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Abstract Populus euphratica is a dominant tree species in riparian Tugai forests and forms a natural barrier that maintains the
stability of local oases in arid inland river basins. Despite being critical information for local environmental protection and
recovery, establishing the specific spatial distribution of P. euphratica has rarely been attempted via precise and reliable species
distribution models in such areas. In this research, the potential geographic distribution of P. euphratica in the Heihe River Basin
was simulated with MaxEnt software based on species occurrence data and 29 environmental variables. The result showed that in
the Heihe River Basin, 820 km2 of land primarily distributed along the banks of the lower reaches of the river is a suitable habitat
for P. euphratica. We built other MaxEnt models based on different environmental variables and another eight models employing
different mathematical algorithms based on the same 29 environmental variables to demonstrate the superiority of this method.
MaxEnt based on 29 environmental variables performed the best among these models, as it precisely described the essential
characteristics of the distribution of P. euphratica forest land. This study verified that MaxEnt can serve as an effective tool for
species distribution in extremely arid regions with sufficient and reliable environmental variables. The results suggest that there
may be a larger area of P. euphratica forest distribution in the study area and that ecological conservation and management of P.
euphratica should prioritize suitable habitat. This research provides valuable insights for the conservation and management of
degraded P. euphratica riparian forests.
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1. Introduction

Populus euphratica, a broad-leaved deciduous tree species
that is particularly hardy and especially adapted to con-
tinental arid climates, usually forms a dominant component
of desert riparian ecosystems in arid regions of continental
river basins (Li et al., 2016). The Heihe River Basin, located
in the middle of the Hexi Corridor in northwest China, is one

of the most intensively exploited inland river basins in
China, P. euphratica forests are mainly distributed in the
lower reaches of the Heihe River in extremely arid desert
zones. As a natural barrier that maintains the stability of local
oases, P. euphratica forests are vital to maintaining the
ecological balance in such vulnerable environments (Zhu et
al., 2009; Li et al., 2016). However, the area of P. euphratica
forest has decreased due to the unsustainable utilization of
water resources and intensification of human activities over
the past five decades (Zhao et al., 2005; Cheng et al., 2014).
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An ecological water diversion project (EWDP) was suc-
cessfully implemented in the past ten years, and more water
has been delivered to the lower reaches of the Heihe River.
As a result, P. euphratica forests have recovered, and desert
shrublands have been partially rehabilitated (Keyimu et al.,
2018; Cheng et al., 2014). Importantly, P. euphratica forests
in the lower reaches of the Heihe River must be protected and
restored (Peng et al., 2013; Li et al., 2016), yet without
knowledge of the habitat requirements of this species, pro-
tection measures that include habitat protection cannot be
implemented. Specific information on the habitat require-
ments of P. euphratica is essential for effective habitat pro-
tection and may also facilitate more effective plant
cultivation.
Species distribution models (SDMs) are numerical tools

that have been widely used to predict the potential distribu-
tion of species across space and time in terrestrial, freshwater
and marine environments (Araújo and Luoto, 2007; Elith and
Leathwick, 2009; Adhikari et al., 2012; Guo et al., 2016).
There are two types of basic data for SDMs: species occur-
rence data and environmental variables. For species occur-
rence data, most SDMs use presence-only and presence-
absence data (Barbet-Massin et al., 2012; Fei and Yu, 2016).
By contrast, for environmental variables, SDMs im-
plemented in previous studies have generally included sev-
eral factors, such as climate, soil, topography, vegetation,
and human activity (Ficetola et al., 2009; Márquez et al.,
2011; Lu et al., 2012; Andriamparany et al., 2015). SDMs
reveal the environmental requirements of species by corre-
lating the occurrence of the target species with the physical
environment (Elith and Leathwick, 2009; Naimi and Araújo,
2016) and then predicting distributions of the target species
across landscapes and extrapolating species distribution
across space and time. Therefore, reliable and precise species
occurrence data are required for the construction of suc-
cessful SDMs for the prediction of species distribution.
However, identifying the most critical environmental vari-
ables that control the distribution of a given plant species is a
major challenge in SDM research (Anderson, 2013; Pliscoff
et al., 2014).
Arid ecosystems are among the most vulnerable ecological

systems, especially in arid inland river basins in which the
entire ecosystem depends on water from the river and
groundwater recharge (Aishan et al., 2013; Cheng et al.,
2014; Hu et al., 2015). Changes in the water volume and the
location of the main river can promote dramatic changes in
the vegetation distribution in such areas, especially the dis-
tribution of tree species in riparian ecosystems (Zhu et al.,
2009; Aishan et al., 2015; Li et al., 2016). Thus, for research
on P. euphratica distributions, real-time and accurate species
occurrence data are required. In general, the choice of pre-
dictor environmental variables is limited by both the avail-
ability of information and the scale of the research area.

