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Abstract The activity of melts and fluids may have played a key role in inducing the destruction of the eastern North China
Craton in the early Cretaceous. Carbonate melts are important agents in mantle metasomatism and can significantly modify the
physical and chemical properties of the subcontinental lithospheric mantle. Carbonate metasomatism can be identified by
specific geochemical indices in clinopyroxene, such as high Ca/Al and low Ti/Eu ratios. This study presents the spatial and
temporal variations of carbonate metasomatism in the lithospheric mantle beneath the eastern North China Craton. Three types of
carbonate metasomatism are classified based on the geochemical compositions of clinopyroxene in mantle peridotites. Clin-
opyroxene formed by Type 1 carbonate metasomatism is characterized by very high Ca/Al ratios (15–70) and 87Sr/86Sr ratios
(0.706–0.713). Clinopyroxene derived from Type 2 carbonate metasomatism shows relatively high Ca/Al ratios (5–18) and
87Sr/86Sr ratios (0.703–0.706). However, clinopyroxene resulting from Type 3 carbonate metasomatism has low Ca/Al ratios (5–
9) and 87Sr/86Sr ratios (0.702–0.704). Deep (garnet-bearing) and shallow (spinel-bearing) lithospheric mantle beneath the Sulu
orogen and surrounding areas in the eastern North China Craton were affected by intense Type 1 carbonate metasomatism before
the late Triassic. The deep subduction of the South China Block with its accompanying carbonate sediments was the trigger for
Type 1 carbonate metasomatism, which reduced strength of the lithospheric mantle and provided a prerequisite for the de-
struction of the eastern North China Craton in the early Cretaceous. After the destruction of the eastern North China Craton, the
ancient relict lithospheric mantle, represented by spinel harzburgite xenoliths hosted in the late Cretaceous to Cenozoic basalts,
only recorded Type 2 carbonate metasomatism. This implies that the lithospheric mantle experienced the intense Type 1
carbonate metasomatism was completely destroyed and not preserved during decratonization. Spinel lherzolite xenoliths hosted
in the late Cretaceous to Cenozoic basalts represent the young, fertile lithospheric mantle formed after the cratonic destruction
and only a few samples record Type 2 and 3 carbonate metasomatisms. We suggest that carbonate melts derived from the
subduction-modified asthenospheric mantle with variable proportions of recycled crustal material was responsible for the Type 2
and 3 carbonate metasomatisms. The carbonate metasomatism of the lithospheric mantle beneath the Jiaodong Peninsula and
surrounding areas is very pervasive and is spatially consistent with the remarkable thinning of lithospheric mantle and giant gold
deposits in this region. Therefore, we conclude that carbonate metasomatism in the lithospheric mantle played a crucial part in
the modification, destruction and gold deposits in the eastern North China Craton.
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1. Introduction

Archean cratons generally have thick (>200 km) lithospheric
mantle keels and are characterized by low densities and low
surface heat flows. They are considered to be the most stable
regions on Earth and have low levels of tectonism, mag-
matism, mineralization and earthquakes (Sleep, 2003; Carl-
son et al., 2005; Lee et al., 2011). The North China Craton
has some characteristics in common with other Archean
cratons, such as the preservation of ancient crustal remnants
as old as 3.8 Ga (Liu et al., 1992), a stable environment from
1.9–1.8 Ga to the Paleozoic (Zhao et al., 2001; Zhao and
Zhai, 2013) and a thick lithospheric mantle keel (Gao et al,
2002; Zhang H F et al., 2008). However, in contrast to other
Archean cratons, the North China Craton experienced in-
tense reactiviation and modification in the Mesozoic (Chen,
1956; Zhang et al., 2003; Gao et al., 2004; Wu et al., 2005)—
as shown by widespread structural deformation, magmatism,
the presence of fault-bounded basins and mineralization (Li
et al., 2012; Meng, 2003; Zhu G et al., 2012, 2015; Deng and
Wang, 2016)—which lead to its destruction. Although li-
thospheric mantle thinning is common and the destruction of
the Wyoming Craton in North America has been determined
to take place in the Mesoproterozoic (Carlson et al., 2005;
Sleep, 2005; Lee et al., 2011), the Mesozoic destruction of
the North China Craton is unique and thus has important
implications for global continental dynamics (Zhu et al.,
2012a).
The spatio-temporal distribution, mechanisms and dy-

namics of the cratonic destruction in North China have been
determined by systematic observations of geology and geo-
physics as well as studies of experimentation and theoretical
modelling (Zhu et al., 2012a). The peak time for the de-
struction of the North China Craton has been constrained to
occur at 130–120 Ma in the early Cretaceous (Zhu et al.,
2012b). The destruction basically occurred in the eastern part
of the North China Craton and was mainly triggered by
subduction of the Paleo-Pacific plate (Zhu et al., 2012a); the
western part of the North China Craton was not modified
(Zhu et al., 2011). The possible physicochemical mechan-
isms for the destruction of the eastern North China Craton
include thermo-chemical erosion (Menzies et al., 1993; Xu,
2001; Zheng et al., 2001), lithospheric delamination (Gao et
al., 2002, 2004, 2008, 2009; Deng et al., 2004; Wu et al.,
2005; Xu W L et al., 2013), melt-peridotite interactions (Liu
et al., 2005, 2008, 2010; Zhang, 2005, 2009) and hydration
(Niu, 2005). These mechanisms may have occurred at dif-
ferent stages or in different regions. A common signature of
these mechanisms is related to diverse melt/fluid-peridotite
interactions. Therefore, it is of great importance to decipher
the mechanism for the destruction of the eastern North China
Craton, to recognize the origin, signature and spatio-tem-
poral distribution of the melt/fluid activity in the lithospheric

mantle.
Based on the water content of clinopyroxene phenocrysts

in the Mesozoic Feixian basalt (125 Ma), Xia et al. (2013)
calculated a high water content for the lithospheric mantle
source, which may have significantly reduced the viscosity
of the lithospheric mantle and provided a prerequisite for the
removal of the cratonic root in eastern North China. Nu-
merical modeling suggests that perturbation of the strongly
hydrous mantle transition zone, caused by slab flattening and
stagnation, could trigger cratonic destruction and removal of
the lithospheric root (Wang Z S et al., 2016). Zhang (2009)
emphasized that melt-peridotite interactions are crucial to the
destruction of cratonic lithospheric mantle. However, an
orthopyroxene-rich zone may be formed in the reaction front
of silicate melt-peridotite interactions under dry hydrostatic
conditions (Rapp et al., 1999; Wang et al., 2010; Zhang J F et
al., 2012; Wang C G et al., 2013) and an amphibole-rich zone
may be formed under hydrous conditions (Gervasoni et al.,
2017). Therefore, the silicate melt-peridotite interactions are
sluggish, self-restrained processes, athough these interac-
tions can be promoted by tectonic deformation (Zhang J F et
al., 2012).
Compared with silicate melts, carbonate melts have a

