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Abstract    This paper reviews the historic understanding of the predictability of atmospheric and oceanic motions, and interprets it
in a general framework. On this basis, the existing challenges and unsolved problems in the study of the intrinsic predictability limit
(IPL) of weather and climate events of different spatio-temporal scales are summarized. Emphasis is also placed on the structure
of the initial error and model parameter errors as well as the associated targeting observation issue. Finally, the predictability of
atmospheric and oceanic motion in the ensemble-probabilistic methods widely used in current operational forecasts are discussed.
The necessity of considering IPLs in the framework of stochastic dynamic systems is also addressed.
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1.    Introduction
The study on the atmospheric and oceanic predictability can
be traced back to Thompson (1957), who studied the im-
pact of the initial errors from insufficiently accurate observa-
tions on numerical weather forecasting under the hypothesis
that the model is perfectly accurate. Later, Lorenz discov-
ered the chaos of the atmospheric motions using the Lorenz
model (Lorenz, 1963) and further studied the nonlinear inter-
actions among atmospheric motions of different scales, from
which the well-known concept of intrinsic predictability was
derived (Lorenz, 1969). These studies basically focused on
the predictability of weather scales. Since the early 1980s,
high attention have been paid by both social and research
communities globally to climate prediction of important cli-
mate modes represented by ENSO. The predictability of the
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climate then rapidly became an intensively researched field.
Since the beginning of this century, with the implement of
a series of international programs and initiatives, including
the World Climate Research Program (WCRP), the Variation
and Predictability of the International Climate Research pro-
gram (CLIVAR) and the Global Observational System Study
and Predictability Experiment (THORPEX), the predictabil-
ity studies have become a main research field in geoscience.
What is predictability? An accurate answer is difficult in

a rigorous sense, which could explains why there have been
various definitions and descriptions of predictability in the lit-
erature (e.g., Mu et al., 2004). The newest IPCC AR5 eval-
uation report defined it as an inherent characterization of a
physical system rather than our ability to make skillful pre-
dictions in practice (Kirtman et al., 2013). The former is in-
herent in the system and independent of the models and initial
conditions, whereas the latter is dependent on the accuracy of
model, initial conditions and the external forcing. In any case,
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our understanding and description of concerned physical vari-
ables, their associated events and evolution law are imperfect.
For example, all the observations have errors, and none of the
models can perfectly describe the inherent evolution of a cli-
mate system in time and in space. Therefore, the definition of
climate predictability from the IPCC fifth report can be rec-
tified to become a new definition of predictability in a more
general framework that is suitable for all physical variables
and events. That is, predictability is an inherent property of
physical variables (such as velocity, temperature, density or
salinity) and weather or climate events (such as tornados, ty-
phoons, heavy rainfall, ENSO, oceanic mesoscale eddies) in
the atmospheric and oceanic systems. This property varies
with time and space and is a product of multiscale interac-
tions. The evolution of the property is nonlinear. The pre-
dictability measures the impact of tiny errors in current states
and model system on the future states. If the initial errors
grow rapidly or the probability density distribution becomes
wide quickly, the predictability of the concerned target is low,
and vice versa.
It has been believed bymost people in scientific community

that the classic chaos theory proposed by Lorenz (1963) re-
sulted in the concept that atmospheric motions have intrinsic
predictability, which is actually a misunderstanding. As ad-
dressed by Palmer et al. (2014), it was not the famous chaos
model of three variables proposed by Lorenz (1963), but the
classic work about nonlinear interactions among different at-
mospheric scales that suggests the day-by-day weather fore-
cast having an IPL, which then makes us to accept the view-
point that the atmospheric intrinsic predictability exists ob-
jectively.
Currently, many papers confuse the forecasting skill of a

model or a kind of forecast method with the “predictability”.
Theoretically, when we use a norm (such as anomaly correla-
tion coefficients, root-mean-square error, and signal-to-noise
ratio) to measure the forecast errors, the forecasting skill of
a model or a method should be regarded as an evaluation of
predictability. The predictability should be the upper limit
of the forecast skill and not dependent on the model or data
used. However, as our knowledge and technology improve,
forecast skill can be improved. Thus, it is easier to under-
stand why the forecast skills would be different when we use
different norms to measure the forecast errors.
Mu et al. (2004) suggested the “study of predictability”

as “studying the reason and mechanism of the uncertainty
of forecast result (e.g., forecast error) and studying the way
or methodology to reduce such kind of uncertainty”. Loren
(1975) proposed two kinds of predictability, namely, the first
kind of predictability and the second kind of predictability,
which explores the source of the forecast uncertainty from the
view point of the initial errors and the model errors respec-
tively. Both kinds of predictabilities are to meant to reduce
the uncertainty of the forecast result and thus to improve the

forecast skills, finally making the forecast skill approach the
predictability. Just like the predictability should not be con-
fused with prediction skill, Mu et al. (2004) emphasized that
the predictability and predictability studies are two different
concepts and thus should not be confused with each other.
With the development of atmospheric and oceanic science

and the deepening understanding of the weather and climate
forecasts (prediction), scientists have a greater insight into
the predictability. The connotation of predictability is more
reasonable and is more suitable for the demands of not only
weather but also climate study. However, there still remain
many challenging issues that require further study. The au-
thors will present these issues in the following sections, which
could provide a useful reference for readers who wish to ex-
amine weather and climate predictability.

