tang et
al., 2006; Slechtova et al., 2007).
Triplophysa is the most diverse group of the Noemachei-

lidae, and it is also a special group of the Noemacheilidae
adapted to the alpine environment of the Tibetan Plateau.
Together with the cyprinid schizothoracines, it constitutes
the main fish fauna of the Tibetan Plateau. Some species of
the Triplophysa are even said to adapt to the higher altitude
and harsher living environment (such as some small shallow
saltwater bodies) that the schizothoracine fishes cannot sur-

Figure 1 Local origination of endemism of fishes and mammals in the Tibetan Plateau. The morphological variations and spatial distribution (vertical
plane) of living schizothoracine fishes (snow carps) in the Tibetan Plateau and the fossil records of cyprinids and bovines (horizontal plane), the altitudes on
the right side represents the distribution range of Triplophysa (plateau loaches) in the plateau and its surrounding areas. Fossil sites and fossil taxa: 1.
Oligocene cyprinid with 3 rows of pharyngeal teeth in Huatugou, Qaidam Basin; 2. Oligocene cyprinid with 3 rows of pharyngeal teeth in Wulan Husentu,
Qaidam Basin; 3. Late Oligocene Tchunglinius tchangii with 3 rows of pharyngeal teeth in Nima Basin; 4. Early Miocene Plesioschizothorax macrocephalus
with 3 rows of pharyngeal teeth in Lunpola Basin; 5. Pliocene Hsianwenia wui, with 3 rows of pharyngeal teeth in Qaidam Basin; 6. Late Miocene cyprinid
with 3 rows of pharyngeal teeth in Huaitoutala, Qaidam Basin; 7. Pliocene highly specialized Gymnocypris with 2 rows of pharyngeal teeth in Kunlun Pass; 8.
Pliocene highly specialized schizothoracine in Zanda Basin; 9. Late Miocene Qurliqnoria in Qaidam Basin; 10. Pliocene transitional Qurliqnoria in Kunlun
Pass; 11. Pliocene transitional Qurliqnoria in Zanda Basin; 12. Pleistocene Pantholops hundesiensis in Zanda Basin (Neurocranium fossils).
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vive (above 5600 m, Zhang and He, 1997), thereby becom-
ing the fish species distributed highest in the world (Wu and
Wu, 1992; He et al., 2006) (Figure 1). In some specific small
waters of the Tibetan Plateau, the number of individuals of
Triplophysa exceeds that of the schizothoracines. However,
although Triplophysa is the only representative of the living
noemacheilids in the Tibetan Plateau, their distribution is not
limited to the plateau and surrounding areas like the schi-
zothoracines. Some species are distributed eastward in wa-
ters below 1000 m in central China (Zhu, 1989).
Based on morphological characteristics and geographical

distribution, many scholars believe that the origination and
evolution of Triplophysa are related to the uplift of the Ti-
betan Plateau (Zhu, 1986, 1989; Wu and Wu, 1992). Mole-
cular biological analysis also yields the same judgment (He
et al., 2006; Wang Y et al., 2016), but there is no fossil
evidence in the past. Wang and Chang (2012) discovered the
Triplophysa fossils in the lower part of the Pliocene Qiang-
tang Formation in the Kunlun Pass Basin at an altitude of
4769 m. The number of Triplophysa fossils was significantly
higher than that of schizothoracines in the same layer at the
fossil location. This not only supports the hypothesis that
Triplophysa originated in the Tibetan Plateau, but also shows
that the composition of the fish fauna in this area was very
close to today’s.
The isolated water systems around the Kunlun Pass Basin,

namely the Qaidam inner stream system, and the upper
reaches of the Yellow River and the Yangtze River, share
several species of the genus Triplophysa, suggesting that
they may originate before these water systems were sepa-
rated (Wang and Chang, 2012). On the other hand, these
water systems have their own unique Triplophysa species,
indicating that these fishes continued to differentiate after the
water systems were separated from each other (Zhu, 1989;
Wu and Wu, 1992; Wu et al., 1994). The discovery of the
Pliocene Triplophysa fossils in the Kunlun Pass Basin pro-
vides preliminary evidence for the traceability of the dis-
tribution pattern of modern Triplophysa. According to the
latest research of molecular biology (Wang Y et al., 2016),
the evolutionary history of Triplophysa may be much earlier
than the current fossil record. Collecting more and better
fossil materials to carry out more in-depth systematic studies,
combined with molecular analysis, is the exploration direc-
tion for the evolution history of Triplophysa.