Furthermore, the environmental characteristics of suitable
habitats for the target species should be fully considered
(Márquez et al., 2011; Lu et al., 2012; Guo et al., 2016). At
large scales, such as national and regional, many SDMs
consider only climatic factors, such as the core set of 19
bioclimatic variables (Hijmans et al., 2005; Pliscoff et al.,
2014; Guo et al., 2016), although they occasionally include
soil variables derived from the Harmonized World Soil Da-
tabase (HWSD) (Rödder and Lötters, 2009). However, as the
collection of detailed ecological information for conserva-
tion planning in an endorheic river basin in an arid zone was
the objective of this study, more reliable and sufficient en-
vironmental variables were required to depict the environ-
mental characteristics.
With technological advancements and an expanded un-

derstanding of niche theory, numerous statistical methods
and software implementations are widely available for de-
scribing patterns and performing predictions, including sur-
face range envelope (SRE; usually called BIOCLIM)
(Busby, 1991), flexible discriminant analysis (FDA)
(Kuemmerlen et al., 2014), multiple adaptive regression
splines (MARS) (Zhang et al., 2012), generalized boosting
models (GBMs) (Ridgeway, 1999), classification tree ana-
lysis (CTA) (Edwards et al., 2006), generalized linear models
(GLMs) (Marmion et al., 2009a), artificial neural networks
(ANNs) (Heikkinen et al., 2006), random forests (RFs)
(Bradter et al., 2013) and maximum entropy (MaxEnt)
(Phillips et al., 2006). Among these models, MaxEnt
(MaxEnt version 3.3.3, http://biodiversityinformatics.amnh.
org/open_source/maxent/) is currently the most popular
SDM because it is free, has a user-friendly operational in-
terface, and presents stable and reliable results, even with
incomplete data and small sample sizes (Phillips et al., 2006;
Merow et al., 2013; Yi et al., 2016). In addition, MaxEnt
simply requires presence-only data for a species, and both
continuous and categorical data can be used as input for
environmental variables.
Currently, the most popular methods for validating the

accuracy of SDMs include the threshold-independent re-
ceiver-operating characteristic (ROC) analysis, Cohen’s
kappa coefficient and the true skill statistic (TSS) (Allouche
et al., 2006; Bucklin et al., 2015). Previous studies have
theorized that with functionally relevant predictors based on
well-designed survey data and a suitable model, SDMs can
accurately map the distribution of species (Phillips et al.,
2006; Thuiller et al., 2009; Merow et al., 2013; Bucklin et al.,
2015; Brown et al., 2016). However, because of the com-
plexity of the natural ecological environment and the inter-
ference of species that have similar niches to the target
species, suitable habitats identified by SDMs may not actu-
ally be suitable for the target species. Because of the re-
strictions of technical conditions, the authenticity of the
results remains a challenge for SDMs (Yang et al., 2013), and
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detailed patched distributions are difficult to simulate. In this
research, to more effectively manage and conserve P. eu-
phratica resources in a fragile ecological environment, we
modeled the distribution of P. euphratica at a fine spatial
scale that can provide significant landscape details and show
true distribution characteristics. Only in this way should the
results be authenticated to further guide conservation plan-
ning practices.
There have been several studies on spatial distributions of

P. euphratica in inland river basins in arid regions, especially
in the Tarim River Basin and the Amudarya Delta. In the
Tarim River Basin, most studies focus on spatial distribution
pattern in typical sample areas, and they are based merely on
experience or on simple statistical methods to show the re-
lationship between the spatial distribution pattern and en-
vironmental factors (Tayierjiang et al., 2011; Keyimu et al.,
2018). For example, based on semi-quantitative and quali-
tative knowledge, researchers built a fuzzy habitat suitability
index (HSI) model to evaluate the ecological situation in the
northern Amudarya Delta under changing environmental
conditions (Rüger et al., 2005). However, the fuzzy HSI
depends primarily on expert knowledge rather than on data
from sample sites. Therefore, this method cannot address
environmental variables for which there is insufficient expert
knowledge regarding species suitability. In this study, we
used a MaxEnt model to predict the distributions of P. eu-
phratica in the Heihe River Basin. MaxEnt is a general-
purpose machine-learning method with a simple and precise
mathematical formulation; moreover, it is an objective ap-
proach using information provided by data from sample sites
(Phillips et al., 2006; Merow et al., 2013; Yi et al., 2016). The
first objective of this paper is to model the habitats suitable
for P. euphratica in the Heihe River Basin, identify the ha-
bitat requirements, and select the key environmental vari-
ables highly correlated with P. euphratica distribution. The
second objective of this paper is to compare the results of
several MaxEnt models based on different environmental
variables and those of several commonly used SDMs based
on the same 29 environmental variables to explain the in-
fluence of environmental variables and model selection on
the model results. This study provides examples for model-
ing species distribution in arid areas and valuable insights for
the protection of P. euphratica resources.