2.    The issue with the IPL

As discussed above, Lorenz (1969) proposed that the IPL ex-
ists in the day-by-day weather forecasts. In his work, the evo-
lution of the initial errors was studied based on the barotropic
quasi-geostrophic vorticity equation, concluding that the ini-
tial errors grow faster as the spatial scale of the initial errors
becomes smaller (Figure 1). The initial errors increase with
time, resulting in the prediction errors of weather-scale sig-
nals that are beyond the tolerance limit after a period, which
was called IPL by Lorenz (1969). Later, Leith and Kraich-
nan (1972) and many other studies confirmed the findings of
Lorenz (1969). Since then, it has been well recognized that
day-by-day weather forecasts do have IPLs, which has been
established to be approximately two weeks (Figure 1). Trib-
bia and Baumhefner (2004) further validated this result using
the Community Climate Model Version 3 (CCM3) of NCAR
in a supercomputer. With time, people gradually interpreted
the  inherent property of the IPL as the predictability of day-

Figure 1            The ratio of the root mean square of the forecast errors from the
different initial errors and different magnitudes to the root mean square of
the climate variance, i.e., the relative error. The smaller the initial error is,
the faster the growth of the initial error will be; All the relative errors ex-
ceed 0.5 at around two weeks, no matter what kind of initial errors there are.
This is when the weather signal is exceeded by the forecast errors, and the
predictability is lost. This suggests that the IPL of the numerical weather
forecast is about two weeks (the figure is from Kalnay (2011)).
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by-day weather forecast. Later, people related the pre-
dictability of the weather forecasts to the famous chaos
model of Lorenz, gradually forgetting the classic work of
Lorenz (1969) especially the concept of IPL in this work (see
detailed in Palmer et al. (2014)).
It should be noted that the predictability of weather or cli-

mate events or any physical variables (such as temperature
and wind speed) is an inherent property. This was a great
finding in atmospheric sciences in the 1960s, although it is not
as classic as the concepts of velocity, temperature, or mass,
etc. It was the famous work of Lorenz (1969), among nu-
merous papers discussing predictability, that made the pre-
dictability been broadly accepted as an inherent property of
variables and events. However, these previous studies only
focused on the IPL of weather events. With the developments
of numerical weather forecasts and climate predictions, it was
found that the forecast skills were much different for differ-
ent scales of weather or climate events (such as heavy rainfall,
the blocking high, and ENSO). To further solid predictability
basis, it is necessary to discuss the IPL of events with differ-
ent spatio-temporal scales.
Usually, a numerical model is needed to investigate the

IPLs for different spatial and temporal scale events. Addi-
tionally, the model errors should be not too large to reflect
the dynamical features of the growth of different scale errors.
In the following, we will address the IPL problems of several
weather and climate events that can be reasonably simulated
by numerical models, but it is difficult to determine the mag-
nitude of model errors. In such cases, can we still use the
numerical model to study the IPL problems? We would like
to argue that when a model has a reasonable ability to sim-
ulate these events, the model thus has the ability to describe
their primary physical and dynamical process, thus allowing
its use to study IPL instead of waiting passively for the im-
provement of the model. Note that during the 1960s to the
1970s, although the model error was very big, it did not block
Lorenz from investigating the IPL. Of course, it is difficult
and challenging to well design the numerical experiments to
study IPL, and thus, to analyze the result to obtain valuable
conclusions, under the circumstance of considering the im-
pact of model error.

2.1    The IPL for meso-/small-scale weather processes

The IPL of the 2-week upper limit originated from the daily
forecast of weather-scale events. Usually, the weather-scale
events in time can be classified into three categories: the
large, meso and small scale processes. The large-scale
weather processes ranging up to thousands of kilometers
have an IPL of about two weeks. However, it is still an open
question as to whether meso-/small-scale events (such as
heavy precipitation) have IPLs and how long they would be.
Scientists have been trying to seek the answer (Zhang et al.,

2003; Zhang F, 2005). Bei and Zhang (2007) investigated
the predictability of heavy precipitation along the Mei-Yu
front. They decomposed the initial errors (perturbations)
derived from difference between ECMWF and T106 into
three different scales, with small scale meaning less than
300 km, middle scale being from 300 to 1200 km, and large
scale being greater than 1200 km. Further, they added these
errors separately to the initial conditions of ECMWF to
predict 3-h (with a 24-h lead time) and 24-h (with a 36-h
lead time) accumulated precipitation predictions. The results
show that smaller-amplitude perturbations have faster error
growths, while the larger-scale perturbations contribute
the most to the total forecast error. There is a complete
loss of predictability of precipitation at scales smaller than
~400 km over 36 h, which is still not convincing enough to
be deemed as the IPL for small-scale precipitation.