2.3 Pantholops hodgsonii (chiru)

The origin of the chiru Pantholops hodgsonii provides an-
other representative example of the local evolution of in-
digenous species on the Tibetan Plateau, whose ancestors can
be traced back to the Late Miocene. In the Qaidam Basin in
the northern part of the Tibetan Plateau, Qurliqnoria is an
extinct bovid with the straight and upward horns (Bohlin,

1937; Wang et al., 2007, 2011), which has been considered as
the ancestor of the chiru (Gentry, 1968). In the Kunlun Pass
Basin, 4400–5000 m above sea level on the southern side of
the Qaidam Basin, the horn core fossils of Qurliqnoria were
found in the beds from Pliocene to Pleistocene (Li et al.,
2014; Wang et al., 2015b). In the Zanda Basin on the
southwestern margin of the Tibetan Plateau, the Qurliqnoria
horns were discovered from the Early Pliocene strata (Deng
et al., 2011). In the Pleistocene, Pantholops hundesiensis, an
extinct species of the chiru, was discovered at high altitudes
near the Zanda Basin (Lydekker, 1901) (Figure 1). The Late
Miocene mammals in the Qaidam Basin have begun to show
a certain level of localization (Wang et al., 2007). The dis-
covery of the above-mentioned Qurliqnoria and the chiru on
the Tibetan Plateau indicates that both have a long evolu-
tionary history in the region. Assuming that Qurliqnoria and
the chiru are closely related as indicated by the horn shape,
the origin of the chiru on the Tibetan Plateau (Fernández and
Vrba, 2005) is quite credible. Even if Qurliqnoria has no
close relationship with the chiru, the latter is highly likely to
originate from the Tibetan Plateau. Because the chiru is
completely confined to the Tibetan Plateau, it is a unique
species of the plateau, whether it is walking into or out of the
Tibetan Plateau.

3. Local origination and “Out of Tibet”

As an evolutionary center of biodiversity, the Tibetan Plateau
has bred a unique ecological environment at different stages
of its uplift; also, many species originated here spread to
other parts of the world in a suitable climate. Depending on
the connection of the land bridge, some groups even crossed
the ocean and spread to other continents (Figure 2).

3.1 Elaeagnus

Elaeagnus belongs to the family Elaeagnaceae in the order
Rosales, which includes three genera, namely Hippophae,
Elaeagnus, and Shepherdia. There are more than 80 species
in Elaeagnaceae with modern distribution mainly in South-
east Asia. Two genera with about 60 species are distributed
in China. The southeastern margin of the Tibetan Plateau is
the diversification center of many plant taxa such as
Elaeagnaceae, which related to the dramatic tectonic activ-
ities of the plateau (Su et al., 2019b). These tectonic activities
shaped the complex topography and diverse climate types,
and created conditions for speciation (Favre et al., 2015).
Besides, Elaeagnus and Hippophae are distributed in dif-
ferent environmental conditions. As their distribution ranges
on the Tibetan Plateau are concerned, the elevation ranges of
most Hippophae species are 3000–5000 m, whereas the
elevation ranges of most Elaeagnus species are lower than
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3200 m (Qin and Michael, 2007). Therefore, these two
genera have different ecological niches, which might have
further promoted the speciation.
Macrofossil records of Elaeagnaceae are rare. As leaf

fossil records are concerned, only one fossil species, Shep-
herdia weaveri, was reported from the Lower Oligocene of
Montana (Becker, 1960) and the Miocene of Alaska, USA
(Hollick, 1936). Until now, Elaeagnus tibetensis from the
Upper Eocene of the Mangkang Basin is the earliest mac-
rofossil record in Elaeagnaceae, and the southeastern margin
of the Tibetan Plateau is also the modern diversification
center of Elaeagnaceae (Su et al., 2014).
We can briefly conclude the history of distribution in

Elaeagnaceae based on limited fossil records. Rosales is
considered to originate during the Late Cretaceous (Friis et
al., 2011; Soltis et al., 2011). The discovery of E. tibetensis
suggests that Elaeagnaceae originated in Laurasia by the Late
Eocene, much earlier than the origin during 30–10 Ma esti-
mated by molecular data (Bell et al., 2010). Because fruits of
Elaeagnaceae are colorful and eatable, birds might play im-
portant roles for the dispersal (Shafroth et al., 1995).
Nowadays, only one species, E. commutata, is naturally
distributed in North America. According to fossil records
and modern distribution ranges, Elaeagnaceae might have
migrated between Asia and North America via the Bering
Land Bridge.