lower density and lower viscosity, but a higher reactivity, and
are considered to be an effective agent for mantle metaso-
matism (Green and Wallace, 1988; Ionov et al., 1993b;
Yaxley et al., 1998; Blundy and Dalton, 2000; Hammouda
and Laporte, 2000; Grassi and Schmidt, 2011; Sokol et al.,
2016; Gervasoni et al., 2017). The experimental results of
Wang C et al. (2016) indicate that carbonate melts derived
from a subducted slab can significantly modify and destroy
cratonic lithospheric mantle. Slab subduction may also carry
carbonate sediments into the deep mantle, with only a limited
amount of carbonate being released during decarbonation at
shallow depths (Yaxley and Green, 1994; Molina and Poli,
2000; Kerrick and Connolly, 2001; Dasgupta et al., 2005; Liu
Y S et al., 2015; Chen C F et al., 2016). Therefore, large
amounts of carbonate sediment remnants may be stored in
the deep mantle or transformed into carbonate melts by
partial melting (Wallace and Green, 1988; Dasgupta et al.,
2005). Since the Paleozoic, the southward, northward and
westward subductions of the Paleo-Asian plate, the Paleo-
Tethyan plate and the Paleo-Pacific plate, respectively,
would have resulted in multiple modifications of the North
China Craton over long periods of time (Windley et al.,
2010). These subducted slabs may also have carried large
amounts of carbonate sediments into the deep mantle (Liu Y
S et al., 2015; Chen C F et al., 2016; Zhang et al., 2017),
inducing extensive carbonate metasomatism of the litho-
spheric mantle and providing a prerequisite for the destruc-
tion of the North China Craton. We provide here a systematic
summary of the spatio-temporal variations of carbonate
metasomatism in the lithospheric mantle beneath the eastern
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North China Craton and try to establish a possible link be-
tween carbonate metasomatism and cratonic destruction.

2. Occurrence of lithospheric mantle samples in
the eastern North China Craton

Numerous mantle peridotite xenoliths have been found in
Paleozoic kimberlites and Jurassic-Quaternary volcanic
rocks in the eastern North China Craton (Figure 1). Some
mantle-derived peridotite terranes also occur in the Triassic
Sulu ultrahigh pressure (UHP) belt (Figure 1). These mantle
peridotites can be used to constrain the evolution of the li-
thospheric mantle before and after the destruction of the
eastern North China Craton (Zheng, 2009). The Paleozoic
mantle peridotite xenoliths hosted in the Mengyin, Fuxian
and Tieling kimberlites (Gao et al., 2002; Wu et al., 2006;
Zheng et al., 2006, 2007) and the Triassic Sulu orogenic
mantle peridotite terranes (Zheng et al., 2005b, 2006; Yuan et
al., 2007; Zhang Z M et al., 2011; Su et al., 2016) have

undergone strong serpentinization, which makes it difficult
to determine their protoliths, although they are all ancient
and refractory with Re-depletion Os model ages (TRD) of
3.2–1.5 Ga (Figure 2). The Jurassic Xinyang and early
Cretaceous Tietonggou mantle peridotite xenoliths consist of
refractory harzburgites and dunites (Zheng et al., 2005a; Xu
et al., 2008) and represent ancient lithospheric mantle before
the destruction of the North China Craton. The 4 Ma Hebi
mantle peridotite xenoliths are dominated by harzburgites
with TRD ages of 3.0–1.8 Ga and are also considered as re-
presentative of the ancient and refractory lithospheric mantle
beneath the North China Craton (Zheng et al., 2001, 2007;
Sun et al., 2012).
The mantle peridotite xenoliths hosted in the late Cretac-

eous Fuxin (~100 Ma), Qindao Pishikou (86–78 Ma) and
Junan (67 Ma) basalts, the Neogene Shanwang (18 Ma),
Changle (19 Ma), Qixia (18–4 Ma) and Penglai (6–4 Ma)
basalts and the Quaternary Huinan (<0.6 Ma), Kuandian
(<0.6 Ma) and Nushan (<0.7 Ma) basalts, which are formed
after the destruction of the eastern North China Craton and

Figure 1 Distribution of mantle-derived peridotite xenoliths and terranes in the eastern North China Craton.
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are dominated by fertile lherzolites with a few refractory
harzburgites (Figure 1). These lherzolites have much
younger TRD ages than the harzburgites (Figure 2). We
therefore conclude that the lherzolites in the eastern North
China Craton represent new, fertile lithospheric mantle and
the harzburgite xenoliths represent ancient, refractory man-
tle. Mantle peridotite xenoliths hosted in Triassic (223 Ma)
kimberlites and Neogene (6.6 Ma) basalts from North Korea
have previously been suggested to represent new and fertile

lithospheric mantle, athough no petrological classification
was available (Yang et al., 2010).

3. Geochemical indices of cryptic carbonate
metasomatism in the lithospheric mantle

Mantle-derived peridotite xenoliths in volcanic rocks and
terranes in orogenic belts provide direct samples of the li-
thospheric mantle, giving an important window with which
to observe mantle metasomatism (Bodinier et al., 2003;
Pearson et al., 2003). Most mantle metasomatism is cryptic
metasomatism describing changes in composition of pre-
existing minerals without the formation of new phase.
Therefore, some special geochemical indices in minerals are
useful to decipher cryptic mantle metasomatism of the li-
thospheric mantle. By combining elemental partitioning
coefficients between carbonate melts and silicate minerals
with the elemental signatures of carbonatites, Rudnick et al.
(1993) suggested that high La/Yb, Nb/La, Ca/Al and Zr/Hf
ratios and low Ti/Eu ratios are effective geochemical indices
for tracing carbonate metasomatism in the mantle. Klemme
et al. (1995) reported that Ti/Eu is more sensitive to carbo-
nate metasomatism. Coltorti et al. (1999) used (La/Yb)N and
Ti/Eu ratios in clinopyroxene to distinguish carbonate me-
tasomatism from silicate metasomatism (Figure 3a). On the
basis of published geochemical data at that time, Coltorti et

Figure 2 Cumulative probability plot of Re-depletion Os model ages
(TRD) of the Paleozoic-Cenozoic lithospheric mantle xenoliths and terranes
in the eastern North China Craton. Data are from Gao et al. (2002), Wu et
al., (2006), Yuan et al. (2007), Zheng et al. (2007), Chu et al. (2009), Yang
et al. (2010), Sun et al. (2012) and Su et al. (2016).