2.2    The IPL for the stable general circulation mode

As discussed above, the IPL of 2weeks is based on an average
concept for daily forecasts. The atmosphere contains some
steady modes that can be maintained for a long time (Dole
and Gordon, 1983), such as the block systems. The blocks
are large-scale circulation mode that are persistent in the mid-
and high-latitudes without deterministic period. They can
sometimes last over 10 days (Rex, 1950). The onset and
breaking down of the blocks often lead to widespread dis-
astrous weathers. For example, the catastrophic floods in the
Yangtze-Huaihe river basin in the summers of 1991 and 1998
had a close relationship with the anomalous atmospheric cir-
culation over the Ural region (Li et al., 2001). In January
2008, a block system sustained in the mid- and high-latitudes
over Eurasia (Sun and Zhao, 2010), during which severe bliz-
zard and frozen rain occurred in South China. Recently, con-
siderable progress has been made in simulating the intensi-
ties and frequencies of the blocks over the Pacific region,
but quite small progress were made in the simulation of the
blocks over Atlantic Europe (Davini and D’Andrea, 2016).
In addition, great achievement have been obtained globally in
the maintenance of blocks. Although apparent progress have
been made on the onset and decay of blocks, they still cannot
be well predicted by general circulation models. There are
still large errors in the predicted locations and intensities of
blocks (Palmer et al., 1990; Tibaldi et al., 1994; Matsueda et
al., 2011). Thus, whether such long-lasting large-scale circu-
lations as blocks also have an IPL of two weeks is unresolved
and quite interesting question.

2.3    The IPL for intraseasonal oscillations

Subseasonal or intraseasonal variability often is referred to
as the oscillations with periods between 30 and 60 days, of
which the Madden-Julian Oscillation (MJO) is the largest
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mode in the tropical atmosphere. The MJO originates over
the tropical western Indian Ocean and propagates eastward,
peaking over the eastern Indian Ocean and western Pacific,
and weakening gradually as it crosses over the international
date line. Occasionally, it is enhanced over the tropical At-
lantic (Madden and Julian, 1971, 1972; ZhangC, 2005). MJO
is the strongest intraseasonal oscillation signal. It is associ-
atedwith severe cumulus convection, and bring heavy rainfall
over the Indian and Pacific Ocean. Additionally, strong sur-
face winds associated withMJOmay evoke equatorial Kelvin
wave in the tropical Indian Ocean and activate the intrasea-
sonal variability there. Moreover, MJO is closely linked with
many atmospheric and oceanic activities, such as tropical cy-
clone, the onset of the Asian monsoon system and the tran-
sition between the rainy and dry seasons within the monsoon
period, the onset and unusual activities of the South China
Sea summer monsoon, ENSO and the North Atlantic Oscilla-
tion activities (Liebmann et al., 1994; Higgins and Shi, 2001;
Chan et al., 2002; Hendon et al., 2007; Tong et al, 2009; Jiang
et al., 2017), etc. Therefore, it is of great importance to well
predict MJO for global weather forecasts and climate predic-
tions (Zhang, 2013).
Intraseasonal oscillations are, by definition, between

weather and climate in their temporal scale, thus can be re-
garded as the bridge linking weather and climate phenomena.
MJO is a key transition from subseasonal to seasonal cli-
mate predictions and is of great significance to the seamless
connection between weather and season/climate predictions.
Currently, the daily forecast skills for MJO in some major
scientific research and operational organizations are up to
11–25 days (Kang and Kim, 2010; Seo and Wang, 2010;
Rashid et al., 2011; Hudson et al., 2013; Vitart, 2014). Based
upon the observed data, Ding et al. (2010, 2011) note that the
predictability limit for MJO can reach 5 weeks or so using the
nonlinear local Lyapunov exponent (NLLE) method, which
is 2 weeks longer than the average level of the mainstream
methods (11–25 days). Thus, is 5 weeks the ILP for MJO?
Actually, whether the IPL exists or not for MJO still remains
unknown. Can the research framework of predictability for
weather events be shared with MJO? Or should a completely
new framework of IPL be established for MJO in the future?
All of these questions are still under exploration.

2.4    The IPL for ocean activities of different scales and
related climate events

Similar to the atmosphere, oceanic motion are also observed
at multiple scales in time and space. The ocean is an impor-
tant component of the earth’s climate system that controls and
adjusts the climate via its variations and interactions with the
atmosphere. Unfortunately, our ability to simulate and pre-
dict ocean activities has been limited because of the sparse
oceanic observations that were available until recently, when

satellite data andARGOprofiles became available. Driven by
climate change studies and the demands in climate prediction,
encouraging progresses have beenmade in predicting oceanic
motion and related climate events, of which ENSO is a suc-
cessful example. Since the 1986/1987 event was first suc-
cessfully predicted in 1980s, valuable prediction of an ENSO
event can be issued six months in advance currently. Like-
wise, an important question is what the IPLs are for these
oceanic motions at different temporal and spatial scales and
their related climate events. Undoubtedly, research findings
in these aspects are fundamental to conducting oceanic and
relevant climate event predictions. Here, we will discuss
some important issues around this topic.

