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Abstract  Climate warming, one of the main features of global change, has exerted indelible impacts on the environment, 
among which the impact on the transport and fate of pollutants has aroused widespread concern. Persistent organic pollutants 
(POPs) are a class of pollutants that are transported worldwide. Determining the impact of climate warming on the global cy-
cling of POPs is important for understanding POP cycling processes and formulating relevant environmental policies. In this 
review, the main research findings in this field over the past ten years are summarized and the effects of climate warming on 
emissions, transport, storage, degradation and toxicity of POPs are reviewed. This review also summarizes the primary POP 
fate models and their application. Additionally, research gaps and future research directions are identified and suggested. Un-
der the influence of climate change, global cycling of POPs mainly shows the following responses. (1) Global warming direct-
ly promotes the secondary emission of POPs; for example, temperature rise will cause POPs to be re-released from soils and 
oceans, and melting glaciers and permafrost can re-release POPs into freshwater ecosystems. (2) Global extreme weather 
events, such as droughts and floods, result in the redistribution of POPs through intense soil erosion. (3) The changes in at-
mospheric circulation and ocean currents have significantly influenced the global transport of POPs. (4) Climate warming has 
altered marine biological productivity, which has changed the POP storage capacity of the ocean. (5) Aquatic and terrestrial 
food-chain structures have undergone significant changes, which could lead to amplification of POP toxicity in ecosystems. (6) 
Overall, warming accelerates the POP volatilization process and increases the amount of POPs in the environment, although 
global warming facilitates their degradation at the same time. (7) Various models have predicted the future environmental be-
haviors of POPs. These models are used to assist governments in comprehensively considering the impact of global warming 
on the environmental fate of POPs and therefore controlling POPs effectively. Future studies should focus on the synergistic 
effects of global changes on the cycling of POPs. Additionally, the interactions among global carbon cycling, water cycling 
and POP cycling will be a new research direction for better understanding the adaptation of ecosystems to climate change. 
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1.  Introduction 

The basic characteristics of regional and global climate can 

be described as cold, warm, dry and wet. The temperature 
over the past 100 years has gradually increased, which has 
been proved by large numbers of observations (Mein- 
shausen et al., 2009; IPCC, 2013, 2014), and lake (Wang et 
al., 2007b) and ice-core records (Thompson et al., 1997; 
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Petit et al., 1999; Thompson et al., 2003). The fifth Inter-
governmental Panel on Climate Change (IPCC) assessment 
report addressed the fact that global warming is undoubted 
and unprecedented (Sheng et al., 2013). The temperature 
during 1983–2012 was the highest since 1400 years ago, 
particularly in the Northern Hemisphere (IPCC, 2013, 
2014). Global warming is therefore the main characteristic 
of climate change at present. Scientists have reached a con-
sensus that global warming has mainly been caused by 
greenhouse gas emissions since the industrial revolution. 

Global warming has already triggered a series of envi-
ronmental problems. For example, the increase in glacier 
melting rates driven by climate warming has resulted in the 
rise of sea levels, which has initiated changes in global wa-
ter cycling (Meehl et al., 2005; Vermeer and Rahmstorf, 
2009). Another example is the large amount of carbon re-
leased into the environment from fossil fuel combustion, 
which directly causes global warming, has broken the orig-
inal carbon balance in ecosystems, leading to changes in the 
global carbon cycle (Cox et al., 2000). Therefore, the rela-
tionships between climate change and water and carbon 
cycling, and their effects and response mechanisms are re-
search hotspots in the field of global environment change 
(Cao and Woodward, 1998), and large numbers of related 
review papers have been published (Cao and Woodward, 
1998; Huntington, 2006; Luo, 2007). In addition, climate 
warming also has complex and significant effects on the 
biosphere, especially in phenology (Hughes, 2000; Parme-
san, 2007), food-chain structure (Petchey et al., 1999), bio-
logical diversity (Botkin et al., 2007) and the agriculture 
and animal husbandry industries (Mendelsohn et al., 1994). 

There are also close relationships between climate 
change and pollutant emissions, distribution and toxicity 
(Bridgman, 1991; Noyes et al., 2009; Seinfeld and Pandis, 

2012). Both the IPCC report and the United Nations Envi-
ronment Programme (UNEP) annual report emphasized that 
we should pay attention to the problem of environmental 
pollution, especially under the influence of global warming 
(UNEP, 2010; IPCC, 2013). So far, persistent organic pol-
lutants (POPs) have drawn special attention. Considering 
the persistence, volatility, toxicity, bioavailability and 
long-distance atmospheric transport of POPs, more than 150 
countries worldwide signed the Stockholm Convention on 
POPs to jointly protect the environment (Zheng, 2013). 
Similar to the influence of climate warming on the carbon 
and water cycles, the distribution, behavior and transport of 
POPs are also global-scale problems (Figure 1) and all these 
global environmental problems are interrelated. POP cy-
cling is closely associated with biological material cycling 
and energy flow (Figure 2). In fact, emission, transport, 
sources and sinks, bioavailability, degradation, food-chain 
transfer and toxicity of POPs are all closely related to cli-
mate change. But how does climate change affect the global 
cycling of POPs? In this paper, the research progress re-
garding this scientific problem is summarized and reviewed, 
and existing problems and future research direction are 
highlighted. 