Figure 3 Variations of (a) (La/Yb)N with Ti/Eu (modified from Coltorti et al. (1999)) and (b) Ca/Al with Mg# in clinopyroxene from natural and
experimental mantle peridotite. Experimental data for the partial melting of carbonate-free peridotite are from Walter (1998), Gaetani and Grove (1998),
Pickering-Witter and Johnston (2000), Falloon et al. (1999), Baker and Stolper (1994), Wasylenki et al. (2003) and Schwab and Johnston (2001) (only
experiments with lherzolite and harzburgite residue were selected), the data for high-silicate melt-peridotite interactions are from Wang et al. (2010) and
Yaxley and Green (1998) and the data for carbonate melt-peridotite interactions are from Dalton and Wood (1993), Brey et al. (2008), Klemme et al. (1995),
Sokol et al. (2016) and Gervasoni et al. (2017). The data for typical carbonate metasomatism in nature are from Coltorti et al. (1999), Yaxley et al. (1998) and
Neumann et al. (2002).
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al. (1999) suggested that the clinopyroxene that results from
carbonate metasomatism is generally characterized by (La/
Yb)N>3–4 and Ti/Eu<1500, although these are not absolute
values. Figure 3 shows that some clinopyroxenes resulting
from typical carbonate metasomatism have Ti/Eu rstios close
to 2000 and (La/Yb)N values<3. We therefore suggest that the
trends of (La/Yb)N and Ti/Eu in clinopyroxene may be used
to distinguish carbonate metasomatism from silicate meta-
somatism (Figure 3a). However, despite the rapid develop-
ment of in situ analyses that could be used to apply this trace
element index to trace carbonate metasomatism in the li-
thospheric mantle (Zheng et al., 2007; Sun et al., 2012; Deng
et al, 2017), there is only a limited amount of published data
on the trace elemental contents of minerals from the North
China Craton. This has hindered the systematic spatio-tem-
poral assessment of carbonate metasomatism in the litho-
spheric mantle in this region.
Carbonate melts have very high Ca/Al ratios (Rudnick et

al., 1993) and both Ca and Al are stoichiometric elements of
clinopyroxene. Thus, the Ca/Al ratio of clinopyroxene can be
considered as an effective major elemental index to trace
carbonate metasomatism in the lithospheric mantle. Figure
3b shows the variation of the major element (Ca/Al and
Mg#) composition of clinopyroxene in natural and experi-
mental mantle peridotites. Clinopyroxene in lherzolite and
harzburgite after partial melting (Baker and Stolper, 1994;
Gaetani and Grove, 1998; Walter, 1998; Falloon et al., 1999;
Pickering-Witter and Johnston, 2000; Schwab and Johnston,
2001; Wasylenki et al., 2003) and the interactions between
experimental eclogite-derived high-silicate melts and peri-
dotites (Wang et al., 2010; Yaxley and Green, 1998) show the
low Ca/Al ratios <5 and Mg# values <92 (Figure 3b).
However, most of the Ca/Al ratios are >5 in clinopyroxene
formed during experimental carbonate melt-peridotite in-
teractions (Figure 3b) (Dalton and Wood, 1993; Klemme et
al., 1995; Brey et al., 2008; Sokol et al., 2016; Gervasoni et
al., 2017). All the clinopyroxenes resulting from natural
carbonate metasomatism show high Ca/Al ratios >5 (Figure
3b). We therefore conclude that a Ca/Al ratio >5 is an im-
portant geochemical index with which to trace carbonate
metasomatism in the lithospheric mantle. Major element
contents, including Ca and Al, are commonly reported in
mantle clinopyroxenes from the North China Craton. Clin-
opyroxene is also the main carrier of trace elements and has
very high Sr and very low Rb contents, making it an ideal
mineral for in situ Sr isotope analysis (Malarkey et al., 2011;
Tong et al., 2016). The very low Rb/Sr ratio means the ne-
glected radiogenic Sr in clinopyroxene that can be used to
record the initial Sr isotopic composition in order to con-
strain the metasomatic agent. We therefore used a compre-
hensive combination of major element (Ca/Al and Mg#),
trace element (Ti/Eu and (La/Yb)N) indices and Sr isotopic
compositions of clinopyroxene (Figures 4–6) to study the

spatio-temporal variations of carbonate metasomatism in the
lithospheric mantle beneath the eastern North China Craton.

4. Widespread carbonate metasomatism in the
lithospheric mantle beneath the North China
Craton

The existence of carbonate melt in the deep mantle is a
prerequisite for carbonate metasomatism in the lithospheric
mantle. Carbonate melt may be erupted at the surface as
carbonatite or may be completely exhausted during interac-
tions with peridotite. Proterozoic and Mesozoic carbonatites
are exposed at more than ten locations in the North China
Craton. The Meso-Proterozoic Bayan Obo (1.3 Ga), Fengz-
hen (1.8–1.7 Ga), Huaian (1.8 Ga) and Fangcheng (0.79 Ga)
carbonatites have depleted Sr-Nd isotopic compositions
(87Sr/86Sr(t)=0.7028–0.7031; εNd(t)=−1.2 to −6.1). However,
the Mesozoic Zhuolu (239 Ma), Songxian (209 Ma), Huairen
(229 Ma), Linxian (132 Ma), Huayin (205 Ma), Luonan (221
Ma) and Laiwu (124 Ma) carbonatites show evolved Sr-Nd
compositions (87Sr/86Sr(t)=0.7043–0.7106; εNd(t)=−2.1 to
−18.2) (Yan et al., 2007), indicating that these carbonatites
were derived from enriched mantle sources or recycled crust.
Kim et al. (2016) suggested that the evolved Sr-Nd isotopic
compositions (87Sr/86Sr(t)=0.703–0.706; εNd(t)=−26) of the
Mesozoic Hongcheon carbonatite (~230 Ma) in the South
Korea is a result of an ancient enrichment event in the li-
thospheric mantle.
Ying et al. (2004) proposed that the enriched signature of