3.2 Gerridae (water strider)

The family Gerridae is a kind of common semi-aquatic in-
sects that lives mainly in ponds, lakes, rivers and other wa-
ters in terrestrial ecosystems, and a few species of this group
can also live in seawater (Andersen, 1982). According to the

taxonomy, Gerridae belongs to the order Hemiptera, infra-
order Gerromorpha. The Gerromorpha is widely distributed
around the world, and about 2000 species have been de-
scribed and distributed in temperate, subtropical and tropical
regions up to now (Polhemus and Polhemus, 2008).
The genus Aquarius is one of the three most common and

widespread genera in the living Gerrinae (Gerridae), which is
of great significance to the study of biogeography, evolu-
tionary trend and ecological adaptability of gerrids. There are
few reports on the gerrid fossils, so little is known about the
early evolution and biogeography of the living gerrids. One
fossil gerrid species, Aquarius lunpolaensis (Lin, 1981)
found in the upper and middle Dingqing Formation of the
Lunpola and Nima basins in northern Tibet is very close to
the representative of present A. najas species group in ex-
ternal morphological characteristics. Combining the similar
body shape and leg characteristics of A. lunpolaensis and its
living relatives, it is proved that this kind of extinct gerrine
once lived on the surface of ancient lakes in central Tibetan
Plateau, and may also be the prey of some fish in these lakes
(Wu et al., 2017). Because of its primitive ancestral char-
acteristics, A. lunpolaensis may be a basal taxon of A. najas
group, which is the sister species of three living species (Cai
et al., 2019).
The living A. najas-group is currently distributed in the

western part of the Palearctic only (Damgaard, 2005).
Among them, A. najas is a common Palearctic gerrine in the
west of the Ural Mountains (Andersen, 1990); A. ventralis is
distributed in the Balkans and Levant regions, such as Bul-
garia, Greece, Turkey, Cyprus, Lebanon, and Israel; while A.
ventralis is distributed in the west of the Mediterranean re-
gion, such as France, Italy, Portugal, Spain, and Morocco
(Andersen, 1990; Damgaard, 2005). The discovery of fossils

Figure 2 Local origination and “Out of Tibet” of mammals in the Tibetan Plateau.

177Deng T, et al. Sci China Earth Sci February (2020) Vol.63 No.2



has proved that this group is more widely distributed (Cai et
al., 2019) in the Late Oligocene (23.5–26 Ma, DeCelles et
al., 2007; Sun et al., 2014). The primitive features displayed
by the A. lunpolaensis also indicate that the un-uplifted Tibet
region is an important area for the early evolution of the
genus.

3.3 Arctic fox

Many morphological and physiological characteristics en-
able the Arctic fox Vulpes lagopus to adapt to cold en-
vironments: long and thick hair, 70% villus underneath,
strong body, short ears and legs, thermal circulation system
of feet, and slower metabolic rate in cold environments
(Audet et al., 2002; Prestrud, 1991), while the Tibetan fox V.
ferrilata also boasts (such as thick hair) (Clark et al., 2008).
The most obvious feature of the living Tibetan fox is its long
mouth and short limbs (Clark et al., 2008; Pocock, 1937).
The total-evidence phylogenetic tree of the genus Vulpes
shows that V. lagopus and V. ferrilata form a branch with the
kit fox V. macrotis and the swift fox V. velox (Fuentes-
González and Muñoz-Durán, 2012).
The geological age of Vulpes qiuzhudingi found in Zanda

Basin is 4.42–5.08 Ma, corresponding to the Early Pliocene
(Wang XM et al., 2013). The size of V. qiuzhudingi is similar
to that of the living male V. vulpes, about 20% larger than that
of the living and Late Pleistocene V. lagopus. The difference
between V. qiuzhudingi and all other foxes is that it has more
carnivorous teeth. The sharp talonid of m1-2 is mainly
composed of hypoconid, the entoconid degenerates or dis-
appears, the talonid is shorter, and the m3 is missing. V.
qiuzhudingi was also found in the Pliocene strata of Kunlun
Pass Basin in the northern Tibetan Plateau. Its dental char-
acteristics indicate a higher altitude (4726 m), a younger
geological age, and a higher carnivorous stage (Wang et al.,
2014).
The characteristics of m1-2 of Vulpes qiuzhudingi, which

point to highly carnivorous habit, are different from those of
V. ferrilata. This feature is rarely reversed to a moderate
carnivorous form during the evolution (Tedford et al., 2009;
Wang et al., 1999; Wang, 1994), and high carnivority is often
accompanied by an increase in body size (Van Valkenburgh
et al., 2004), so V. qiuzhudingi and V. ferrilata are of different
evolutionary branches. Studies have shown that V. qiuzhu-
dingi and V. lagopus form a branch that evolved in the cold
environment of the Tibetan Plateau with the V. ferrilata
branch: the former marched to be highly carnivorous and
eventually evolved into V. lagopus, while the latter retained
the primitive characteristics of the teeth and evolved into V.
corsac and V. ferrilata. Isotope analysis indicates that the
Zanda Basin approached the modern average temperature of
0°C in the Pliocene (Saylor et al., 2009) or the annual
average temperature was slightly higher than now (Wang Y

et al., 2013). The Zanda region in the Pliocene had a very low
temperature in winter, while the polar regions of that time
were much warmer than today, with an average annual
temperature of 8°C (Brigham-Grette et al., 2013; Ballantyne
et al., 2010; Csank et al., 2011). This shows that during the
Pliocene, the environment of the Tibetan Plateau was worse
than the Arctic, thus the foxes might face greater challenges
for survival on the plateau.
The discovery of the V. qiuzhudingi traces the history of the