2.4.1  Mesoscale eddies in the ocean
Like the weather scales in the atmosphere, mesoscale eddies
are common in the ocean. They have spatial scale from tens
up to a hundred kilometers in horizontal, hundreds of meters
in vertical, and can remain for tens of days. Mesoscale ed-
dies are transient and vigorous oceanic signals, in much the
same way as a typhoon in the atmosphere. Their rotational
speeds can reach several meters per second, which is an order
of magnitude larger than the current velocities in the ocean.
Mesoscale eddies contribute 90% of the total kinetic energy
from the large- and mesoscale currents. Hence, such a strong
signal will not only influence the oceanic physics, chemistry,
and biotic environment but will also be of great significance to
the transport and redistribution of the matter and energy, such
as heat, salinity, CO2, and nutrients. In this way, mesoscale
eddies can lead to visible global climate variations (Fuglister,
1972). Currently, mesoscale eddies have become a hot is-
sue in physical oceanography, but the studies are still in their
early stage (Chelton et al., 2007, 2011a, 2011b) due to either
a shortage of observations or the limited understandings of
these eddies. Owning to above reasons as well as coarse res-
olutions, current numerical models are not able to simulate
such eddies and related matter transports reasonably (Zhang
et al., 2016). In particular, we have no idea whether the simu-
lated eddies and their characteristics are true or not because of
the lack of observations. All these bring up a very challeng-
ing question for scientists, namely, how to study mesoscale
eddies and their IPLs with low-level numerical models and
limited observations?

2.4.2  ENSO
ENSO is an ocean-atmosphere coupled phenomenon that
presents an irregular oscillation between a warm phase, El
Nino, and a cold phase, La Nina. It is accompanied by a
seesaw in the pressure of the lower atmosphere between the
western and eastern tropical Pacific Ocean (Philander, 1990).
It is the strongest interannual climate variability signal that
is only weaker than seasonal cycle. Although ENSO occurs
in the tropical Pacific Ocean, it has great effects on global
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weather and climate through atmospheric teleconnections
(Cane, 1983; Trenberth et al., 1998; McPhaden et al., 2006;
Ham et al., 2014). As a main source and contributor of
anomalies in global general circulation, weather and climate,
timely and accurate forecast of the occurrences and evolu-
tions of ENSO is in a high demand by policy makers and the
public.
There were already numerous studies on the predictability

of ENSO from different perspectives (Moore and Kleeman,
1996; Kleeman and Moore, 1997; Mu et al., 2007a, 2007b;
Duan and Zhao, 2015). Currently, ENSO prediction is is-
sued in real-time, with a lead time of six months to a year.
However, large uncertainties still exist in ENSO predictions,
such that it does not meet the demands of disaster prevention
and reduction (Kirtman et al., 2002; Jin et al., 2008; Luo et
al., 2008). Especially the frequent occurrence of a new type
of El Nino event (i.e., Central Pacific El Nino) since 1990s,
which is different from the traditional El Nino (i.e., Eastern
Pacific El Nino), makes the ENSO forecast more complicated
and challenging. Chen et al. (2004) found, in hindcast ex-
periments, that a valuable forecast can be made for ENSO
for up to two years ahead. However, Hendon et al. (2009)
rarely succeeded in forecasting the variety of El Nino by one
month ahead. Jeong et al. (2012) could only skillfully fore-
cast ENSO with a lead time of at most four-month even using
the ensemble forecast. Thus, how far in advance can we suc-
cessfully forecast ENSO? In other words, what is the IPL in
the ENSO predictions? This question is a challenging but is
also a very important issue, not only for ENSO prediction it-
self but also for weather and climate prediction as well as for
the prevention and reduction of natural disasters.

2.4.3  Indian ocean dipole
The Indian Ocean Dipole (IOD) is an ocean-atmosphere cou-
pled phenomenon with an interannual time scale in the trop-
ical Indian Ocean. Positive IOD events present positive sea
surface temperature anomalies (SSTAs) in the western Indian
Ocean and negative SSTAs in the southeastern Indian Ocean.
Negative IODs show the generally opposite physical charac-
teristics. Positive IODs often bring large amounts of precip-
itation to East Africa and severe droughts to Indonesia and
Australia (Ansell et al., 2000; Ashok et al., 2001; Behera et
al., 2005); negative IODs affect these regions in the opposite
manner. In addition, the IOD could affect the weather and
climate not only of the nearby areas by modulating the mon-
soon (Saji and Yamagata, 2003; Annamalai and Murtugudde,
2004; Vecchi and Harrison, 2004) but could also affect re-
mote regions by teleconnection effects (Ansell et al., 2000;
Guan and Yamagata, 2003).
The study of IOD prediction is still in an early stage. Pre-