the Mesozoic (124 Ma) Laiwu-Zibo carbonatites is related to
the subduction, with continental material, of the South China
Block into the deep mantle beneath the North China Craton.
Chen C F et al. (2016) reported that the carbonatite intrusion
in the late Tertiary Hannuoba basalt has the geochemical
characteristics of carbonate sediments, which could be the
result of subduction of the Paleo-Asian oceanic plate. Zhang
et al. (2017) found the same carbonate melt from the Mio-
cene basalts in the Dongbahao region (Inner Mongolia)
along the northern margin of the North China Craton, where
two-stage carbonate metasomatism related to the subduction
of the Paleo-Asian oceanic plate was proposed for xenoliths
of mantle peridotites (Chen et al., 2017; Wu et al., 2017). The
Dalihu carbonatite in the Central Asian Orogenic Belt
(CAOB) has a similar trace element and oxygen isotopic
(δ18OSMOW=20.7–21.5) composition to sedimentary carbo-
nates and contains microscopic diamonds; this is the first
direct evidence of sedimentary carbonate recycling during
subduction of the Paleo-Asian oceanic plate (Liu Y S et al.,
2015). Thus, the presence of widespread subduction-related
carbonate melts suggests the possibility of intense carbonate
metasomatism in the lithospheric mantle beneath the North
China Craton.
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Figure 4 (a) Petrological classification of harzburgite xenoliths and terranes, variations of the ((b), (e)) Ca/Al ratio with Mg# and ((c), (f)) the (La/Yb)N
with the Ti/Eu in clinopyroxene, and (d) variation of the Ca/Al of clinopyroxene with time in the eastern North China Craton. Except for the strongly
serpentinized Mengyin and Xinyang peridotite xenoliths and the Sulu orogenic peridotite terrane, detailed mineral counting work has been carried out on the
other harzburgites. The Kuandian data are from Xu et al. (2013b); the Huinan data are from Xu et al. (2003b); the Hebi data are from Zheng et al. (2001); the
Penglai data are from Chu et al. (2009); the Qixia data are from Zheng et al. (1998); the Pishikou data of the Qingdao are from Zhang (2009); the Xinyang
data are from Zheng et al. (2005a); the Tietonggou data are from Xu et al. (2008) and Zhou et al. (2013); the Lijiatun date are from Su et al. (2016); the
Zhimafang, Xugou and Jiangzhuang data in the Donghai are from Yang and Jahn (2000), Zheng et al. (2005b, 2006), Yuan et al. (2007) and Zhang Z M et al.
(2011). Data for the South Africa Craton are from Boyd et al. (2004), Franz et al. (1996), Gregoire (2003, 2005), Saltzer (2001), Simon et al. (2003),
Stiefenhofer et al. (1997) and Whitehead et al. (2002); data for the Greenland Craton are from Bernstein et al. (1998), Bizzarro and Stevenson (2003),
Hellebrand and Snow (2003) and Holm and Prægel(2006); data for the Slave Craton are from Aulbach et al. (2004), Kopylova and Caro (2004), McCammon
and Kopylova (2004), Menzies et al. (2004), van Achterbergh et al. (2004), Kopylova et al. (1999), MacKenzie and Canil (1999), Schmidberger and Francis
(1999), Shi et al. (1998), Schmidberger et al. (2003), Schmidberger and Francis (2001), Peslier (2002) and Griffin et al. (1999); data for the Siberian Craton
are from Ionov et al. (1993a, 2005a, 2005b, 2005c, 2006), Ionov and Hofmann (1995), Griffin et al. (1996), Boyd et al. (1997), Litasov et al. (2000), Ionov
(2004), Griffin et al. (2005) and Sharygin et al. (2007); data for the Australia Craton are from Ghorbani and Middlemost (2000), Bruce et al. (2000), Powell et
al. (2004), Roach (2004), Woodland et al. (2004), Yaxley et al. (1997, 1998), Eggins et al. (1998), Varela et al. (1999) and Yaxley and Kamenetsky(1999);
data for the Wyoming Craton are from Downes (2004) and Carter Hearn (2004); data for the Tanzania Craton are from Dawson (2002) and Lee et al. (2000).
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The elemental and isotopic compositions of mantle-de-
rived mafic and ultramafic rocks can be used to indirectly
constrain their mantle sources (Hofmann, 1997). Mesozoic
to Cenozoic basalts are widely distributed in the North China
Craton (Liu et al., 2008; Zheng et al., 2018). Based on a

detailed elemental study, Zeng et al. (2010) proposed that the
mantle source of the Cenozoic alkaline basalts in the Shan-
dong Province was dominated by carbonated peridotite. Melt
inclusions in the olivine phenocrysts of alkaline basalts from
Yangzhuang in the Shandong Province contain methane

Figure 5 ((a), (d)) Petrological classification of the late Cretaceous to Quaternary lherzolite/wehrlite xenoliths. ((b), (e)) Variations of the Ca/Al ratio with
Mg# and ((c), (f)) the (La/Yb)N ratio with the Ti/Eu in clinopyroxene of the eastern North China Craton. The Fuxin data are from Zheng et al. (2007); the
Qixia data are from Zheng et al. (1998) and Xia et al. (2010); the Changle data are from Xiao et al. (2010) and Deng et al. (2017); the Pishikou data of the
Qingdao are from Zhang (2009); the Junan data are from Ying et al. (2006) and Zhang (2009); the Penglai data are from Chu et al. (2009) and Xia et al.
(2010); the Kuandian data are from Xu R et al. (2013a, 2013b); the Huinan data are from Xu et al. (2003a, 2003b); the Nushan data are from Xu et al. (1998)
and Xu et al. (2000); the Shanwang data are from Zheng et al. (1998, 2006) and Chu et al. (2009); Data for the peridotite xenoliths in the North Korea are
from Yang et al. (2010).
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(CH4) and other hydrocarbons and some carbonaceous mi-
nerals such as graphite and carbonate, indicating a carbo-
nated mantle source (Liu F et al., 2015). Late Cretaceous to
Cenozoic basalts in eastern China are characterized by light
Mg isotope and heavy Zn isotope compositions, which has
been suggested to be a result of the westward subduction of
the Pacific oceanic plate and the recycling of carbonate se-
diments into the mantle (YangWet al., 2012; Liu et al., 2016;