Arctic fox’s ancestor to the Tibetan Plateau (Figure 2). Its era
is much earlier than previously thought, and it has very
special adaptations to extensive carnivority. The real Arctic
fox V. lagopus fossils did not appear in Europe until the Late
Pleistocene (Croitor and Brugal, 2010), when they were
widely spread in most parts of Europe, from Kiev in the east
and Ireland in the west (Kurtén, 1968). The V. lagopus fossils
from Siberia and North America were only found in the Late
Pleistocene (Youngman, 1993; Fortelius, 2018). Similar
types of cold-adapted carnivores that originated in the Plio-
cene Tibetan Plateau migrated to other areas during the
Quaternary Ice Age, include Chasmaporthetes gangsriensis
(Tseng et al., 2013) and Sinicuon cf. dubius (Wang et al.,
2015a) etc. The close relatives of V. lagopuses found on the
Tibetan Plateau and other highly carnivorous species show
that the carnivorous fauna was dominated by the hunting
components, similar to those of the modern Arctic region
(Arctic fox, grey wolf, and polar bear) (Wang et al., 2014).
The extremely cold climate in winter may be an important
selective factor for such an adaptation.

3.4 Snow leopard

The snow leopard Panthera uncia is a typical alpine cat,
distributed in the Tibetan Plateau and its surrounding areas. It
inhabits the bare rock areas of high mountains where are
snow-covered for most of the year. P. uncia is active in the
altitudes from 4000 m to near the snow line. As large living
cats, Pantherinae (including Neofelis nebulosa, N. diardi,
snow leopards, tigers, jaguars, leopards and lions) are among
the top predators in their environment. They play an im-
portant role in today’s ecosystems, but unfortunately, several
of them are much endangered. Little is known about their
evolutionary history before, for which only phylogenetic
analysis of molecular biology can be relied on. According to
the analysis of mitochondrial genome of the genus Panthera
by the scholars including Wei et al. (2011), lions are the
closest related species of P. uncia, while Panthera is com-
posed of tigers, leopards, snow leopards, jaguars and lions.
They also propose that Neofelis nebulosa should be classi-
fied in the genus Panthera.
New pantherine fossil materials are scarce and often con-

flict with the time estimates of molecular phylogenetic
analysis (Davis et al., 2010; Werdelin et al., 2010; Werdelin
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and Peigne, 2010). Molecular studies have shown that the
subfamily Pantherinae has undergone a long evolutionary
history, and explosive radiation has only emerged recently
(Johnson et al., 2006; Davis et al., 2010). According to
molecular biological information, subfamily Pantherinae
should have appeared in the Miocene, while the fossils had
not been clearly recorded until the Pleistocene, hence leaving
a gap of 4 Myr between them. Previously, most of fossil
materials of Pantherinae were poorly preserved and their
systematic positions were unknown, which poses many un-
certainties on the speculations of their origin centers and
intercontinental dispersal routes.
Tseng et al. (2014) reported the Pliocene fossil of Panthera

blytheae found in the Zanda Basin, Tibet. The material in-
cludes a nearly complete skull and some other specimens
with a geological age of 5.95–4.42 Ma., i.e., from Late
Miocene to Early Pliocene (Wang X M et al., 2013). The
fossil record of the subfamily Pantherinae was consequently
advanced by 2 Myr, which bridged the gap of molecular and
morphological speculations on the origin time of Panther-
inae. Integrating morphological and molecular biological
data, including feline DNA sequences (Johnson et al., 2006;
Davis et al., 2010) and mitochondrial DNA sequences of the
extinct Panthera leo spelaea and P. leo atrox (Barnett et al.,
2009), phylogenetic analysis incorporating six living species
and four fossil species of Pantherinae, including P. blytheae,
was carried out, and the historical biogeographical analyses
based on multiple data showed that the subfamily Panther-
inae originated in Asia (Tseng et al., 2014) (Figure 2). The
close relationship between P. blytheae and P. uncia indicates
that the clades of Pantherinae existing in Central Asia might
be distributed initially in the Himalayas and Central Asian
Mountains. According to the composition of the Zanda
fauna, the ecological pattern between the existing snow
leopard and its prey was established in the Tibetan Plateau
several million years ago.