vious studies showed that, although IOD events can be pre-
dicted one season ahead, large uncertainties exist and their
forecasting skills are particularly limited by the winter pre-

dictability barrier (WPB) (Wajsowicz, 2004; Luo et al., 2005,
2007; Shi et al., 2012). Spring predictability barriers are also
observed in IOD forecast possibly affected by ENSO. Feng et
al. (2014a) showed that there are WPBs in both the growing
and decaying phases of positive IOD events using the geo-
physical fluid dynamics laboratory climatemodel version 2p1
(GFDL CM2p1). The initial errors with a west-east dipole
pattern are more inclined to cause significant WPB. Corre-
spondingly, there are persistent winter barriers in the grow-
ing and decaying phases of positive IOD events in the ob-
servations, which indicates that the IOD events have strong
dynamical instabilities in the winter, inducing the fast growth
of prediction errors in the winter and finally, the occurrence
of a significant WPB. The WPB is an important characteris-
tic in IOD predictions. Feng et al. (2014b) demonstrated that
the simulating ability of the WPB in the Coupled Model In-
tercomparison Project (CMIP5) mainly depends on the simu-
lating ability of the climatological conditions associated with
the WPB.  In spite of a lot studies of the aforementioned IOD
predictability,  there has been no study, to our best knowl-
edge, about the IPL problem of IOD,  presenting us with a
challenging and fascinating topic in the field of predictability
of IOD.

2.4.4  Pacific Decadal Oscillation
The Pacific Decadal Oscillation (PDO) is a strong signal of
climate variability in the Pacific Ocean on the decadal time
scale, which is similar to ENSO (Mantua et al., 1997; Zhang
et al., 1997; Minobe, 1999). The PDO can be divided into
cold and warm phases (or cold and warm “events”). During
the warm phase, the tropical central-east Pacific is anoma-
lously warm, the central North Pacific is anomalously cold,
and the west coast of North America is anomalously warm.
The cold phase has the opposite features. A typical PDO
event can last 20–30 years, with the primary signal in the
North Pacific and the secondary signal in the tropical Pacific.
The PDO plays an important role in adjusting the climates
in the North Pacific and surrounding areas and in modulating
the interannual variations (such as ENSO and its effects) as a
critical background. Although CMIP5 can reproduce the sea
temperature structures of the PDO and capture the influence
of the PDO signal on the climate of North America, there is
still large room to improve its simulation, especially that of
the PDO variability (Sheffield et al., 2013). In the decadal
forecast experiments of CMIP5, some models show some
ability in conducting PDO hindcasts and forecasts, but the
overall skills are still low (Pohlmann et al., 2009; Fyfe et al.,
2011; Chikamoto et al., 2012; Kim et al., 2012; Mochizuki et
al., 2012). Thus, is the IPL of the PDO low itself? Ding et
al. (2015) estimated that the predictability limit of the PDO
is 9 years by separating the different time scales and using
the observational data and linear statistical methods. Con-
sidering the nonlinear interaction effects of the different time
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scale variabilities on the predictability limits of the PDO, the
IPL of the PDO remains unsolved. Is it possible to determine
the IPL of the PDO using the same framework as that for the
interannual variability and even weather-scale phenomenon?
These topics are very interesting and have important guidance
for PDO predictions.

2.4.5  Atlantic multidecadal oscillation
The Atlantic Multidecadal Oscillation (AMO) (Schlesinger
and Ramankutty, 1994; Kerr, 2000) is a climate phenom-
enon taking place in the North Atlantic, in which the sea
surface temperature pseudo-periodically becomes cold or
warm and has a basin-wide spatial scale and a multidecadal
temporal scale. The period of AMO is approximately
50–70 years (Kushnir, 1994; Enfield et al., 2001), with an
SST amplitude of 0.4°C. AMO is a dominant factor through
which the ocean affects the climate (Chylek et al., 2014),
which not only modulates climate change by influencing the
Arctic sea ice but also plays an important role in the formation
of the significant negative correlation between the Antarctic
and Arctic temperatures (Polyakov et al., 2003; Chylek et
al., 2010; Frankcombe et al., 2010). AMO also has profound
climate effects on Asia, and even on China. For example,
AMO is often considered to be a key cause of the East Asian
climate warming, summer monsoon enhancement, and win-
ter monsoon weakening (Lu et al., 2006; Li and Bates, 2007;
Wang et al., 2009; Si and Ding, 2016). In particular, some
recent research suggests that the positive phases of AMOs
have made significant contributions to global warming over
the past 30 years (Chylek et al., 2014), whereas the decay of
the associated Atlantic Meridional Overturning Circulation
(AMOC) may be the major cause for the subsequent global
warming hiatus (Song et al., 2014). The AMO prediction
has special significance for global climate prediction. As the
predictability source of the AMO may mainly come from
the subsurface oceans, the ocean data initialization is helpful
for improving the AMO forecast skill (Keenlyside et al.,
2008; Chikamoto et al., 2013). For different versions of the
Model for Interdisciplinary Research on Climate (MIROC),
the multimodel ensemble forecast skill is higher than the sin-
gle-model skill, indicating that the multimodel ensemble of
CMIP5 can also improve the AMO forecast skill (Chikamoto
et al., 2013). However, the simulation ability of the SSTA
mode of AMO in CMIP5 shows no obvious improvement
compared with that in CMIP3 (Ruiz-Barradas et al., 2013),
but the AMO in the North Atlantic is better forecasted than
the PDO (Meehl et al., 2014). Despite these studies on AMO
prediction, the studies on the IPL of AMO are still rare.
Recently, Ding et al. (2015) noted that the predictability
limit of AMO is 11 years, but the authors did not determine
whether the predictability limit represents the IPL of the
AMO. Considering the modulating effects of AMO on the
global climate and global warming, the IPL of AMO is also