2. Methods

2.1 Study area and species data

The Heihe River rises in the Qilian Mountain along the
northern edge of the Qinghai-Tibetan Plateau, and it is the
second-largest inland river in China (Li et al., 2011; Cheng et
al., 2014). Flowing through the Zhangye, Jiuquan and Jinta
Basins, the Heihe River finally empties into Ejin Banner in

Inner Mongolia. The Heihe River Basin covers an area of
approximately 143×103 km2 and is located between 97°E and
102°E and 38.7°N and 42.7°N (Figure 1). The entire basin
can be generally divided into three parts: the upper reaches
(Qilian Mountain, the source of the river), the middle reaches
(the main distributive oasis area), and the lower reaches
(around the Ejin Oasis). In the lower reaches of the Heihe
River Basin, according to land cover data from 2011 (Wang
et al., 2014), the riparian forest and grassland areas ac-
counted for less than ten percent of the entire area, and
outside of the Ejin Oasis, the primary landscape was desert
steppe and Gobi peneplain. P. euphratica is the dominant tree
species in the riparian forest, and along with Tamarix ra-
mosissima Ledeb., the primary shrub species, it forms the
primary vegetation matrix in the Ejin Oasis. Moreover, P.
euphratica is vital to maintaining the ecological balance and
preventing desertification. Regardless, since the 1950s, the
intensive exploitation of water resources in the middle
reaches has reduced the surface water supply in the lower
reaches, causing severe degradation of the forest area in the
Ejin Oasis. Although implementation of the EWDP has al-
leviated the severe deterioration of the ecosystems in the
lower reaches of the Heihe River Basin, the P. euphratica
forest areas have not been fully restored.
In this study, occurrence data for P. euphratica were au-

tomatically derived from remote-sensing data with high
spatial resolution. First, data with high spatial resolution
(higher than 2 m) were extracted from Google Earth. Second,
the extracted images were automatically mosaicked using the
application programming interface provided by Google
Earth. Third, the characteristics of P. euphratica were ana-
lyzed as image objects, a set of rules for extracting P. eu-
phratica by employing object-oriented methods was
constructed, and then an accurate distribution of P. eu-
phratica was obtained. Finally, the accuracy was evaluated
by using the confusion matrix method. The researchers se-
lected 680 rectangular regions of interest in high-resolution
images obtained from Google Earth. Each such region was
3×3 and occupied a total of 6188 pixels. Then, three experts
performed artificial visual interpretation based on the Google
Earth images for the test area, and we thus obtained true P.
euphratica distribution data for the test area. For comparison
with the model result, the researchers built a confusion ma-
trix. The results of the evaluation indicated that the accuracy
was greater than 87% (Wang et al., 2016).
A suitable number of sampling points can improve the

accuracy of the model in this type of research, and we ran-
domly selected 200 sampling points as candidate occurrence
data. Based on the resolution of the environmental variables
and the size of the true distribution area of P. euphratica, we
deleted certain sampling points to ensure that the points were
distributed evenly and that the distance between two sam-
pling points was always more than 4 km. At such a distance,
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the value of environmental data for the two rasters showed a
significant difference, and it was conducive to model train-
ing. Finally, we obtained 57 locations (occurrence data) of P.
euphratica, which were used to build the models. The dis-
tances between our sampling points and the river channel
ranged from 0.1 to 5 km (Figure 1).

2.2 Environmental variables

To determine the geographic distribution of suitable habitat
for a target species, a set of environmental characteristics for
this species must be defined (Lu et al., 2012; Guo et al.,
2016). Hence, we chose four types of environmental factors,
including 29 environmental variables, particularly local en-
vironmental variables, to simulate the suitable habitat dis-
tribution of P. euphratica (Table 1).
Topographic variables included elevation, slope and as-

pect. Elevation variables at a resolution of 1 km×1 km were
downloaded from the Data Center for Resources and En-
vironmental Sciences (RESDC) of the Chinese Academy of
Sciences (http://www.resdc.cn). The aspect and slope vari-
ables were generated from the elevation variables using the
spatial analysis function of ArcGIS (ESRI, Redlands, CA,
USA). For the climatic variables, the accumulated tem-
perature above 0°C (ATA0), accumulated temperature above
10°C (ATA10), aridity index (AI), and moisture index (MI)
were also provided by RESDC at a resolution of 1 km2.
These variables were created by inverse distance weighting
for interpolation using meteorological data from 1915

weather stations as independent variables. Corrections were
performed using digital elevation model (DEM) data, which
resulted in nationwide climatic data for China.
The other four climatic data were the annual precipitation