3.5 Ovis (argali sheep)

The living argali sheep (Ovis) is widely distributed in the
mountains and plateaus of the Caucasus, Himalayas, Tibetan
Plateau, Tianshan-Altai, Eastern Siberia, and Rocky Moun-
tains of North America. The domestic sheep Ovis aries is
actually domesticated from the wild argali sheep (Zeuner,
1963). Rezaei et al. (2010) identified six species within Ovis
and divided them into two major branches: one is the Cen-
tral-West Asian branch including the argali O. ammon, urial
O. vignei, and mouflonO. orientalis, and the other is the East
Asian-North American branch including the snow sheep O.
nivicola, Dall sheepO. dalli, and bighornO. canadensis. The
divergence time of these two branches is ca. 2.42 Ma. Bibi et
al. (2012) draw a similar conclusion after combining the
mitochondrial DNA and morphological characteristics in

their analyses.
The fossil records of argali sheep have been found in a few

Quaternary fossil sites in northern China, eastern Siberia,
and Western Europe; however, they have not been found in
the Tibetan Plateau before. Protovis himalayensis discovered
by Wang XM et al. (2016) in the Zanda Basin of the western
Tibetan Plateau is the latest common ancestor of argali
sheep. Its geological age ranges from 5.46 to 3.10Ma (Saylor
et al., 2010a, 2010b), i.e., from the terminal of the Miocene
to the Pliocene (Wang X M et al., 2013). Protovis hima-
layensis is smaller than the living argali sheep. It shares the
dorsal and lateral curved horn core and the initially devel-
oped sinus of horn cores with Ovis in morphology. At the
same time, it has several transitional characteristics that had
evolved towards the analogues in Ovis. According to the
updated cladistic analysis, Protovis fell in the Ovis lineages,
and the resultant interrelationships are consistent with the
dispersal routes of argali sheep’s ancestors from the Tibetan
Plateau or Central Asia to the east and west sides (Wang XM
et al., 2016).
Being the direct ancestor of argali sheep in modern Tibetan

Plateau, Protovis himalayensis also occupied geographic
areas similar to those of the living argali sheep and were
gradually adapted to the high altitude and cold environment
of Pliocene, when other parts of Eurasia (including the high
latitude Arctic) were warmer than the plateau areas (Bal-
lantyne et al., 2010). Their ancestral group evolved rapidly
into forms similar to modern Ovis. By the beginning of the
glacial period at 2.6 Ma, they had already some advantages
in surviving and competing in cold environments, and then
spread rapidly to the periphery of the plateau and beyond,
and finally reached North America in the Late Pleistocene
(Wang, 1988) (Figure 2). As Rezaei et al. (2010) stated, the
systematic relationship and distribution of argali sheep
clearly reflect their migration history: They spread success-
fully to new areas where the speciation occurred. Even in
extremely harsh environments such as the Eastern Siberian
and Alaska Mountains, O. nivicola and O. dalli survived
steadily.
The living argali sheep prefers to move in steep or near

high mountain ranges, and can quickly escape from predators
on relatively flat slopes with the advantages of their slender
legs (Schaller, 1998). During the development of the Zanda
Basin, the paleotopography of the basement rocks emerged
in large quantities in the basin, forming rugged landforms
along the shores of the ancient Zanda lake. These steep cliffs
are likely to provide protection for Protovis himalayensis
from attacks of large predators (Wang X M et al., 2016).

3.6 Coelodonta (woolly rhino)

The last woolly rhino Coelodonta antiquitatis of the Late
Pleistocene is one of the most famous extinct Ice Age ani-
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mals. Having a very strong skeleton, thick fur and huge nasal
horns, the woolly rhino is undoubtedly one of the most famed
rhinos and one of the best-known Pleistocene animals.
However, the lack of fossil records obscures their early
history. Before that, only a small amount of the Coelodonta
materials came from several Chinese sites of ca. 2 Ma
(Teilhard de Chardin and Piveteau, 1930; Chow and Chow,
1965; Kahlke, 1969; Zheng et al., 1985).
Coelodonta thibetana named by Deng et al. (2011) is from

the strata of the Zanda Formation in the Zanda Basin. The
geological age of its fossils is 5.08–3.23 Ma, which is
equivalent to the early and middle Pliocene (Wang X M et
al., 2013). C. thibetana is different from other advanced
woolly rhinos (Kahlke, 1999) in a series of features, e.g., the
weak ossification of its nasal septum, accounting for only
one third of the length of nasal notch (Borsuk-Bialynicka,
1973; Qiu et al., 2004; Kahlke and Lacombat, 2008). Phy-
logenetic analysis shows that C. thibetana is an advanced
dicerorhine. Within the branch of Coelodonta, the members
are positioned following the evolution of derived traits,
passing from C. thibetana, and then C. nihowanensis and C.
tologoijensis, and terminating as C. antiquitatis of the Late
Pleistocene.
The snow-scraping ability of the giant and anteriorly-in-

