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Abstract Scleractinian corals host numerous microbial symbionts with different types of interactions. The gastric cavity of
scleractinian coral, as a semiclosed subenvironment with distinct chemical characteristics (e.g., dissolved O2, pH, alkalinity, and
nutrients), harbors a distinct microbial community and a diverse array of bacteria that can be pathogenic or beneficial. Galaxea
fascicularis is one of the dominant massive scleractinian coral species on inshore fringing reefs in the northern South China Sea.
Although the abundance of coral-associated bacteria has been investigated in G. fascicularis, less is known about the micro-
organisms in the gastric cavity. In this study, we specially isolated cultivable bacterial strains from the gastric cavity of G.
fascicularis collected from Hainan Island using a noninvasive sampling approach. Among the 101 representative bacterial
strains, one Vibrio coralliilyticus strain, SCSIO 43001, was found to be a temperature-dependent opportunistic pathogen of G.
fascicularis. The antagonistic activity between the 100 strains and V. coralliilyticus SCSIO 43001 was tested using a modified
Burkholder diffusion assay. Our results showed that V. coralliilyticus SCSIO 43001 inhibits the growth of Erythrobacter flavus
and Sphingomonas yabuuchiae. Additionally, we found that three Pseudoalteromonas strains showed moderate to high anti-
bacterial activity against V. coralliilyticus SCSIO 43001 and several other coral-associated Gram-negative bacterial strains.
These results suggest that competition between the coral pathogen and other bacteria also occurs in the gastric cavity of coral, and
Pseudoalteromonas strains in the gastric cavity of G. fascicularis may provide a protective role in the defense against co-
inhabiting coral pathogens at elevated temperature.
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1. Introduction

Scleractinian corals function as the primary reef ecosystem

engineers, constructing the framework and shaping the re-
source availability for other coral reef-associated organisms
(Jones et al., 1994). Despite being one of the simplest me-
tazoans, corals harbor some of the most highly diverse and
abundant microbial communities. Manipulation of the coral-
associated microbiome was postulated as a key strategy to
improve the resilience of reef-building corals (Rosenberg et
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al., 2007; Zilber-Rosenberg and Rosenberg, 2008; Bosch and
McFall-Ngai, 2011; Sachs et al., 2011; Bosch, 2013; McFall-
Ngai et al., 2013; van Oppen et al., 2015). A recent attempt to
mitigate the bleaching of the scleractinian coral Pocillopora
damicornis when exposed to increased seawater temperature
has been successful through the addition of native putatively
beneficial microorganisms isolated from coral (Rosado et al.,
2018).
Galaxea fascicularis, a species of massive reef-building

coral of the family Oculinidae, is widely distributed in the
Red Sea, the Gulf of Aden and the Indo-Pacific oceans
(Veron, 2000). It is also a representative dominant species on
inshore fringing reefs in the northern South China Sea (Yu,
2012; Chen et al., 2013). The diversity and structure of
bacterial communities and Symbiodinium associated with G.
fascicularis from the South China Sea were analyzed (Gong
et al., 2018); (Li et al., 2013). Using massively parallel
sequencing of the 16S rRNA gene, the coral-associated mi-
croorganisms of G. fascicularis collected from five different
locations in the South China Sea were compared and as-
signed to Alphaproteobacteria, Betaproteobacteria, Gam-
maproteobacteria, Bacteroidetes, Cyanobacteria,
Thaumarchaeota, and Euryarchaeota (Cai et al., 2018).
Microhabitats found on and within coral structures support

diverse microbial communities and influence microbial
function within the coral holobiont. Coral tissue, mucus, and
skeleton microbiomes differed in richness and microbiome
composition (Herndl and Velimirov, 1985; Agostini et al.,
2012; Pantos et al., 2015; Liang et al., 2017; Rosado et al.,
2018). Although microbes have been isolated from the en-
dolith, digestive tracts and endosymbiotic zooxanthellae,
most commonly studied coral-associated microorganisms
have been recovered from the coral surface mucus layer
(Shnit-Orland and Kushmaro, 2009; Agostini et al., 2012;
Shnit-Orland et al., 2012). Coral pathogens such as Vibrio
shilonii, Vibrio coralliilyticus and Serratia marcescens have
been characterized as causal agents of coral bleaching under
elevated temperature (Rosenberg et al., 2007). Indeed, S.
marcescens and Vibrio dominate mucus microcosms under
laboratory conditions (Sharon and Rosenberg, 2008; Krediet
et al., 2009). When their ability to efficiently use mucus is
disrupted, the virulence of the pathogen is attenuated (but not
abolished), probably owing to the inability of the pathogen to
establish within the surface mucopolysaccharide layer
(Krediet et al., 2013).
All corals have a common structure: Two tissue layers