(PRE), mean temperature (TEM), minimum temperature of
coldest month (TMIN), and maximum temperature of the
warmest month (TMAX), which were derived from Weather
Research and Forecasting (WRF) model simulations and
remote-sensing data (Pan et al., 2012, 2014, 2015). All of the
soil variables were determined by combining soil sample
data and other related environmental variables. Based on
previous studies, the researchers used boosted regression tree
(BRT) and RF models to map different soil properties in the
Heihe River Basin (Yang et al., 2014; Yang et al., 2016).
Studies have confirmed that this method greatly improves
the accuracy and spatial resolution of soil variable data (Liu
et al., 2016; Song et al., 2016). Hydrological variables in-
cluding annual average groundwater table (WD), growing
season average groundwater table (GWD), dormant period
average groundwater table (DWD), and average evapo-
transpiration (ET) were derived from an integrated surface
water-groundwater model, GSFLOW (Coupled Ground-
Water and Surface-Water Flow Model) (Tian et al., 2015).
All of the abovementioned data were downloaded from the
Environmental and Ecological Science Data Center for West
China, National Natural Science Foundation of China (http://
westdc.westgis.ac.cn) (Li et al., 2001). In this study, the
original data for different types of environmental variables
were in different data formats and resolutions. We resampled

Figure 1 Study area and distribution of sample sites.
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all of the variables at a 1 km spatial resolution and converted
the data for all environmental variables to ASC files in
ArcGIS 9.3.
Land cover data for the Heihe River Basin were used to

determine the validity of the model results. These data are
available at a resolution of 30 m from the Environmental and
Ecological Science Data Center for West China (Ran et al.,
2012; Hu et al., 2015). In the lower reaches of the Heihe
River Basin, P. euphratica is a dominant component of the
desert riparian ecosystem; therefore, the distribution of forest
land obtained from these data should be consistent with the
distribution of P. euphratica forest. Accordingly, we ex-
tracted the forest land in the lower reaches of Heihe River
Basin using ArcGIS 9.3 as actual distributions of P. eu-
phratica.
To compare the model results, we used the 19 core bio-

climatic variables and soil data (attached list 1) to evaluate
different MaxEnt models calibrated with different sets of

variables. The bioclimatic variables were downloaded from
the WorldClim database, and the resolution was approxi-
mately 1 km2. The soil data were obtained from the HWSD
(Ray et al., 2016), http://www.fao.org/soils-portal/), and the
resolution was approximately 1 km2.

2.3 Model evaluation

MaxEnt, one of the most successful SDMs, is based on the
maximum entropy principle and Bayesian estimates. The
model simulates species distributions based on species oc-
currence data and environmental variables, and the species
distribution results follow the principle that each expected
variable value should represent the empirical average (Phil-
lips et al., 2006; Merow et al., 2013) to realize the probability
distribution of maximum entropy. In this study, the MaxEnt
software platform (MaxEnt version 3.3.3, http://www.cs.
princeton.edu/~schapire/maxent/) (Phillips et al., 2006;

Table 1 Evaluation variables for modeling the distribution of suitable habitats for P. euphratica

Type Variable Range and units Code

Topographical

Elevation above sea level From 877 to 5252 m Elevation

Slope From 0° to 33.5° Slope

Aspect From 0° to 359.95° Aspect

Climatic

Accumulated temperature above 0°C From 0 to 4070°C ATA0

Accumulated temperature above 10°C From 0 to 3760°C ATA10

Aridity index From 0 to 31.2 AI

Moisture index From −58.2 to 21.2 MI

Annual precipitation From 13 to 506 mm PRE

Mean temperature From −2.0 to 8.9°C TEM

Minimum temperature of coldest month From −35.3 to −2.0 °C TMIN

Maximum temperature of warmest month From 27.4 to 28.9 °C TMAX

Soil

Soil type 57 classes ST

Wilting moisture From 16% to 25% WP

Field capacity From 20% to 44% FC

Saturated soil moisture From 43% to 66% SSM

Saturated hydraulic conductivity From 5.6 to 121.4 mm h−1 SHC

Soil CaCO3 density From 0 to 321.55 kg m−2 Caco3
Soil thickness From 0 to 180 cm STH