clined nasal horn may be the most critical adaptation for
Coelodonta thibetana to live in the harsh winter on the Ti-
betan Plateau, which represents the unique evolutionary
advantage of the Coelodonta lineage. Such a simple but
significant “innovation” was formed before the beginning of
the permanent Arctic ice sheet and laid an important pre-
adaptive foundation for the successful flourishing of the
woolly rhino in the Late Pleistocene Ice Age glacial fauna.
Like the long-haired mammoth and the modern yak, the
woolly rhino also has thick hair, which can keep itself warm.
This strongly indicates that it is adapted to the life in the cold
tundra and dry steppe. The broad nasal bones and ossified
nasal septum suggest that Coelodonta thibetana has two
fairly large nasal cavities, which would increase the effi-
ciency of the heat exchange in cold air. In addition to pre-
serving heat with their thick hair and large body, the
combination of skull and nasal horn of the woolly rhino is
also adapted to cold conditions (Deng et al., 2011).
The final representative of the woolly disappeared in the

terminal of the Pleistocene at 10 ka (Kahlke, 1999). In ad-
dition to Coelodonta thibetana, the geological ages and
distribution ranges of other three species of the woolly rhino
are as follows: C. nihowanensis unearthed in northern China
during the Early Pleistocene (ca. 2.5–1.8 Ma ) (Qiu et al.,
2004), C. tologoijensis found in the Siberian Baikal region
and Western Europe during the Middle Pleistocene (ca. 0.75
Ma) (Vangengeim et al., 1966; Kahlke and Lacombat, 2008),
and C. antiquitatis in northern Eurasia during the Late
Pleistocene (Borsuk-Bialynicka, 1973; Kahlke and La-

combat, 2008). Such notable zoogeographical patterns dis-
play a dispersal route from the Tibetan Plateau, which
matches perfectly the phylogenetic interrelationships and
geological chronological sequence. This supports the hy-
pothesis that as the global climate became cool and the cold
environment spread, the ancestors of the woolly rhino mi-
grated from the high-altitude Tibetan Plateau to the high
latitude Siberia (Figure 2) and eventually evolved into one of
the most successful Ice Age animals in the Late Pleistocene
(Kahlke and Lacombat, 2008).

4. Intercontinental dispersal via Tibet

The formation and disappearance of barriers to biotic ex-
changes are the significant factor to determine the modern
global biodiversity (Vermeij, 1991; Klaus et al., 2016). The
collision between the Indian and Eurasian plates changed the
ocean-land spatial distribution pattern, and provided new
conditions for the dispersal of animals and plants. As a result,
substantive biotic exchanges arose between the Indian sub-
continent, which was separated from the Gondwana, and the
Laurasia, and deeply influenced the evolutionary history of
land mammals and plants, especially some forms distributed
in the Indian Ocean Rim.

4.1 Ailanthus (tree of heaven)

There are six woody deciduous or evergreen species in Ai-
lanthus (family Simaroubaceae), which are distributed
naturally in China to the north, northern Australia to the
south, eastern India to the west, and New Guinea to the east
(Nooteboom, 1960; Van Sam and Nooteboom, 2007; Su et
al., 2013; Song and Xu, 2014), with the diversity center lo-
cated in Southeast Asia. According to the molecular-based
phylogenetic analyses, Ailanthus might have diverged in the
family Simaroubaceae by the Late Cretaceous (Clayton et
al., 2009). In China, A. altissima is distributed in temperate
and sub-tropical regions, and some species of Ailanthus are
distributed in the ranges of South Asia to northern Australia
as well as eastern India to New Guinea (Nooteboom, 1960;
Song et al., 2014).
Samara fossils of Ailanthus have been discovered from the

Cenozoic sedimentary strata, and were classified to two or
three fossil species (Corbett and Manchester, 2004; Su et al.,
2013; Song et al., 2014). Recently, well-preserved samara
fossils of Ailanthus were found from three sites in Lunpola
and Nima basins, central Tibetan Plateau, which was named
as a new species, i.e., A. maximus. The geological age of
these fossils from Niubao Formation in Jianglang of Lunpola
Basin is the Late Paleocene to the Early Eocene, whereas the
age of fossils from Dingqing Formation in Dayu of Lunpola
Basin, and Nima Basin is the Late Oligocene (Liu et al.,
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2019). The discovery of A. maximus not only expands the
spatial distribution of Ailanthus during the Paleogene, but
also suggests that the Tibetan Plateau might have played an
important role in the floristic exchange between Gondwanan
India and North Hemisphere. Therefore, the evolutionary
history of Ailanthus needs to be reconsidered.
According to the fossil records, Ailanthus was previously