enclose a lumen, which forms the gastric cavity. The coral
gastric cavity can be described as a semiclosed subenviron-
ment within the coral with distinct chemical characteristics
(e.g., dissolved O2, pH, alkalinity, and nutrients), and it also
harbors a distinct bacterial community (Agostini et al.,
2012). Earlier studies showed that the gastric cavity of
scleractinian coral harbors a high bacterial abundance and a

specific bacterial community (Herndl and Velimirov, 1985;
Agostini et al., 2012). Bacterial communities residing in the
gastric cavity may be either pathogenic or beneficial. How-
ever, the microorganisms in the gastric cavity of G. fasci-
cularis are much less explored. In contrast to branching
corals, G. fascicularis has a relatively large polyp and gastric
cavity. Taking advantage of this feature ofG. fascicularis, we
designed a noninvasive sampling approach to isolate bacteria
from the gastric cavity of each corallite to collect fluid
samples. We selected representative strains isolated from the
gastric cavity of G. fascicularis. One of the isolated strains,
V. coralliilyticus SCSIO 43001 (hereafter referred to as
SCSIO 43001), was found to be a temperature-dependent
pathogen of G. fascicularis. Three Pseudoalteromonas
strains demonstrated medium to high levels of extracellular
antibacterial activity against SCSIO 43001 and several other
coral-associated Gram-negative bacterial strains. These re-
sults suggest that three Pseudoalteromonas strains in the
gastric cavity ofG. fascicularismay provide a protective role
in the defense against potential coral pathogens at elevated
temperature.

2. Materials and methods

2.1 Ethics statement

Permits for coral sampling were provided by the Manage-
ment Office of Sanya National Coral Reef Nature Reserve
(China), and the Department of Ocean and Fisheries of
Hainan Province.

2.2 G. fascicularis collection

Coral and seawater samples were collected in July 2011 from
the Luhuitou fringing reef (18°13′N, 109°28′E), Sanya,
Hainan province, China. G. fascicularis colonies were
sampled at a depth of 3–5 m using a punch and hammer. The
temperature of the ambient sea water was approximately 27–
28°C, the average pH was 8.78±0.01, and the salinity was 34.
Triplicate samples of each species were collected. The in-
terval distance of sampling was 0.5 m. All nine samples were
washed with autoclaved sea water and then placed in sterile
plastic bags. Ambient sea water was collected into sterile
plastic bottles and then filtered through a 0.22-µm poly-
carbonate filter membrane (Millipore). All samples were
frozen at ~80°C until DNA extraction.

2.3 Isolation and identification of gastric bacteria

Healthy coral and artificially bleached coral after heat
treatment in lab were used for isolating bacteria from gastric
cavity. Briefly, a 50 μL syringe with a long metal needle
could penetrate into the gastric cavity of each corallite for
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collection of fluid samples. To alleviate the possible damage
to the coral tissue and skeleton, the needle was carefully
placed into the space between the primary and the secondary
septa. Approximately 10–20 μL of fluid was collected from
each corallite, and the sampled coral remained alive after
sampling. Samples were diluted and plated on marine broth
2216 agar plates, and 100 µL of different concentrations of
fluid were spread over 15% marine broth 2216 (BD Difco)
agar plates. After incubation for 1–2 days at 30°C, bacteria
exhibiting unique colony morphology were subcultured for
purification under the same growth conditions. Each isolate
was amplified from its 16S rRNA gene using the universal
eubacteria primers (Weisburg et al., 1991) 27F (5′-
AGAGTTTGATCMTGGCTCAG-3′) and 1492R (5′-
TACGGYTACCTTGTTACGACTT-3′). All the amplified
sequences were compared with those available in the Ez-
Taxon Database (Kim et al., 2012). All the strains used in this
study (Appendix Table S1, https://link.springer.com) were
cultured in marine broth 2216 medium.