Soil pH (H2O) From 6.7 to 8.86 PH

Surface soil texture 3 classes SST

Soil organic carbon at 0–5 cm depth From 1.17 to 95.71 g kg−1 SOC_layer1

Soil organic carbon at 5–15 cm depth From 1.15 to 83.9 g kg−1 SOC_layer2

Soil organic carbon at 15–30 cm depth From 0.7 to 57.4 g kg−1 SOC_layer3

Soil organic carbon at 30–60 cm depth From 0.6 to 30.83 g kg−1 SOC_layer4

Soil organic carbon at 60–100 cm depth From 0.57 to 5.45 g kg−1 SOC_layer5

Hydrological

Annual average groundwater table From 0 to 312 m WD

Growing season average groundwater table From 0 to 312 m GWD

Dormant period average groundwater table From 0 to 312 m DWD

Average evapotranspiration From 375 to 1240 mm ET
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Merow et al., 2013) was used to project the distribution of P.
euphratica. For the modeling process, 70% of the occurrence
data were chosen randomly as the training set. We used a
threshold-independent ROC analysis to evaluate the model
performance. In practice, the area under the ROC curve
(AUC) values were used to achieve this function, and those
values ranged from 0.5 (random) to 1.0 (perfect dis-
crimination). When the AUC value was above 0.8, the model
result was considered satisfactory (Marmion et al., 2009b;
Escalante et al., 2013). To determine the relative importance
of a single explanatory variable, we used the jackknife test
during model development. To further elucidate the en-
vironmental characteristics of suitable habitats for P. eu-
phratica in the study area, we built different MaxEnt models
using single environmental variables and then obtained re-
sponse curves (Merow et al., 2013; Yuan et al., 2015) that
showed how the logistic prediction changed with variations
in each environmental variable.

2.4 Model comparison

Successful SDMs require reliable and sufficient environ-
mental variables capable of accurately describing the target
environmental characteristics. To compare the effects of
using other environmental variables, another two test Max-
Ent models were built. Both of these test models included the
same 57 locations and the same model settings as the main
model; however, one of these two test models was based on
the 19 core bioclimatic variables (Table S1, http://earth.sci-
china.com) and was defined as T1, whereas the other test
model used seven bioclimatic variables, three topographic
variables and seven soil variables (Table S2) and was defined
as T2. For T2 (Figure 2), the seven bioclimatic variables
were derived from the results of the correlation test among
the 19 bioclimatic variables, and the seven soil variables
were derived from the HWSD.
In this research, we also compared the MaxEnt results with

those of eight other types of SDMs: SRE, FDA, MARS,
GBM, CTA, GLM, ANN and RF. BIOMOD2 (Biodiversity
Modeling) (Thuiller et al., 2009) (https://cran.r-project.org/
web/packages/biomod2) was used to implement these eight
models with the four types of environmental factors, which
included 29 environmental variables (Figure 2). During
modeling, BIOMOD2 required both presence-only records
and presence-absence records, and we randomly generated
112 presence-absence records to ensure that all of the pre-
sence-absence records were distributed evenly throughout
the Heihe River Basin. Then, we divided the databases that
included 57 presence-only records and 112 presence-absence
records data into two subsets, the same as the MaxEnt set-
ting; 70% of the presence-only and presence-absence records
were randomly chosen as the training set, and 30% of the
databases were used for evaluation. The accuracy of the

models was evaluated using three widely used evaluation
indexes: Cohen’s kappa coefficient, the TSS and the AUC.

3. Results

3.1 Distribution of suitable habitats for P. euphratica in
the Heihe River Basin

According to the model results, the suitable habitat index
(SHi) for P. euphratica ranged from 0 to 0.93. For further
analysis, the entire study area was classified into three
classes of SHi values: unsuitable habitats presented SHi va-
lues below 0.3, marginally suitable habitats presented SHi

values between 0.3 and 0.5, and suitable habitats presented
SHi values above 0.5. A distribution map of suitable habitats
for P. euphratica in the Heihe River Basin was drawn (Figure
3), and the habitat suitability grades were calculated. The
results showed that the suitable habitat area for P. euphratica
in the Heihe River Basin was small, only 820 km2. These
areas were mainly located in Ejin Banner in the lower
reaches of the Heihe River Basin and distributed within se-
ven kilometers of the banks of the river. The marginally
suitable habitat area was also small, 680 km2, and these areas
surrounded the suitable habitats.
In this study, occurrence data for 57 locations and 29 en-

vironmental variables were used as inputs, and MaxEnt
provided satisfactory results. The average AUC values for 10
replications of the training data set and test data set were
0.994 and 0.989, respectively. To further test the accuracy of
the model, we extracted forest information from land cover
data from the Heihe River Basin (Figure 4). A comparison of
the model results and the forest land data suggested that the
model results were consistent with the actual distribution of
P. euphratica forest land and with the spatial distribution
pattern.