considered to originate from western North America or
eastern Asia in Early Eocene, and radiate to Europe and
South Asia during the Oligocene (Corbett and Manchester,
2004; Song et al., 2014). Recently, wood fossils of Ai-
lanthoxylon from the Deccan Plateau in India were checked
again and identified as Ailanthus based on detailed mor-
phological investigation, and they are usually found from the
latest Cretaceous to the earliest Paleocene of that plateau,
comprising the earliest fossil record of Simaroubaceae
(Wheeler et al., 2017). These fossil records from the Deccan
Plateau are much older than any other known Ailanthus
fossils, which indicates that Ailanthus might originate from
India.
Based on fossil records from northern Tibet, we note that

Ailanthus spread from India into central Tibetan Plateau after
the collision between Indian and Eurasian plates. For some
taxa, the Gangdese Mountains at the south side of the Tibetan
Plateau did not hamper the biotic exchanges, this condition
existed in some other taxa (Shukla et al., 2016; Chen et al.,
2017), frogs (Bossuyt and Milinkovitch, 2001; Li et al.,
2013), and mammals (Clyde et al., 2003; Rose et al., 2014;
Bai et al., 2018). During the Early Eocene, Ailanthus spread
into northern Asia from central Tibetan Plateau, then into
North America via the Bering land bridge. During the
Middle Eocene, Ailanthus spread into Kazakhstan and other
parts of Central Asia, and eventually arrived in Europe
(Figure 3). The Middle Eocene fossil record from Kazakh-
stan might not be the earliest record of Ailanthus in this
region, because the climate conditions in the Junggar Basin
of Xinjiang Autonomous Region, and Kazakhstan during the
Late Paleocene to Early Eocene were quite similar to these in
eastern China at the same period according to mammal fossil
records (Ni et al., 2016). After the Eocene, fossil records of
Ailanthus had been widely reported in the North Hemi-
sphere. Two samara fossil species of Ailanthus, namely A.
confucii and A. tardensis from Europe and South China re-
spectively, suggest that this genus had diversified rapidly in
Europe and East Asia during the Oligocene.
The occurrence of Ailanthus and palms during the latest

Paleocene and Late Oligocene in the central Tibetan Plateau
(Wu et al., 2017; Liu et al., 2019; Su et al., 2019a) suggests
that tropical to subtropical lowlands existed in Bangong-
Nujiang suture zone during the Paleogene, which had pro-
vided suitable environments for the floristic exchange and
dispersal during Indian and Eurasian plates. These lowlands
were distributed along major sutures of the Tibetan Plateau,

and did not rapidly uplift even during the Early Eocene to the
latest Oligocene, when large mammals could migrate be-
tween the south and north sides of the plateau (Deng and
Ding, 2015; Deng et al., 2019) (Figure 3).

4.2 Anabantidae (climbing perches)

Anabantidae belongs to Anabantoidei (Perciformes in the
traditional sense), which also includes the Helostomatidae
(kissing gouramies) and Osphronemidae (giant gouramies).
There are nearly 30 species of freshwater anabantids in South
Asia and sub-Saharan Africa (Berra, 2007). The genus
Anabas is distributed in Asia and the remaining species in
Africa (Norris, 1994). The disjunctive distribution pattern of
anabantids between Asia and Africa is a long-standing
zoogeographic puzzle (Rüber et al., 2006). Previous con-
jectures include “vicariance caused by Gondwanan con-
tinental drift”, that is, anabantids might have originated in
Gondwanan continent, hitchhike on the drifting Indian sub-
continent which split from the Gondwana in the Early Cre-
taceous (ca. 165–121 Ma) and eventually arrived in Asia
(Skelton, 1980). It is also believed that anabantids might
have originated in Asia followed by their invasion into
Africa in the Late Eocene. But these inferences are lack of
solid evidence and historical details (Darlington, 1957;
Liem, 1963; Bowmaker et al., 1978), especially fossil evi-
dence (Rüber et al., 2006).
The drift of the Indian plate after its separation from the

Gondwana is often thought to have imported many Gond-
wanan species into Asia (Chatterjee et al., 2017) and that can
be used to explain the distribution history of certain organ-
isms around the Indian Ocean (Rosen, 1978; Stiassny, 1991).
Freshwater fishes are ideal candidates for zoogeographic
research because of their lack of ability to cross water sys-
tems and large marine barriers (Rüber et al., 2006; Capo-
bianco and Friedman, 2019).
Recently, anabantid fossils have been discovered in the