2.4 G. fascicularis bleaching assay

The G. fascicularis fragments used for the beaching assay
were from the same coral colony and two fragments were
used in each treatment. All fragments were cultured for 7
days after defragmentation before use. Each fragment was
placed into a 4 liter container filled with 3 liters of seawater
and the previously described culture conditions (Ushijima et
al., 2014) (Ushijima et al., 2012) with the following mod-
ification. SCSIO 43001 was added at a final concentration of
5×106~1×107 CFU mL−1 to 3 liters tank water. The sterile
seawater was replaced and the SCSIO 43001 culture was
added at the same final concentration every 12 h. The pro-
cess was repeated for two days. During the two days, the
incubation temperature of the coral was maintained at 26°C.
On the third day, the incubation temperature was increased to
32°C, and SCSIO 43001 was no longer added. The sterile
seawater was replaced every 12 h, and the incubation tem-
perature was maintained at 32°C for 2 days. Images of the
fragments were taken every 12 h. Sterile seawater was used
as a negative control.

2.5 Modified Burkholder diffusion assay

A modified Burkholder diffusion assay (Burkholder et al.,
1966) was used for screening the strains that had inhibitory
activity against the growth of SCSIO 43001. To make the test
soft agar plate, 200 µL of SCSIO 43001 (OD600~4.9) was
mixed with 20 mL of 2216 agar to reach a final agar con-
centration of 0.75% in the plate. Then, 10 µL of the over-
night culture of each test strain was spotted onto the plates. A
strain with an inhibition zone was considered an antagonistic
strain. The same soft agar plate without SCSIO 43001 was

used as a negative control for this assay. The assay was
repeated at least three times independently with two re-
plicates each time.

2.6 Screening the antibacterial activity of the antag-
onistic bacteria

The supernatants of the overnight cultures (~12 h) were
collected by centrifugation at 5000 g for 5 min and then
filtered through a 0.22 µm pore membrane filter. Three dif-
ferent proportions (4:1, 2:2, and 4:3) between the level of
sterile marine broth 2216 and the cell-free supernatants of
Pseudoalteromonas spp. SCSIO 43201, SCSIO 43202 and
SCSIO 43203, respectively, were used to culture SCSIO
43001. Strain Halomonas meridiana 214, which does not
inhibit the growth of SCSIO 43001 using the modified
Burkholder diffusion assay, was used as a controlled strain.
Then, the growth of SCSIO 43001 was measured in 96-well
plates using a microplate reader set at 595 nm. The methods
of culturing the test strains with the supernatants of SCSIO
43001 were as mentioned above.

2.7 Nucleotide sequence accession number

16S rRNA gene sequences of these 101 bacterial strains in
Appendix Table S1 are deposited in GenBank under the
accession numbers MK801563–MK801663.

3. Results

3.1 Noninvasive sampling of gastric bacteria from G.
fascicularis

G. fascicularis has relatively large polyps, and the average
diameter of the corallite of adult polyps (>12 septum) is 2–4
mm. This feature allows us to use a noninvasive approach to
obtain gastric bacteria from live G. fascicularis. When re-
moved from seawater, the top edge of the corallites was
exposed, and the septa became visible due to the contraction
of tentacles (Figure 1a). Then, a 50 μL syringe with a long
metal needle was used to penetrate into the gastric cavity of
each corallite to collect fluid samples (Figure 1b). To alle-
viate the possible damage to the coral tissue and skeleton, the
needle was carefully placed into the space between the pri-
mary and the secondary septa (Figure 1b). Approximately
10–20 μL of fluid was collected from each corallite, and the
sampled coral remained alive after sampling. The fluid was
diluted and plated on a marine broth 2216 agar plate to
isolate indigenous pathogens or probiotics that coinhabit the
gastric cavity (Figure 1c). A total of 101 bacterial strains
were isolated and identified using the 16S rRNA gene (Ap-
pendix Table S1). For the healthy G. fascicularis, the culti-
vable bacterial strains were dominated by Proteobacteria,
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including those from the genera Alteromonas, Pseudoalter-
omonas,Halomonas, Pseudovibrio, Erythrobacter, Ruegeria
and Vibrio (Figure 1d).