Li et al., 2017).
Triassic low-Si alkaline rocks occur widely along the

northern margin of the North China Craton and are con-
sidered to represent a low degree of partial melting of me-
tasomatosed and enriched mantle (Yan et al., 2001; Niu et al.,
2012; Yang J H et al., 2012; Zhang S H et al., 2012). These
alkaline rocks show a crustal elemental and Sr-Nd isotopic
signature that is different in comparism to the asthenospheric

Figure 6 ((a), (b)) Variations of the Ca/Al ratio with Sr isotopic composition in clinopyroxene of the peridotite xenoliths from the eastern North China
Craton. ((c), (d)) Variations of Sr isotopic composition with the Ti/Eu and Ca/Al ratios of clinopyroxene in the Kuandian lherzolite xenolith. (e) Variations of
Sr isotopic composition with the Ca/Al ratio in clinopyroxene of the Shanwang lherzolite xenolith. (f) Sr isotopic profile of clinopyroxene in the Changle
Type 2 lherzolite xenolith. Data for the Donghai orogenic peridotite terrane are from Yang and Jahn (2000); the Tietonggou data are from Xu et al. (2008) and
Zhou et al. (2013); Hebi data are from Sun et al. (2012); the Penglai data are from Chu et al. (2009); the Huinan data are from Xu et al. (2003b); the Pishikou
data of the Qingdao are from Zhang et al. (2009); the Changle data are from Xiao et al. (2010) and Deng et al. (2017); the Junan data are from Zhang (2009);
the Kuandian data are from Xu et al. (2013a); the Nushan data are from Xu et al. (2000); the Shanwang data are from Chu et al. (2009); Data for the North
Korea are from Yang et al. (2010).
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mantle. Thus, the metasomatic melt/fluid is contributed to
recycling of the crust (Yan et al., 2002; Zhu et al., 2017). The
presence of carbonate veins and intergranular calcite in the
Fanshan alkaline complex suggest that the original magma
contained certain amounts of CO2 (Yan et al., 2007; Niu et
al., 2012). The very high Ca content in the early crystallized
clinopyroxene is consistent with Ca enrichment in the ori-
ginal magma, which could be derived from a carbonated
mantle source (Niu et al., 2012; Hou et al., 2015) resulting
from subduction of the Paleo-Asian oceanic plate (Niu et al.,
2017).
Carbonate minerals such as calcite, dolomite and magne-

site can be formed during carbonate metasomatism (Yaxley
et al., 1991; Ionov et al., 1993b, 1996; Rudnick et al., 1993).
These index minerals can therefore be used directly to
identify carbonate metasomatism. Intergranular calcite
grains have been found in peridotite xenoliths from the
Changle basalts in the eastern North China Craton (Xiao et
al., 2010; Deng et al., 2017) and the Datong basalts in the
Trans-North China Orogen (TNCO) (Wang C Yet al., 2016).
Carbonate melt inclusions hosted in olivine and clinopyr-
oxene were also present in the Changle peridotite xenolith
(Deng et al., 2017). Carbonate metasomatism is always ac-
companied by the formation of secondary clinopyroxene
(Ionov et al., 1993b; Coltorti et al., 1999; Sun et al., 2012),
which is formed during the reaction of carbonate melts with
orthopyroxene (Dalton and Wood, 1993). Wehrlites com-
posed of olivine and clinopyroxene are therefore considered
to be the end-product of carbonate metasomatism in the li-
thospheric mantle (Yaxley et al., 1991, 1998; Rudnick et al.,
1993; Neumann et al., 2002). Wehrlite samples have been
reported in Cenozoic Changle peridotite xenoliths (Xiao et
al., 2010) and early Cretaceous high-Mg diorites from the
western Shandong Province (Zhou et al., 2013) in the eastern
North China Craton.
Orogenic mantle peridotite terranes in the Triassic Sulu

orogenic belt are generally considered to be fragments of the
lithospheric mantle of the North China Craton that have been
carried to crustal depths during the exhumation of the deeply
subducted South China Block (Zheng et al., 2006; Zhang RY
et al., 2008, Zheng Z M et al., 2011; Su et al., 2016). Mag-
nesite and dolomite are common accessory minerals in the
Donghai garnet-bearing mantle peridotite in the southern
Sulu orogenic belt, in which ~225 Ma metamorphic zircon
grains contain magnesite and CO2 fluid inclusions (Zheng Z
M et al., 2011). In the northern Sulu orogenic belt, the Li-
jiatun spinel-bearing mantle peridotite includes intergranular
dolomite, in which (clinopyroxene+olivine) veins with
wehrlite mineral assemblage crosscutting orthopyroxene
porphyroblasts are considered as the direct evidence of car-
bonate metasomatism (Su et al., 2016). Based on the geo-
chemical indices (La/Yb)N and Ti/Eu of clinopyroxene,
Zheng et al. (2007) suggested that the lithospheric mantle

beneath the North China Craton experienced carbonate me-
tasomatism in the Paleozoic and early Mesozoic, but silicate
metasomatism in the late Mesozoic and Cenozoic. In this
study, however, we showed that three different types of
carbonate metasomatism with spatio-termporal variations
can be identified in the Paleozoic to Cenozoic lithospheric
mantle beneath the eastern North China Craton on the basis
of major element (Ca/Al and Mg#) and trace element (Ti/Eu
and (La/Yb)N) indices and the Sr isotope composition of
mantle clinopyroxene (Figures 4–6).

5. Temporal variations of carbonate metaso-
matism in the lithospheric mantle beneath the
eastern North China Craton

Carbonate metasomatism characterized by the high Ca/Al,
Mg# and (La/Yb)N and low Ti/Eu ratios of clinopyroxene is
recorded by harzburgite xenoliths in the volcanic rocks,
orogenic mantle peridotites in the Triassic Sulu UHP belt and
mantle peridotite xenoliths and xenocrysts in the Paleozoic
kimberlites of the eastern North China Craton, although not
in the Huinan harzburgite xenoliths (Figure 4). The high Ti/
Eu ratios in the clinopyroxenes of the Huinan harzburgite
(Figure 4f) are results of the interactions of basaltic melts and
peridotites (Xu et al., 2003a, 2003b). However, the slightly
high Ca/Al ratio of 4–8 in clinopyroxene is consistent with a
carbonate overprint or a small amount of metasomatims by a
volatile-rich melt (Xu et al., 2003a). This further indicates
that a comprehensive consideration of the major (e.g., Ca/Al)
and trace (e.g., Ti/Eu) element geochemical indices in clin-
opyroxene is effective in tracing carbonate metasomatism in
the lithospheric mantle.
Clinopyroxene in the Triassic Sulu orogenic peridotites