Late Oligocene strata in the central part of the Tibetan Pla-
teau. As the most complete and primitive anabantid known to
date, it has mosaic features of Asian and African anabantids,
which provides the possibility to solve problem concerning
the evolutionary history of this group (Wu et al., 2017).
Based on molecular-based phylogeny, Wu et al. (2019)
analyzed a series of related fossil species such as Eoanabas
thibetana into the phylogeny of the Anabantoidei, and con-
strained the anabantoid molecular clock with the above
fossils. Results of the analysis show that the anabantids may
have originated in Southeast Asia in the Middle Eocene and
then spread to Tibet due to the existence of the inter-
connected water systems (Wu et al., 2017). With the com-
pletion of the India-Asia collision (Ding et al., 2017) and the
closure of the Tethys Ocean (i.e., the end of the highest
marine horizon), anabantids spread to the Indian sub-
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continent and to African continent around 40 Ma through
some biological communication channels between Indian
subcontinent and African continent (Wu et al., 2019). The
anabantid lineage represented by Eoanabas thibetana in
Tibet lived there at least until the Late Oligocene, and dis-
appeared with the cool environment brought about by the
uplift of the Tibetan Plateau in the Neogene (Deng et al.,
2019).
Biological exchanges between the Indian plate and the

Afro-Arabian plate persist after their collision with Eurasia
(Chatterjee et al., 2017). In freshwater fishes, the fossil re-
cord of channids indicates a close relationship between an-
cient fish in the northeastern Africa and the Indian
subcontinent (Murray and Thewissen, 2008). During this
period, anabantid precursors might also spread along this
path, and their ability to breathe the air and crawl on land
contributes to this dispersal (Norris, 1994; Berra, 2007), and
ultimately achieved a high diversity in African continent
where there might be little competition for survival
(Gheerbrant and Rage, 2006; Norris, 1994).

5. Discussion and conclusion

The above-mentioned three patterns are the current cen-
tralized expressions on the evolutionary history of the Cen-
ozoic biodiversity of the Tibetan Plateau, covering a variety
of animal and plant categories which corresponds to the

major trophic levels of the ecosystem. Admittedly, we also
recognize that the evolutionary history of some groups may
be more complicated, and more evidence is needed for
deeper analysis, e.g., the aquatic lytnraceae Hemitrapa al-
pina, their early fossil records have been found in Tibet, but
there is a lack of fossil records in adjacent areas and of
different geological ages (Su et al., 2019b). Thus, it is too
early to describe their biogeographical history and its re-
lationship with the Tibetan Plateau. In the end of Paleogene,
there was differentiation of Koelreuteria (Sapindaceae) in
northern Tibet, and the earlier fossil records of this group
were recorded in the Russian Far East, Northeast China, and
North America in mid-latitudes, and also in Europe (Jiang et
al., 2018). Therefore, the addition of fossil materials will
help to interpret the history of the whole Koelreuteria group
in more details. With the start of the Second Comprehensive
Scientific Expedition on the Tibetan Plateau, the fossil re-
cords of the plateau are accumulating rapidly, including
some fossil groups recorded for the first time in the plateau
area or even in Eurasia, which will greatly expand the spatial
and temporal distribution of the relevant groups and enrich
the knowledge on biogeographic history on the plateau under
the background of environmental changes during the geo-
logical period.
The huge environmental changes since the Cenozoic in the

Tibetan Plateau have posed a profound impact on the eco-
system. From a large temporal and spatial perspective, the
Tibetan Plateau is an “Evolutionary Junction” for the evo-

Figure 3 Intercontinental dispersals via Tibet, taking Ailanthus and climbing perches as examples.
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lution of modern biodiversity. The changes in land-sea dis-
tribution caused by the plate collisions, the uplift promoted
by tectonic activities and the cooling of the climate have
shaped the evolution of various organisms in this region.
This historical process is manifested in promoting the local
origin of endemism (e.g., Schizothoracinae) featuring “As-
cent with Modifications”; promoting the local origin of cold
adaptation (ancestors of Ice Age fauna) or specialized spe-
cies (subfamily Pantherinae) and then spreading to the sur-
rounding areas; or bridging for those species that originated
outside the plateau but once stationed in Tibet (e.g., Ai-
lanthus and anabantids) for their intercontinental dispersal.
The complexity of the environmental change process on the
Tibetan Plateau is also reflected in its impact on the biotic
world. The above-mentioned three patterns can only partially
reflect the evolutionary history of the plateau biodiversity.
The increasing discoveries and in-depth study of a large
number of fossil materials will greatly contribute to im-
proving the research on the life history of the plateau region,
and will provide more detailed evidence for the deep analysis
of the coupling relationship between life and environment in
the context of plateau uplift.
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