3.2 V. coralliilyticus accelerated the bleaching of G.
fascicularis

Vibrio coralliilyticus has been shown to be a temperature-
dependent pathogen of scleractinian corals such as Pocillo-
pora damicornis (Garren et al., 2016; Rosado et al., 2018),
Acropora cytherea (Ushijima et al., 2016), Oculina patago-
nica (Rubio-Portillo et al., 2016) and Mussismilia brazi-
liensis (Chimetto Tonon et al., 2017). The 16S rRNA gene of
one isolate, SCSIO 43001, showed 99.17% similarity to that
of V. coralliilyticus strain OCN014. Thus, we selected
SCSIO 43001 as a candidate pathogenic strain for G. fasci-
cularis (Figure 2a).
To explore whether gastric bacteria affect the bleaching of

G. fascicularis under elevated temperature, we conducted an
immersion-based infection assay. To perform the infection
assay, SCSIO 43001 was added at a final concentration of
5×106 ~1×107 CFU mL−1 to 3 liters tank sea water and was
acclimated at 26°C for 2 days before the temperature was
increased to 32°C for 2 days (Figure 2b). The results showed
that coral immersed with SCSIO 43001 showed severe signs
of bleaching at the coenosarc area (Figure 2c). Moreover,
strains that belong to V. coralliilyticus were also isolated
from the gastric cavity of the bleached coral at elevated
temperature (Appendix Figure S1, https://link.springer.com).

Thus, SCSIO 43001 is a temperature-dependent pathogen of
G. fascicularis.

3.3 Antagonism between SCSIO 43001 and other bac-
teria in the gastric cavity

To identify candidate probiotics, the antibacterial activities
of other isolates against SCSIO 43001 were tested by mod-
ified Burkholder diffusion assays. As shown in Figure 3a and
Appendix Figure S2, three Pseudoalteromonas strains
showed medium to high levels of antibacterial activity
against SCSIO 43001. These strains are renamed Pseu-
doalteromonas sp. SCSIO 43201, P. elyakovii SCSIO 43202
and P. elyakovii SCSIO 43203 (hereafter referred to as
SCSIO 43201, SCSIO 43202 and SCSIO 43203). To test
whether the three Pseudoalteromonas strains secrete extra-
cellular antibacterial substances, we assessed the growth of
SCSIO 43001 in 2216 marine broth supplemented with the
supernatant of the antagonists. The supernatant of 12 h cul-
tures collected by filtering through a 0.22 µm pore mem-
brane was then added at different proportions, and the growth
of SCSIO 43001 was measured over time. The growth in-
hibition of SCSIO 43001 was positively correlated with the
increasing proportion of supernatant of three Pseudoalter-
omonas strains added to the medium (Figure 3b–3e). Among
the three Pseudoalteromonas strains, SCSIO 43201 demon-
strated the strongest inhibition to SCSIO 43001 and com-
pletely inhibited the growth of SCSIO 43001 when the
supernatant was added at 75% (Figure 3b).

Figure 1 Noninvasive sampling of gastric bacteria from G. fascicularis. (a) Fragment of G. fascicularis under sea water (left panel) and the corallites
exposed (middle panel). The primary septum and secondary septum are shown in the live coral (middle panel) and in the coral skeleton (right panel). (b) Fluid
sample was collected by putting the syringe with a long metal needle into the gastric cavity between the primary septum and secondary septum of each
corallite. (c) A representative agar plate (2216 medium) shows the diverse morphology of the cultivable bacteria collected from the gastric cavity. (d) The
distribution of the 101 cultivable bacterial strains isolated from the gastric cavity was assessed by 16S rRNA sequencing. Strains from different genera are
marked by different colors, and the numbers on the pie chart indicate the parentage of each genus.
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Additionally, we found that SCSIO 43001 can inhibit the
growth of four Erythrobacter flavus strains and one Sphin-
gomonas yabuuchiae strain (Figure 4a). All four Ery-
throbacter flavus produce yellow pigments, and the growth
and pigment production was inhibited by SCSIO 43001.
Similarly, the supernatant of 12 h cultures of SCSIO 43001
collected by filtering through a 0.22 µm pore membrane was
then added at different proportions and the growth of these
five strains was measured over time. Except for the Sphin-
gomonas yabuuchiae strain, no positive correlation was
found between the growth inhibition of the four strains and
the amount of supernatant of SCSIO 43001 added (Figure
4b–4f). These results suggest that antagonistic interactions
between the opportunistic coral pathogen and other co-in-
habiting bacteria in the gastric cavity are common and
complex.