has a very high Ca/Al ratio (median 29), which is defined as
Type 1 carbonate metasomatism, whereas the median Ca/Al
ratios of clinopyroxene in the Paleozoic Mengyin peridotite
xenoliths and the global cratonic lithospheric mantle are 17
and 10, respectively (Figure 4b). Apart from the early Cre-
taceous Tietonggou harzburgites and wehrlites with records
of Type 1 carbonate metasomatism, the Ca/Al ratio in the
clinopyroxene of harzburgite xenoliths hosted in the Jurassic
to Cenozoic volcanic rocks decreases to 5–18, indicative of
Type 2 carbonate metasomatism (Figure 4e). However, based
on the geochemical signature of natural carbonatites (Rud-
nick et al., 1993) and the elemental partitioning of experi-
mental carbonate melts (Klemme et al., 1995), mantle-
derived magma can inherit the geochemical indices of a
carbonated mantle source, such as high Ca/Al and (La/Yb)N
and low Ti/Eu ratios (Zeng et al., 2010). The Ca/Al and (La/
Yb)N ratios are higher and the Ti/Eu ratio is lower in the
Triassic mafic rocks of the Jiaodong Peninsula than those of
the Cretaceous and Cenozoic mafic rocks of the eastern
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North China Craton (Figure 7). Therefore, we conclude that
carbonate metasomatism in the eastern North China Craton
was transformed from Type 1 to Type 2 during the Triassic
period (Figure 4d), which is consistent with Type 1 and Type
2 carbonate metasomatisms showing the striking 87Sr/86Sr
composition of clinopyroxene of 0.706–0.713 and 0.703–
0.706, respectively (Figure 6a).
After the peak decratonization of the eastern North China

Craton, the clinopyroxene of the 100 Ma Fuxin peridotite
xenolith and some Tertiary Changle lherzolite xenoliths were
characterized by the relatively high Ca/Al ratios (>5), but
low Mg# signatures. This is defined as Type 3 carbonate
metasomatism (Figure 5b). Type 3 carbonate metasomatism
also displays by medium Ti/Eu ratios (~1000–3000) and
slightly high (La/Yb)N ratios in clinopyroxene and plots in
the transitional domain between typical carbonate metaso-
matism and silicate metasomatism (Figure 5c).

6. Spatial variations of carbonate metasoma-
tism in the lithospheric mantle beneath the
eastern North China Craton

Partial melting of the upwelling asthenosphere generally
produces silicate-rich melts that induce silicate metasoma-
tism and form juvenile lithospheric mantle during thinning of
the lithospheric mantle (Xu et al., 2003b). However, the ju-
venile lithospheric mantle in the eastern North China Craton
is overprinted by carbonate metasomatism with obvious
spatial variations. Lherzolite xenoliths with Type 2 and Type
3 carbonate metasomatism are mainly found in the Jiaodong
Peninsula, whereas silicate metasomatism is seen far from
the Jiaodong Peninsula in the eastern North China Craton.
Clinopyroxenes in some lherzolite xenoliths from the Qixia,

Penglai, Qingdao, Changle (Type 1 lherzolite) and Junan in
the Jiaodong Peninsula and surrounding areas show element
signatures of Type 2 carbonate metasomatism (high Ca/Al
ratios and Mg#; low Ti/Eu ratios) (Figure 5b and c). These
lherzolites show the same Sr isotopic composition as the
harzburgites that experienced Type 2 carbonate metasoma-
tism, with 87Sr/86Sr ratios of 0.703–0.705 and 0.703–0.706,
respectively (Figure 6b). Type 3 carbonate metasomatism
has only been recorded by a few lherzolite xenoliths (Figure
5e and f) and the 87Sr/86Sr ratio shows a negative relationship
with the Ca/Al in clinopyroxene for most lherzolite xenoliths
(Figure 6e) from the Shanwang, indicating that the carbonate
metasomatic agent may have been derived from very de-
pleted asthenospheric mantle (87Sr/86Sr<0.7023). Such Type
3 carbonate metasomatism with a very low 87Sr/86Sr ratio has
also been reported in the lherzolite xenoliths from the nearby
Changle (Deng et al., 2017) (Figures 5b, 6b and f). However,
our unpublished data show that the Qingdao harzburgite and
lherzolite xenoliths altered by Type 3 carbonate metasoma-
tism have a relatively high 87Sr/86Sr ratio of 0.7033–0.7040 in
clinopyroxene with a Ca/Al ratio of 4.1–6.0 (Figure 6b). The
Cenozoic lherzolite xenoliths from the Kuandian and Nushan
far away from the Jiaodong Peninsula, mainly experienced
silicate metasomatism, with very weak or absent carbonate
metasomatism (Figure 5e and f). Most of the lherzolite xe-
noliths from the Kuandian show a clear positive relationship
between the 87Sr/86Sr ratios (0.7028–0.7042) and Ti/Eu ratios
in clinopyroxene (Figure 6c), which is consistent with sili-
cate metasomatism (Xu R et al., 2013a). However, a few
lherzolite xenoliths have slightly higher 87Sr/86Sr (0.7041–
0.7055) and Ca/Al ratios (Figure 6d), very high Ti/Eu ratios
(>4000) and no relationship between the Ti/Eu with 87Sr/86Sr
ratios in clinopyroxene (Figure 6c), indicating a low degree
of metasomatism by a CO2-rich silicate melt (Figure 6d).

Figure 7 (a) Variations of the Ca/Al ratio with the Ti/Eu ratio and (b) the (La/Yb)N with the Ti/Eu ratio in Mesozoic-Cenozoic mafic rocks from the eastern
North China Craton. Data for the eastern North China Craton are from Dai et al. (2016), Liu et al. (2008) and Zeng et al. (2010). The mid-ocean ridge basalt
(MORB) data are from Gale et al. (2013); the oceanic island basalt (OIB) data are from http://georoc.mpch-mainz.gwdg.de/georoc/. Only MgO >7.5% data
are used in this study.
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Therefore, the juvenile lithospheric mantle underneath the
Jiaodong Peninsula and surrounding areas has affected by
intense carbonate metasomatism, which is spatially con-
sistent with the remarkable lithosphere thinning, large vo-
lume of asthenosphere upwelling and giant gold deposits in
this region.