an important issue worth discussing.

2.4.6  The variations of ocean circulation (e.g., Kuroshio
path variations)

The Kuroshio is the western boundary current of the North
Pacific subtropical gyre. The traits of the Kuroshio are that
its velocity is fast, its current is large, and the Kuroshio con-
tains both high temperature and salinity waters. In the south
of Japan, the Kuroshio has bimodal paths: a large meander
(LM) path and a non-large meander (NLM) path. Both paths
have effects on the local climate change (Xu et al., 2010),
fisheries, and navigation. The Kuroshio paths last for years
to decades, but the transitions between the two different paths
occur in a matter of several months (Kawabe, 1986, 1995).
The Kuroshio path variations may affect local and nearby cli-
mate conditions. Xu et al. (2010) noted that a cool water
pool form between the Kuroshio and Japanese coasts dur-
ing a large meander event, and affect the general circulation
through air-sea interaction. The colder surface water caused
a reduction of the wind speed and thus, decreased the pre-
cipitation over it. Shi (2004) indicated that the Kuroshio
path variations had significant effects on precipitation in the
Yangtze River Basin. In addition, the Kuroshio path varia-
tions are closely related to fisheries and national security of
China. Consequently, it is important to predict the variations
of the Kuroshio path.
Japan Agency for Marine-Earth Science and Technology

(JAMSTEC) has been carrying out experiments to predict
Kuroshio path variations (Miyazawa et al., 2009). Due to the
complexities of Kuroshio path variations, the unclear mech-
anism of their behaviors, and insufficient observations, large
uncertainties are observed in the predictions of Kuroshio path
variations. Hence, it is a great challenge, but worth the effort
to investigate the IPL problem of the Kuroshio path varia-
tions, which will lay a foundation for the mechanism research
and target observation.

3.    The problems of initial errors andmodel pa-
rameter errors

The predictability problems are usually classified into two
types. The first and second type of predictability is related to
the initial errors and the model errors respectively (Lorenz,
1975). In the preceding part of the text we mainly discussed
the first type of predictability, which is of commonness in
point of view initial error. The second type of predictability
is to explore the effects of model errors, therefore the uncer-
tainties of specific dynamics and physical processes need be
investigated. These uncertainties may be different for differ-
ent weather and climate events. However, as one of the main
sources of model errors, the uncertainties of model param-
eters have generic characteristics for both weather and cli-
mate prediction. The common problems with initial errors
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and model parameter errors will be discussed in this section.

3.1    The problem of initial errors

As mentioned earlier, the uncertainties of prediction due to
the initial errors are classically as the first type of predictabil-
ity problems. A core issue is to determine the types of initial
errors that evolve faster and could cause larger prediction er-
rors. It is generally thought that the less the initial errors are,
the better the forecast results will be. However, it is found that
things are not that simple in both the theoretical studies and
the actual forecasts. In fact, in some cases, a “smaller” initial
error may lead to a larger prediction errors, while a “larger”
initial error may not cause a larger prediction error. This phe-
nomenon is closely related to the spatial structures of the ini-
tial errors (Mu et al., 2003). The differences of prediction er-
rors may be very large due to the initial errors, which are con-
strained by the same measures (such as the energy norm) and
have the same amplitudes, but have different spatial struc-
tures (Moore and Kleeman, 1996; Mu et al., 2007b). Hence,
the types of initial errors that could have important impacts
on the prediction errors should be explored in predictability
studies. In addition, the influence of random errors should be
also taken into account based on the chaos theory of the but-
terfly effect by Lorenz.
At the early stages of numerical weather prediction that oc-

curred around the early 1950s, it was found that the predic-
tion skill in an area was impacted by the initial conditions of
some of the local regions of the previous steps (Riehl et al.,
1956). This finding led to an observational strategy, called
the targeted observation approach, in the late 1990s. Targeted
observation aims to conduct additional observations (Snyder,
1996) at a targeted time (t0) for some regions (sensitive re-
gions) whose initial errors can lead to the largest forecast er-
ror within the verification region for the variables of interest
at the verification time (t1>t0). The additional observations
were expected to producemore accurate initial conditions and
forecast through data assimilation (Figure 2). With the devel-
opment of The Observing-System Research and Predictabil-
ity Experiment (THORPEX, Rabier et al., 2008) in the 21st
century, the targeted observational study was closely incor-
porated into the predictability studies. The target observation
research and practical application are built on a hypothesis