3.4 Antagonistic activity of Pseudoalteromonas against
other strains

Next, we further tested the antagonistic activity of Pseu-
doalteromonas against other bacterial strains isolated from
the gastric cavity of coral. As shown in Figure 5a, SCSIO

43201 showed strong inhibition of the other three Vibrio
strains, V. parahaemolyticus, V. tubiashii and V. harveyi.
Both SCSIO 43202 and SCSIO 43203 inhibited V. para-
haemolyticus and V. harveyi but not V. tubiashii. Noticeably,
the nonpigmented strain SCSIO 43203 showed the strongest
inhibition of V. parahaemolyticus and V. harveyi. Ad-
ditionally, SCSIO 43201 and SCSIO 43203 inhibited Alter-
omonas macleodii and Ruegeria conchae. SCSIO 43202 and
SCSIO 43203 inhibited Erythrobacter flavus and Sphingo-
monas yabuuchiae.
Furthermore, as one of the dominant genera in the coral-

associated microbial community, a high diversity of Pseu-
doalteromonas was also found. Thus, the interplay among
different strains of Pseudoalteromonas was also tested here.
As shown in Figure 5b, the density of the colony formed by
SCSIO 43201, SCSIO 43202 and SCSIO 43203 on agar
plates was all reduced in the presence of SCSIO 43201,
suggesting that SCSIO 43201 might be able to control the
abundance of Pseudoalteromonas in the coral holobiont.
Indeed, cell lysis occurred during the growth of SCSIO
43201 (Figure 5c), suggesting that lytic phages or other
agents with lytic activity may provide antagonistic activity
against Pseudoalteromonas and Vibrio strains.

Figure 2 V. coralliilyticus SCSIO 43001 accelerated the bleaching of G. fascicularis. (a) Scanning electron micrographs of SCSIO 43001. (b) Growth (OD
at 600 nm) and cell viability (CFU mL−1) at three different temperatures over time in marine broth 2216. Error bars indicate the standard error of the mean
(n=3). (c) Images of the G. fascicularis fragments before and after immersion with (lower panel) or without (upper panel) SCSIO 43001. Cultured G.
fascicularis fragments prior to 32°C treatment (left panel) and under 32°C treatment for 8 days (right panel). Two independent fragments were examined, and
only one representative image of each fragment is shown here.
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4. Discussion and conclusions

In this study, we demonstrated that three Pseudoalteromonas
from the gastric cavity of coral G. fascicularis holobionts are
antagonists against SCSIO 43001 and coral-associated
Gram-negative bacterial strains. Strains of Pseudoalter-
omonas are widely spread in various marine environments
and are commonly found to be associated with eukaryotic
hosts, including corals. Many Pseudoalteromonas strains
commonly produce a variety of biologically active extra-
cellular compounds, including pigmented secondary meta-
bolites, extracellular enzymes and extracellular
polysaccharide (EPS) (Kalinovskaya et al., 2004; Bowman,
2007; Yang et al., 2007; Feher et al., 2010; Vynne et al.,
2011; Yu et al., 2012). Pigments are organic compounds that

confer characteristic colors to living tissues and are usually
involved in vital processes (Liu and Nizet, 2009; Soliev et
al., 2011). The Pseudoalteromonas genus has been divided
into two clades based on differences in pigment production.
It has been suggested that pigmented strains produce more
active compounds. Strains of SCSIO 43201 and SCSIO
43202 produce yellowish and orange-like pigments, while
SCSIO 43203 is a nonpigmented strain. Our results showed
that the nonpigmented strain also has a high level of anti-
bacterial activity.
Among the three Pseudoalteromonas strains, one strain,