3.2 Response of dominant variables to suitability

MaxEnt can calculate the relative contributions of environ-
mental variables to species distribution (Phillips et al., 2006).
In this study, the MaxEnt results showed that the saturated
soil moisture (SSM), soil organic carbon in the 0–5 cm layer
(SOC_layer1), underground water table in the growing sea-
son (GWD), soil type (ST) and AI were key variables de-
termining the distribution of P. euphratica, with contribution
rates of 20.9%, 16.7%, 13.1%, 10.8% and 10.5%, respec-
tively. The slope, mean temperature (TEM), field capacity
(FC), and average evapotranspiration (ET) were also im-
portant variables and presented relatively high contributions
to the distribution of P. euphratica.
Based on response curves illustrating how the logistic

predictions changed as each environmental variable changed
(Figure 5), we calculated the suitable ranges for environ-
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Figure 2 Schematic representation of the methodological approaches.

Figure 3 Predicted potential distribution of P. euphratica in the Heihe River Basin.
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mental variables within the distribution area of P. euphratica
(logistic probability of presence >0.3). The observed ranges
were 45–47% for SSM; 9–21 g kg−1 for SOC_layer1; 0–4 m
for GWD; 17–22 for AI; less than 0.3° for slope; 7–8.5°C for
TEM; 24–27% for FC; and 1120–1180 mm for ET. In ad-
dition, there were four suitable STs for P. euphratica.

3.3 Effects of the reliability and resolution of environ-
mental variables for determining the suitable habitat
distribution for P. euphratica in the Heihe River Basin

The test model results showed that the AUC values for the
training and test data sets were 0.997 and 0.997 in T1
(MaxEnt model based on 19 core bioclimatic variables) and
0.994 and 0.949 in T2 (MaxEnt model based on seven bio-
climatic variables, three topographic variables and seven soil
variables), respectively. Using the same classification stan-
dards, we divided the habitat suitability results for P. eu-
phratica into three grades (Figure 6). A comparison of the
MaxEnt results and the actual distribution of P. euphratica
forest indicated that the T1 results significantly overvalued
the area of suitable habitats for P. euphratica, could not
provide many landscape details, and did not show the dis-
tribution characteristics for suitable habitats for P. euphratica
along the banks of the river.
The results of the T2 model were better than those of T1.

T2 produced a spatial distribution pattern of suitable habitats
for P. euphratica that was essentially consistent with the
actual distribution of P. euphratica forest, but this model lost
some significant landscape details. For example, only small
patches of forest existed along the Donghe River except near
Ejin Oasis, but according to the T2 results, suitable habitats
for P. euphratica included a strip or belt-like shape that was
distributed along the Donghe River. The calculations showed
that the area of suitable habitats for P. euphratica in the T2
results was 1440 km2, which greatly exceeded the area pre-
dicted by the MaxEnt model based on the 29 environmental
variables. All of these results indicate that the environmental
variables chosen for the T2 model were insufficient for an
accurate description of the actual environmental character-
istics.
In conclusion, traditional bioclimatic variables and HWSD

(Ray et al., 2016) soil variables are not suitable for SDMs of
an inland river basin in an arid region because of their low
accuracy at the regional scale and their inability to accurately
describe the environmental characteristics of these areas.

3.4 Other SDMs for the distribution of suitable habi-
tats for P. euphratica in the Heihe River Basin

The BIOMOD2 (Biodiversity Modeling) (Thuiller et al.,
2009) results (Table 2) showed that nearly all of the models,

Figure 4 Forest land distribution in the Heihe River Basin.
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with the exception of SRE, passed the evaluation. The sta-
tistical accuracy results for these eight models showed that
the RF and GBM models were the best. Specifically, the
Cohen’s kappa coefficient and TSS and AUC values for

these two models were significantly higher than those for the
other models, and the AUC values for these models were
higher than that of the MaxEnt model. The next most accu-
rate models were the MARS, FDA and GLM models. The

Figure 5 Probability relationships between dominant climate factors and the geographic distribution of P. euphratica.

Table 2 Evaluation of accuracy in modeling the distribution of suitable habitats for P. euphratica

GLM GBM CTA ANN SRE FDA MARS RF MaxEnt

KAPPA 0.866 0.934 0.718 0.755 0.530 0.931 0.934 0.934 –

TSS 0.866 0.957 0.684 0.826 0.455 0.913 0.957 0.957 –

ROC 0.933 0.996 0.773 0.881 0.727 0.945 0.976 0.996 0.994
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Figure 6 T1 and T2 models for the distribution of suitable habitats for P. euphratica in the Heihe River Basin. (a) T1: model based on the core set of 19
bioclimatic variables; (b) T2: model based on 7 bioclimatic variables, 3 topographic variables and 7 soil variables.
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AUC values of these three models were greater than 0.9, and
the AUC values of the remaining three models (CTA, ANN
and SRE) were greater than 0.7. These statistical results in-
dicate that the eight models were successful.
Because these eight models used different mathematical