7. Link of carbonate metasomatism to the de-
struction of the eastern North China Craton and
associated giant gold deposits

A short-lived giant igneous events (135–110 Ma) (Wu et al.,
2005; Zhu et al., 2012b; Zhang et al., 2014), tectonic ex-
tension(Lin et al., 2013; Zhu et al., 2015) and the formation
of giant gold deposits (Yang et al., 2003; Li et al., 2012; Zhu
et al., 2015; Fan et al., 2016) are well developed in the early
Cretaceous of the eastern North China Craton. Based on two
types of mafic igneous rocks from the Jiaodong Peninsula
with contrasting geochemical compositions, Dai et al. (2016)
suggested that the nature of the mantle lithosphere in the
eastern North China Craton changed from an ancient litho-
spheric mantle to a juvenile lithospheric mantle at ~121 Ma
—that is the time of termination of the peak decratonization.
As a result of the good spatio-temporal consistence between
the destruction of the eastern North China Craton and the
westward subduction of the Pacific plate, Paleo-Pacific
subduction has been suggested as the main dynamic factor
triggering the destruction of the eastern North China Craton
and the formation of giant gold deposits (Sun et al., 2007;
Zhu et al., 2011, 2012a, 2015).
The westward subduction of the Paleo-Pacific plate not

only modified the North China Craton, but also had a sig-
nificant impact on the architecture of the whole of eastern
Asia (Sun et al., 2007; Yin, 2010; Dong et al., 2015). For
example, the subduction of the Paleo-Pacific plate induced
widespread Cretaceous magmatism (Wang Y J et al., 2013)
and extensional tectonism (Lin et al., 2013) in the South
China Block, which is a stable craton and lacks Jiaodong/
decratonic gold deposits (Deng and Wang, 2016). This
suggests that the lithospheric mantle beneath the eastern
North China Craton may have had unique characteristics
before its destruction in the early Cretaceous. Carboniferous-
early Permian (324–270 Ma) and late Permian-Triassic
(262–236 Ma) alkaline rocks occur widely on the northern
margin of the North China Craton as a result of the sub-
duction of the Paleo-Asian oceanic plate during the late
Paleozoic (Zhu et al., 2012b). The southeastern North China
Craton was modified by the deep subduction of the South
China Block and the formation of the late Triassic (225–210
Ma) post-collision magmatism (Zhu et al., 2012b). The late
Triassic peridotite xenoliths hosted by the ~223 Ma North
Korea kimberlites are characterized by juvenile lithospheric

mantle, which demonstrates that the eastern North China
Craton was partially destroyed in the Triassic (Yang et al.,
2010).
Long-lived and multiple subduction-related modifications

around the North China Craton significantly changed the
physical and chemical properties of the lithosphere mantle
(Windley et al., 2010), providing a prerequisite for the final
decratonization. The westward subduction of the Paleo-Pa-
cific plate in the late Mesozoic simply provided a final
driving force for the destruction of the eastern North China
Craton. The subducted slab not only contributed the dehy-
drated water to reduce the strength of the upper lithospheric
mantle (Niu, 2005; Windley et al., 2010; Xia et al., 2013), but
also triggered subduction-related crustal recycling and melt-
peridotite interactions in the lithospheric mantle (Liu et al.,
2005, 2010). The low viscosity and low density carbonate
melt reacted easily with mantle peridotite and consumed
orthopyroxene (Russell et al., 2012; Kamenetsky and Yaxley,
2015), which modified the structure and composition of the
lithospheric mantle. Experimental work by Wang C et al.
(2016) showed that carbonate melt can very quickly perco-
late along grain boundaries in harzburgite to form a porridge-
like texture, dispersing the cratonic lithospheric mantle.
Compared with the clinopyroxene of global cratonic

peridotites, the clinopyroxene in the lithospheric mantle
beneath the Sulu orogenic belt and surrounding areas in the
eastern North China Craton is characterized by very high Ca/
Al ratios (up to 70) before the late Triassic (Figure 4b), which
indicates strong Type 1 carbonate metasomatism. The li-
thospheric mantle therefore had a global unique character-
istic before the destruction of the eastern North China
Craton. The presence of the clinopyroxene (Ca/Al=47–63)
and olivine veins with wehrlite mineral assemblages cross-
cutting the orthopyroxene porphyroblasts in the ~240 Ma
Lijiatun orogenic peridotite is the direct petrological evi-
dence for strong Type 1 carbonate metasomatism in the li-
thospheric mantle beneath the eastern North China Craton in
the Triassic (Su et al., 2016). In general, carbonate melt can
exist in the deep mantle, such as the asthenospheric mantle
beneath thick subcontinental lithospheric mantle. However,
Type 1 carbonate metasomatism is present in both the
Donghai garnet-bearing and the Lijiatun spinel-bearing
orogenic peridotites, which implies that the deep and shallow
lithospheric mantle beneath the eastern North China Craton
was strongly modified by Type 1 carbonate metasomatism
before the late Triassic. Such Type 1 carbonate metasoma-
tism can also been identified in the ~130Ma Tietonggou
peridotite xenolith before the peak (~125 Ma) decratoniza-
tion of the eastern North China Craton (Figure 4b and d).
However, Type 1 carbonate metasomatism can not be iden-
tified in all the peridotite xenoliths that were trapped after the
destruction of the eastern North China Craton (Figures 4d, e
and 5b, e). Therefore, we suggest that Type 1 carbonate
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metasomatism is a prerequisite for the final destruction the
eastern North China Craton under global mantle heating in
the Cretaceous (Machetel and Humler, 2003) and the mantle
convection and destabilization induced by the subduction of
the Paleo-Pacific plate (Zhu et al., 2011).
The Jiaodong Peninsula is one of the most important gold