SCSIO 43201, demonstrated the strongest inhibition against
SCSIO 43001 but also demonstrated the broadest range of
antimicrobial activity among the 100 tested strains. In par-
ticular, SCSIO 43201 can inhibit the growth of strains of

Figure 3 Antagonism between SCSIO 43001 and three Pseudoalteromonas strains. (a) A modified Burkholder diffusion assay was used for screening the
strains that can inhibit the growth of SCSIO 43001. To make the test soft agar plate, 200 µL of SCSIO 43001 (OD600~4.9) was mixed with 20 mL of 2216
agar to reach a final agar concentration of 0.75% in the plate. Then, 10 µL of the overnight culture of each of three Pseudoalteromonas strains was spotted
onto the plates. The growth of SCSIO 43001 was measured with the addition of supernatant collected from the overnight culture of SCSIO 43201 (b), SCSIO
43202 (c) and SCSIO 43203 (d). Strain Halomonas meridiana 214, which does not inhibit the growth of SCSIO 43001 using the modified Burkholder
diffusion assay, was used as a control strain (e). Three different proportions of supernatant of each strain were used, and the growth of SCSIO 43001 was
measured in 96-well plates using a microplate reader set at 595 nm. Error bars indicate the standard error of the mean (n=3) in (b)–(e).
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Alteromonas, Ruegeria and Pseudoalteromonas. It has been
recently reported that strains of Ruegeria sp. isolated fromG.
fascicularis can also inhibit the growth of V. coralliilyticus
(Miura et al., 2019). The genus Ruegeria contains a wide
variety of bacteria that can produce various bioactive mo-
lecules, including quorum-sensing molecules (Sonnenschein
et al., 2017), cyclic dipeptides (Mitova et al., 2004), and
small noncoding RNAs (Rivers et al., 2016). A recent at-
tempt to mitigate the bleaching of the scleractinian coral
Pocillopora damicornis when exposed to increased seawater
temperature has been successful through the addition of five
Pseudoalteromonas strains isolated from coral (Rosado et
al., 2018). Due to the strong inhibition of both coral patho-
gens and putative beneficial bacteria, it remains to be de-
termined whether SCSIO 43201 can provide benefits to G.
fascicularis and improve the resilience of G. fascicularis.

Consistent with previous reports (Kim, 2006; Littman et
al., 2010), we also observed a shift towards Vibrio strains in
the cultivable bacteria in the gastric cavity of G. fascicularis
when explored at elevated temperatures (Appendix Figure
S2). In this study, we showed that SCSIO 43001 inhibits the
growth of Erythrobacter flavus and Sphingomonas ya-
buuchiae. Other Vibrio strains, such as V. owensii and V.
shilonii, might have antimicrobial activity against other
strains co-inhabiting the gastric cavity. Bacteria can elim-
inate competitors mainly through contact-dependent and
contact-independent strategies (Cornforth and Foster, 2015;
Stubbendieck and Straight, 2016). The direct contact-de-
pendent strategy is mainly through the type VI secretion
system (Basler et al., 2013; Speare et al., 2018), and the
contact-independent mechanism includes the secretion of
bacteriocins, antimicrobial compounds and chemical sig-

Figure 4 SCSIO 43001 inhibits the growth of Erythrobacter flavus and Sphingomonas yabuuchiae. (a) A modified Burkholder diffusion assay, as
mentioned above, was used to screen the strains that were inhibited by SCSIO 43001. Ten microliters each of E. flavus and S. yabuuchiae strains were spotted
onto the plates. Growth of E. flavus 004 (b), E. flavus 005 (c), E. flavus 009 (d), E. flavus 026 (e) and S. yabuuchiae 008 (f) was measured with the addition of
supernatant collected from the overnight culture of SCSIO 43001. Three different proportions of the supernatant of SCSIO 43001 were used, and the growth
of the test strains was measured in 96-well plates using a microplate reader set at 595 nm. Error bars indicate the standard error of the mean (n=3) in (b)–(f).