Figure 2            The diagram of the targeted observation apparoach.

that a specific structure of initial errors in a specific region
can lead to a prediction error larger than other kind of initial
errors, which include the random initial errors spatially dis-
tributed.
The authors and their collaborators developed and applied

the approach of conditional nonlinear optimal perturbation
(CNOP, Mu et al., 2003) to explore the predictability of high-
impact ocean-atmospheric environmental events, including
typhoons, ENSO, IOD and path variations of the Kuroshio
currents in the southern Japanese seas (Wang et al., 2013; Mu
et al., 2009; Yu et al., 2012a, 2012b; Feng et al., 2014a; Hu
and Duan, 2016). These studies confirm the above hypothe-
sis that the initial error with the special spatial structures does
cause more notable prediction errors compared to the ran-
dom error. This provides firm fundamental theoretical basis
for conducting the targeted observations of aforementioned
weather and climate events.
For other types of weather and climate events, we intu-

itively hypothesized that the above conclusion is still true but
needs further study. This kind of study will be difficult con-
sidering, for examples, that it is not clear whether the initial
errors with special spatial structures will cause larger predic-
tion errors for the forecasts of ocean variables in the north-
ern Pacific region that are mainly manifested as wind-driven
gyres, compared to the random error (Duan and Wu, 2015;
Wu et al., 2016). For meso- and small scale convective sys-
tems in the atmosphere, it is either not clear whether the
prediction errors can have significant differences while ini-
tialized from optimal initial errors and from random errors,
which also need further study.

3.2    The problem of model parameter errors

Generally, there are two kinds of parameters in a numerical
model. The first type of parameter is related to numeric con-
figurations, such as computational stability, and is unrelated
to observations. The second type of parameter can be esti-
mated directly or indirectly using observational data. It is im-
portant to reduce the uncertainty of the second type of param-
eter estimation using observations in the predictability study.
In some numerical models, the number of parameters to

be estimated directly or indirectly using observational data is
huge. For example, there are approximately 500 parameters
to be estimated in the well-known Lund-Potsdam-Jena (LPJ,
Sitch et al., 2003)model. There are evenmoremodel parame-
ters in the coupled atmosphere-land-oceanmodels. It is costly
in both human power and finance when conducting additional
observations to estimate all these parameters. Mu (2013) pro-
posed the concept of parameter-targeted observations, which
simply originates from the idea that model parameters can be
treated as special ‘variables’. Then the strategy and algorithm
of the traditional target-observation analysis in a geographical
space can be applied to detect the sensitive area in the phase
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space of model parameters , and sensitive and important (in-
stead of all) parameters are estimated. The parameter-target
observations can sufficiently reduce the costly observational
expenses comparing to reduce the uncertainty of all model
parameters.
Apparently, the key issue in parameter-targeted observa-

tion is detecting the sensitive area in the phase space of the
model parameters. There are some works in the literature
about this issue (e.g., Bastidas et al., 2006; Demaria et al.,
2007; Razavi and Gupta, 2015), but they were all conducted
without considering the impact of nonlinear combination of
model parameters on the uncertainties of prediction. The au-
thors and their collaborators are trying to determine the opti-
mal combination of parameter error that has the largest impact
on the forecast (simulation) at the verification time, using the
parameter involved CNOP (CNOP-P) proposed by Mu et al.
(2010) (Sun and Mu, 2011, 2013, 2016). A further applica-
tion conducted using the targeted-observation experiment to
determine the model parameters is still under the way.
It should be noted that the predictability is dependent on

the spatial-temporal scales and controlled by multiple exter-
nal forcings. Therefore it is challenging and important to ex-
plore the influences of the model errors represented by the
uncertainties of different external forcings on the predictabil-
ities, although some progresses have been made (Duan and
Zhou, 2013; Duan and Zhao, 2015; Li and Ding, 2015).