algorithms, the weighting of the environmental variables was
also different. Nearly all of the models identified SSM,
SOC_layer1, slope, and AI as key factors determining the
distribution of P. euphratica (Table S3). These results are
consistent with the MaxEnt results. To further assess the
differences between the results of the different models, the
same classification standards were used, and the habitat
suitability results for P. euphratica from the eight models
were classified into three grades, as shown in Figure 7. The
figure shows that the spatial distribution patterns of suitable
habitats for P. euphratica varied widely. A comparison of the
MaxEnt results with the actual distribution of P. euphratica
forest indicates that seven models significantly over-
estimated the suitable habitat area of P. euphratica, whereas
the SRE model significantly underestimated the area.

4. Discussion

4.1 Rationality of the model

In contrast to previous work, this study selected a particular
species adapted to the environment of a continental drainage
basin in an arid area. The unique habitat demands of this
species increased the difficulty of modeling the species
distribution, although they also provided an advantage be-
cause the simple vegetation types in the lower reaches of the
Heihe River Basin allowed us to accurately obtain the actual
distribution of this species using remote-sensing technology;
therefore, the realized niche of this species could be accu-
rately described. Moreover, by comparing the actual species
distribution with the model results, we were able to in-
tuitively determine the optimal model instead of relying on
statistical evaluations.
Successfully predicting the distribution of a species re-

quires the following: accurate and appropriate amounts of
species distribution records; reliable and sufficient environ-
mental variables for the study area size and the environ-
mental characteristics of the target species distribution area;
and a stable and reliable mathematical algorithm (Elith and
Leathwick, 2009; Lu et al., 2012).
For SDMs, species distribution data are usually obtained

from herbarium records or published scientific research;
however, these data sources are problematic. Some of the
species occurrence data from herbariums were collected
twenty or even thirty years ago; therefore, the reliability of
such data is difficult to guarantee. Moreover, most herbarium
and research data lack precise geographic information;
therefore, the precision of the model is difficult to guarantee.

Field surveys represent another method of obtaining species
distribution data; however, this approach presents high labor,
material, and financial costs, especially in hostile environ-
ments. High-resolution remote-sensing data represent a new
method for obtaining species distribution data, and such
technology can allow large areas to be observed in a timely
and economical manner. Most importantly, because of the
relatively simple surface coverage conditions in the study
area, we could identify the occurrence of P. euphratica at an
intuitive level. Hence, in this study, we were able to ensure
the accuracy of the species distribution data.
Conditions of appropriate temperature and sufficient water

are required for normal plant growth and reproduction
(Márquez et al., 2011; Lu et al., 2012; Guo et al., 2016).
Thus, the decisive factor for successful species distribution
predictions is the use of environmental variables that effec-
tively and reliably describe the environmental characteristics
of suitable habitats for a target species. Previous research has
shown that the 19 core bioclimatic variables are useful for
SDMs, and they are among the most widely used data for that
type of model. However, these variables were not sufficient
to describe the habitat requirements of P. euphratica in this
study. In arid zones, such as the lower reaches of the Heihe
River Basin, plant growth depends on the level of water that
can be absorbed from the environment. Because of the low
rainfall and drying temperatures in the study area, plant
growth relies mostly on water from rivers and groundwater
recharge; therefore, the role of soil moisture and ground-
water must be considered. Regarding topographical factors,
changes in the condition of the land surface can change the
distribution of heat and moisture. Therefore, we chose four
types of environmental factors that are important for the
habitat of P. euphratica: topographical factors, which in-
cluded elevation, slope and aspect; climatic factors, which
primarily included temperature variables; soil factors, com-
prising ST, soil moisture content, soil organic carbon con-
tent, and soil pH; and four hydrological factors, primarily
involving groundwater table variables.
MaxEnt was derived from maximum entropy theory, and it

has been the most popular tool for species distribution
modeling over the past decade. In this study, MaxEnt ob-
tained higher statistical accuracy than the other SDMs using
the same model data and strategy. Most importantly, the
MaxEnt results were extremely similar to the real spatial
distribution pattern of P. euphratica forests. This research
has shown that on the regional scale, with sufficient and
reliable data on environmental variables, the MaxEnt model
has excellent capability to model detailed species distribu-
tions. Additionally, it demonstrates that MaxEnt has great
potential to simulate the patched distributions of species in a
fragile or otherwise limited environment. Hence, this method
may be used to infer oasis vegetation changes during his-
torical periods by assimilating proxy data (Fang and Li,
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2016).