163Tang K, et al. Sci China Earth Sci January (2020) Vol.63 No.1



naling molecules (Chao and Levin, 1981; Hibbing et al.,
2010; Tang et al., 2019). We found that Pseudoalteromonas
strains inhibit SCSIO 43001 through extracellular anti-
bacterial compounds while the inhibition of SCSIO 43001
against other native bacteria is not dependent on the secretion
of extracellular compounds. Type VI secretion system is
common in vibrios and was found to enable V. cholerae to
attack members of gut microbiota of mice in vivo and pro-
mote the pathogen’s colonization (Zhao et al., 2018). Further
experiments are required to determine whether the antag-
onistic activity of SCSIO 43001 is dependent on the type VI
secretion system.
The species and functions of coral gut bacteria are not well

studied, although it has been recognized that distinct mi-
croorganisms inhabit in different parts of corals, such as
surface mucus layer, coral tissue, gastric cavity and skeleton
(Peixoto et al., 2017). It was previously reported that the gut
microbiota of corals is similar with free-living communities
in the surrounding environment (Ley et al., 2008). However,

Agostini and colleges discovered that microbes inhabiting
the gastric cavity of G. fascicularis are similar with those in
the gut of other animals (Agostini et al., 2012). This incon-
sistent may be caused by the unavailable sampling of the
gastric cavity of corals with small polyps. The relatively
large polyps of G. fascicularis enable us to specifically
sampling and study of the microorganisms in the gastric
cavity. We isolated bacterial strains belonging to the families
of Sphingomonadaceae and Rhodobacteraceae from the
gastric cavity of G. fascicularis, which is similar with pre-
viously reported (Agostini et al., 2012). Vibrio spp. were
commonly found in surface mucus layer of bleaching corals.
It was recently found that V. coralliilyticus initially accu-
mulated in the gastrovascular system and then spread to the
surface mucus layer (Gavish et al., 2018). We also isolated
Vibrio spp. from the gastric cavity of healthy and bleaching
G. fascicularis, which suggests that internal Vibrio spp. may
proliferate and cause coral disease under heat stress.
Although corals lack an adaptive immune system, it was

Figure 5 Antagonistic activity of Pseudoalteromonas against other strains. Antagonistic activity of the three antagonistic bacteria against other coral-
associated Gram-negative bacterial strains (a) and Pseudoalteromonas strains (b). Each genus in the upper part of the photos was mixed with 20 mL of 2216
agar to reach a final agar concentration of 0.75% in the plate. Each genus in the left of the photos was spotted onto the soft agar plates. Two independent
cultures were conducted, and only one representative image of each strain is shown here. (c) Cell viability (CFUs mL−1) of three Pseudoalteromonas strains
was calculated over time in marine broth 2216. Error bars indicate the standard error of the mean (n=3).
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previously found that the coral O. patagonica can develop
resistance to V. shilonii (Rosenberg et al., 2007). The coral
probiotic hypothesis was proposed to explain these findings
(Rosenberg et al., 2007). In this hypothesis, it was supposed
that probiotics may be selected during the dynamic change of
microbial community under different environmental condi-
tions, which would enable the resistance of corals to specific
pathogens. Moreover, the genomes of the coral and its as-
sociated microorganisms comprise a hologenome. The ho-
logenome can evolve more rapidly than the coral genome
alone through the microbial community shift under changing
environments. Therefore, the bacteria in the native coral
microbiota that can inhibit pathogens may be an important
resource for the selected probiotics. Various coral-associated
bacteria were found to show antagonistic activity against V.
shilonii or S. marcescens, including Pseudoalteromonas
spp., Roseobacter sp. and Exiguobacterium sp. (Shnit-Or-
land and Kushmaro, 2009; Rypien et al., 2010; Shnit-Orland
et al., 2012; Krediet et al., 2013). However, most of these
antagonistic bacteria were isolated form coral surface mucus.
In this study, we found that gastric cavity derived bacteria
also showed antagonistic activity against Vibrio strains.
Antagonism is common in microbial communities and con-
tributes to the assembly and longer-term stability of a com-
munity (García-Bayona and Comstock, 2018). These
antagonistic interactions play key roles in defense and in-
vasion for an ecosystem inhabited by pathogenic or sym-
biotic microorganisms. Our results showed complex
interactions among bacteria in the gastric cavity of G. fas-
cicularis, which is important for our current understanding of
how the bacteria influence the health of coral and offer in-
sights into manipulation of the microbiota of coral through
the planting of beneficial bacteria that are resistant to coral
pathogens in the gastric cavity.
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