deposit provinces in China. It covers <1% of the land area,
but accounts for >25% of the total proven gold reserves in
China. The Jiaodong gold deposit province was formed
within a few million years in the early Cretaceous (130–120
Ma) and was coevally with the peak destruction of the
eastern North China Craton and spatially consistent with a
pervasive carbonate metasomatism in the lithospheric mantle
(Figure 1). Its ore-forming fluids were thought to have been
largely derived from a cooling magma and/or from mantle
degassing, which is distinct from typical orogenic gold de-
posits worldwide (Yang et al., 2003; Li et al., 2012; Zhu et
al., 2015; Deng and Wang, 2016; Fan et al., 2016). However,
D-O-C-S stable isotopic results showed that the ore-forming
fluids were mainly derived from the enriched lithospheric
mantle (Mao et al., 2008). The coeval lamprophyre dykes in
the Jiaodong gold province, in which carbonate minerals are
commonly observed (Sun et al., 2001; Guo et al., 2004; Yang
et al., 2004; Ma et al., 2016), are characterized by C–O stable
isotopic compositions typical of the upper mantle (Sun et al.,
2001). Based on a detailed study of fluid inclusions in quartz
veins, Fan et al. (2003) showed that the CO2 concentration
gradually decreased from the early to late mineralizing
stages. Gold in the mantle is controlled by sulfides (Li and
Audétat, 2012; Lorand and Luguet, 2016; Jenner, 2017),
which can be destabilized under the oxidizing conditions
induced by carbonate melts derived from the crustal re-
cycling. This process is thought to release gold- and sulfur-
rich fluid. CO2 has the ability to buffer the pH of this fluid at
a level where elevated concentrations of gold can be trans-
ported (Phillips and Evans, 2004). We therefore suggest that
carbonate metasomatism in the lithospheric mantle may have
played a crucial part in the activation, transport, enrichment
and mineralization of gold in the eastern North China Craton.

8. Genesis of carbonate melts

Type 1 carbonate metasomatism is characterized by high
87Sr/86Sr ratios of 0.706–0.713 (Figure 6a). The metasomatic
agent should be high Ca/Al ratios and CO2 concentrations
and low SiO2 and Al2O3 concentrations, as seen in the car-
bonate melt formed from the partial melting of carbonated
eclogite (Figure 8). The Mesozoic (124 Ma) Laiwu-Zibo
carbonatite in the Shandong Province with 87Sr/86Sr ratios of
0.7095–0.7106 is thought to have been derived from the
partial melting of the South China Block and its accom-
panying carbonate sediments, which was subducted into the

deep lithospheric mantle beneath the eastern North China
Craton in the Triassic (Ying et al., 2004). The continental
material of the South China Block should have been sub-
ducted into the mantle to depths >200 km (Ye et al., 2000).
The enriched mantle resulting from crust-mantle interactions
during continental deep subduction is suggested to the source
of the postcollisional mafic igneous rocks (Zhao et al., 2013).
The Triassic (210–201 Ma) and early Cretaceous (133–111
Ma) postcollisional mafic igneous rocks of the Jiaodong
Peninsula involve recycled continental crust material and
have evolved Sr isotopic compositions (87Sr/86Sr=0.706–
0.714) (Dai et al., 2016) consistent with the Sr isotopic
composition (87Sr/86Sr=0.706–0.713) of clinopyroxenes af-
fected by Type 1 carbonate metasomatism (Figure 6a). The
late Triassic mafic igneous rocks show high Ca/Al and
(La/Yb)N ratios and low Ti/Eu ratios (Figure 7) typical of
carbonate metasomatism. Carbonate sediments were well
developed along the northern margin of the South China
Block from the Neoproterozoic to the Paleozoic (Zheng and
Hu, 2010). Carbonated ultrahigh pressure eclogites also oc-
cur widely in the Sulu orogenic belt (Proyer et al., 2013; Liu
P L et al., 2015; Chen Y X et al., 2016). We therefore propose
that the deep subduction of the South China Block carried
significant amounts of carbonate sediments into the litho-
spheric mantle beneath the North China Craton, inducing
intense Type 1 carbonate metasomatism, which provided a
prerequisite for the final destruction of the eastern North
China Craton.
Combined with the positive relationship between Ca/Al

and CO2 and the negative relationship between Ca/Al and
SiO2 in the carbonate melt (Figure 8b and c), the low Ca/Al
ratio in clinopyroxene affected by Type 2 and Type 3 car-
bonate metasomatism (Figures 4d, e and 5b, e) implies that
their metasomatic agents should have high SiO2 and low CO2

contents. This is consistent with clinopyroxenes of Type 3
carbonate metasomatism, which show the relatively high Ti/
Eu ratios (Figure 5c and f) considered to be a result of silicate
metasomatism. The low and variable Sr isotopic composi-
tions (87Sr/86Sr=0.7022–0.7056) indicate that the carbonate
melt of Type 2 and Type 3 metasomatism was mainly derived
from the asthenospheric mantle, but also involves recycled
crustal material in variable proportions. This is demonstrated
by the Changle lherzolite xenoliths, in which high 87Sr/86Sr
ratio (>0.7035) and low 87Sr/86Sr ratio (<0.7024) clinopyr-
oxenes are suggested to record the carbonate metasomatism
caused by recycled oceanic crust and upwelling of the
asthenospheric mantle, respectively (Deng et al., 2017). The
elemental and Mg-Zn stable isotopic compositions show that
the Cenozoic basalts from asthenosphere involved a carbo-
nate melt that resulted from crustal recycling in the eastern
North China Craton (Zeng et al., 2010; Yang W et al., 2012;
Liu et al., 2016; Li et al., 2017). Therefore, Type 2 and Type
3 carbonate metasomatisms are considered as the modifica-
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tion of the lithospheric mantle in the eastern North China
Craton, which is caused by the carbonate melts derived from
the asthenospheric mantle with variable proportions of the
recycled crustal material.

9. Conclusions

(1) The geochemcial indices of major elements Ca/Al and
Mg#, trace elements (La/Yb)N and Ti/Eu, and the Sr isotopic
composition of clinopyroxene in peridotite can be used to
trace carbonate metasomatism in the lithospheric mantle.
(2) Three types of carbonate metasomatism were identified

in the lithospheric mantle beneath the eastern North China
Craton. Type 1 carbonate metasomatism was a result of the
interaction between carbonate melt derived from recycled
continental crust and the lithospheric mantle before the late
Triassic, which is suggested to have provided a prerequisite
for the final destruction of the eastern North China Craton.
Type 2 and Type 3 carbonate metasomatism that modified
the lithospheric mantle in the eastern North China Craton
was caused by carbonate melts derived from asthenospheric
mantle with variable proportions of recycled crustal material.
(3) The strong carbonate metasomatism of the lithospheric

mantle is spatially consistent with the formation of the

Jiaodong giant gold deposits, indicating that carbonate me-
tasomatism played a crucial part in the formation of the giant
gold province in the eastern North China Craton.
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