4.    The predictability of ensemble forecasting
(probabilistic forecasting)

Ensemble forecasting has become a mainstream approach of
numerical weather prediction and numerical climate predic-
tion in the world since the 1990s (Leith, 1974; Leutbecher
and Palmer, 2008; Figure 3). Many operational centers, such
as ECMWF, NCEP and JMA, have released their ensemble
forecasting products. However, there was no such influential
benchmark as Lorenz’s work in the 1960s, either in the theo-
retical field or in the applied field, about the ensemble-based
predictability study. In fact, ensemble forecasting is a specific
form of probabilistic forecasting. As a result, in the study of
predictability of ensemble forecasting, it is necessary to ex-
tend the concept of deterministic prediction to probabilistic
forecasting. For example, the physical variables to be pre-
dicted, such as the wind and precipitation, should be treated
as random variables. The uncertainties of the predictions
should be measured by the difference between the predicted
target and their observational counterparts (the observations
should also be treated as random variables characterized by
their probability density distributions). The methods to as-
sess these kinds of “differences” should be defined under the
stochastic dynamic system.
Based on the definition of predictability discussed and in-

terpreted above, the fifth IPCC characterized the rapid evo-

Figure 3            The framework of ensemble prediction (from http://old.
ecmwf.int/about/corporate_brochure/leaflets/EPS-2012.pdf).

lution of the probability density of ensemble forecasting as a
property of the predictability of a physical variable or climate
event. Thus, it is easy to understand that ensemble forecast-
ing is a new prediction approach and can improve prediction
skills but cannot change the intrinsic predictability of the pre-
diction targets.
To the best of our knowledge, there has been no report about

the IPL study under the framework of the stochastic dynami-
cal systems. Studying the IPL in a stochastic dynamical sys-
tem is a complex problem, which first requires an understand-
ing of how to generate perturbation of different spatial scales
and how to explore their evolution and nonlinear interactions,
under the concept of the probability density distribution. One
very attractive question here is whether the concept of opti-
mal growth of perturbation in a deterministic nonlinear sys-
tem is still held in a nonlinear stochastic system. That is, can
a small perturbation with a specific spatial structure result in
an increased rate of growth compared to any random pertur-
bation in a nonlinear stochastic system? In other words, does
the IPL exist in the atmospheric-ocean nonlinear stochastic
dynamical systems? If the answer is no, it would challenge
the foundation that the predictability is an inherent property
of climate events and physical variables. We guess that the
answer should be ‘yes’. Therefore, it is of great value to em-
ploy a predictability study, both in theory and in practice, in
the framework of a nonlinear stochastic system.

5.    Summary and discussion

In this paper, we review discussions on the concept of
predictability, and extend the concept of the traditional
predictability of weather and climate to that of the general
physical variables and events of coupled atmosphere and
ocean systems. The definition of predictability here can
be described in three aspects: (1) The predictability is an
inherent physical property of the physical variables, weather
and climate events in the atmosphere-ocean system, which
have spatial and temporal dependences. Predictability is the
product of multiscale interactions, and its evolution shows
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nonlinear characteristics. (2) The predictability describes
the extent to which the tiny errors of the current state or
system affect the future state. (3) The predictability can be
measured by the ratio of the prediction errors over time to
the initial errors or the ratio of the width of the predicted
probability density distribution to the initial value. If the
initial error increases rapidly or the initial probability density
distribution widens rapidly in a system, the system then has
a low predictability and vice versa. Based on this definition,
this paper summarizes the challenging and urgent to be
solved problems of the predictability of weather and climate
phenomenon of different spatial and temporal scales, which
includes IPL problems, initial errors problems, model error
problems and the targeted-observation problems, as well as
the predictability problems of the probabilistic forecasting.
At the same time, this paper emphasizes the importance of
these problems, both in theory and in practice.
Predicting the future is one of the eternal pursuits of hu-

man beings; meanwhile, the uncertainties of predictions are
also one of the eternal troubles of human beings. For any
kind of high-impact weather or climate events related to the
national economy and people’s livelihoods, it is necessary
to study their predictabilities before launching operational
or quasi-operational forecasts. Under this circumstance, the
questions to be answered include the following: How large
is the prediction error and how long is the forecast time limit
for our present understanding and knowledge of the system?
Is it suitable to carry out the operational forecast, which aims
to benefit the economy and society? Even though the oper-
ational forecast is realized, it is still necessary to investigate
the causes and mechanisms of prediction errors and to find
ways to reduce the prediction errors. It is always of great
value to improve the prediction models and prediction skills
and to provide better prediction products.
Predictability study, as shown by its development process,

has run through the whole process of the concerned disci-
plines, from the observation collection, to the founding of the
theory and determination of amechanism, to the development
of the numerical model, to the simulation of the phenome-
non and finally, to the operational forecast. The predictability
study is closely related to nonlinear science, turbulence and
mathematics, as well as the designs of numerical model and
observational systems. Therefore, researchers who special-
ize in either the basic theory or the application of prediction
can find interesting and important topics in the field of pre-
dictability studies. In addition, due to its complexity, the con-
tinued progress of predictability studies need the effective co-
operation of experts from the fields of atmospheric sciences,
oceanology, physics, mechanics, mathematics and computer
science. Only through effective cooperation and joint efforts
can wemake continuous breakthroughs in predictability stud-
ies, thereby ultimately improving the prediction skills in op-
erational forecasting.
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