4.2 Model comparison

In this study, we compared nine commonly used SDMs
(MaxEnt, SRE, FDA, MARS, GBM, CTA, GLM, ANN, and
RF) based on the same input data. In the modeling process,
with different mathematical algorithms, these models adopt
different response curves and weightings for environmental
variables, all of which lead to different model performance.
In this case, compared with highly precise land cover data,
MaxEnt exhibited superior model performance, with the two
main limitations of the other eight models as follows. First,
this study used limited occurrence data: considering the
small size of the true distribution area and the resolution of
the environmental variables, we selected only 57 occurrence
data to build the models, which may be insufficient for
machine-learning models such as ANN, CTA, and RF (Guo
et al., 2016). Second, the environmental variables, especially
SSM and underground water table, showed dramatic spatial
heterogeneity. This situation makes it challenging to simulate
the distribution of P. euphratica forests in the study area
using regression analysis models such as FDA, MARS,
GBM and GLM. With such limited data, these models may
be unable to generate complex response curves and de-
termine suitable weighting of environmental variables.
Moreover, SRE, which is a traditional climatic envelope
model, simply identifies minimum and maximum values for
each environmental variable from the occurrence data, and
the predicted distribution then includes any site with all
variables falling between these minimum and maximum
limits (Barbet-Massin et al., 2013). In this case, because of
the limited data and dramatic changes in environmental
variables, SRE cannot determine the correct range of en-
vironmental variables for suitable habitats for P. euphratica
forests, leading to a significantly undervalued result.
There is another model for simulating suitable habitats for

P. euphratica forests in the Amudarya Delta. The researchers
who developed this model chose geomorphology, ground-
water level and flooding regime (i.e., flooding frequency and
the timing and duration of the most recent flood) as de-
termining parameters for habitat suitability. Then, based on
semi-quantitative and qualitative data, they built a fuzzy HSI
model to calculate the HSI value for each evaluation unit
(grid cell) in the northern Amudarya Delta (Rüger et al.,
2005). This model represents an attempt to automate the
evaluation of suitable habitats for P. euphratica forests in
arid areas, and it is highly meaningful work. Compared with
this model, the model used in the present work has the fol-
lowing advantages. First, it includes sufficient and reliable
data on environmental variables: because of the lack of en-
vironmental data, the HSI model considers only 7 environ-
mental variables, which do not include climatic and soil data.

Second, the model in the current study takes an objective
approach using only information provided by data. By con-
trast, the HSI model summarizes the expert’s experiences
without a precise mathematical model; this type of model
makes it difficult to eliminate artificial influences, and it
clearly cannot be applied in the absence of sufficient expert
knowledge. Third, the current model applies more reason-
able weighting of environmental variables. For example,
according to the HSI model, groundwater level was the most
important variable; this variable alone was nearly completely
responsible for determining the distribution of P. euphratica.
However, in our model, the most important variable was
SSM, which is a more powerful index for showing the level
of water that can be absorbed from the environment.

4.3 Conservation implications

Species conservation and management is the key to main-
taining ecological balance at the regional level, especially in
ecologically fragile areas, such as the Heihe River Basin. The
results of this study were able to precisely identify the habitat
requirements of P. euphratica, and these results can be used
to purposefully design conservation strategies.
The model calculations indicated that the area of desert

riparian forest in the lower reaches of the Heihe River Basin
is 430 km2, which means that under current environmental
conditions, P. euphratica forest should be distributed more
widely. Second, the conservation of resources and the ex-
pansion of P. euphratica cultivation should prioritized in
suitable habitats within seven kilometers from the banks of
the river. Third, river flows should be increased in the lower
reaches as much as possible to increase SSM levels and raise
the underground water table during the growing season.

5. Conclusions

We successfully modeled suitable habitats for P. euphratica
in the Heihe River Basin, an arid inland river basin region.
Moreover, MaxEnt provided satisfactory results based on
species distribution data derived from high-resolution re-
mote-sensing data and four types of environmental factors,
which were selected on the basis of their environmental
characteristics. The AUC value of this model is 0.994, and
the model results precisely describe the essential character-
istics of the real distribution of P. euphratica forest land.
Suitable habitats for P. euphratica are mainly located in the
lower reaches of the Heihe River Basin and distributed along
rivers. The potential distribution of P. euphratica forest land
in the study area is considerable (approximately 390 km2).
These suitable habitats should be prioritized for the man-
agement and protection of P. euphratica resources.
The present study demonstrates that highly accurate spe-
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cies occurrence data and sufficient and reliable environ-
mental variable data can greatly improve SDM accuracy,
especially at the regional scale. Because of the successful
prediction of the patched distribution of P. euphratica in a
fragile arid ecological environment, we can conclude that
with the appropriate data inputs, MaxEnt modeling can ac-
curately reflect species distribution characteristics. Further-
more, under suitable conditions, SDMs can predict the
realized niches of species.
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