2.  Changes in POP emission sources  

POPs are a series of pollutants that are persistent, toxic, 
bioavailable and semi-volatile in the environment 
(O’Sullivan and Megson, 2014). The Stockholm Conven-
tion lists several precedent-controlled POPs, including or-
ganochlorine pesticides (OCPs, representative compounds 
include dichlorodiphenyltrichloroethane (DDT)), polychlo-
rinated biphenyls (PCBs), polybrominated diphenyl ethers  

 

 

Figure 1  Transport processes for persistent organic pollutants. 
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Figure 2  Direct and indirect impacts of climate change on the behavior and fate of persistent organic pollutants. 

(PBDEs) and perfluorinated substances (Wang et al., 2009; 
Wang et al., 2010b). These pollutants are intentionally made 
synthetic chemicals, and industrial and agricultural activi-
ties are their main emission sources. In addition, some un-
intentional discharged byproducts (i.e. polychlorinated 
dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzo-
furans (PCDFs) generated by metal smelting and waste in-
cineration) and polycyclic aromatic hydrocarbons (PAHs) 
are also included in the Stockholm Convention control list 
and the long-range atmospheric transport draft (Wania, 
2003; Liu and Zheng, 2013; Zheng, 2013). Whether inten-
tional or unintentional, the direct emission of POPs through 
human activities is regarded as the primary emission. In 
addition, owing to their semi-volatility, elevated environ-
mental temperatures result in the re-evaporation of POPs 
from surface media, which is called the secondary emission. 
Obviously, global warming will affect industrial and agri-
cultural production and the secondary emission of chemi-
cals, leading to changes in POP emission sources (Figure 2). 

Global warming has triggered droughts and rising sea 
levels, which has resulted in the reduction of global arable 
land (Parry and Ruttan, 1991). The fourth IPCC report in-
dicated that under the influence of global warming, the 
northern boundary for crops will continue to move to higher 
latitudes (IPCC, 2013; Wöhrnschimmel et al., 2013). Over-
all, the influence of global warming on crop production is 
complicated and shows strong regional differences. In gen-
eral, the impact of climate warming on agriculture is more 
negative than positive. One of the main negative influences 
is the agricultural pest problem. The distribution, growth 
and reproduction of crop pests are closely related to tem-
perature. Low temperatures prohibit pest growth and repro-
duction. With the increase in temperature, the distribution 
area of crop pests is expected to expand (Porter et al., 1991; 

Rosenzweig et al., 2001). Both changes in agricultural 
planting areas and the ravage of pests will require changes 
to the pesticide type and dosage. Therefore, from the per-
spective of global warming, this would likely result in mas-
sive emission of pesticidal POPs, including some that have 
been listed in the Stockholm Convention, such as endosul-
fan and lindane, as well as some new pesticides. 

The IPCC’s fifth report states that it is very likely that the 
frequency of heatwaves and rainstorms will increase with 
global warming. This means that global warming prompts 
extreme climatic events such as droughts, floods and hurri-
canes (Shen and Wang, 2013) and it is generally acknowl-
edged that malaria is widespread after flooding (Easterling 
et al., 2000; Rosenzweig et al., 2001). Furthermore, with the 
expansion of climate warming, the malaria-affected area 
might also extend from the tropics to the Polar Regions 
(Githeko et al., 2000). Studies predict that the number of 
malaria patients will double in the tropical regions by 2100 
and increase tenfold in temperate zones. In the next century, 
45–60% of the global population may live in the potential 
transport area of malaria (Martens et al., 1995; Lindsay and 
Birley, 1996). DDT, one kind of POP, is a powerful chemi-
cal used to control the spread of malaria and has been 
widely used to fight the malaria parasite Plasmodium in 
many countries (Roberts et al., 2000; Stapleton, 2004). 
Owing to its toxicity, DDT has been banned since the 
1970s. However, due to its low cost and high efficiency in 
terms of anti-malarial activity, in 2006, the World Health 
Organization (WHO) suggested the re-use of indoor spray-
ing of DDT to block malaria transport (Sadasivaiah et al., 
2007). Malaria-vulnerable countries, such as India and 
South Africa, also applied to the Stockholm Convention for 
exemption of DDT (Sharma et al., 2005; Channa et al., 
2012). Consequently, global use of DDT is expected to in-
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crease due to the impact of climate warming. 
Owing to their semi-volatility, POPs widely exist in all 

kinds of media in the world. They continuously undergo 
dynamic distribution between the atmosphere and the land 
surface, e.g. soil, water, vegetation and so on. (Bidleman, 
1999). The physicochemical parameters of POPs, such as 
saturated vapor pressure, Henry’s law constant, gas-water 
partition constant and octanol-air partition coefficient, are 
all temperature-dependent constants (Paasivirta et al., 
1999). Therefore, the constantly rising temperatures will 
significantly affect the distribution of POPs between differ-
ent phases, and promote POPs to migrate from the land sur-
face to the atmosphere. Consequently, there are more active 
POPs in atmosphere (Hung et al., 2010; Ma and Cao, 2010). 
This process is called the secondary emission of POPs. 
Studies have shown that most European soils are a second-
ary source of low-molecular-weight PCBs (Meijer et al., 
2003; RůŽičková et al., 2007), and Indian soils are a sec-
ondary source of DDT (Sharma et al., 2014). The elevated 
PCB concentrations in the Arctic atmosphere have been 
mainly attributed to the gradual rise in environmental tem-
perature driven by global warming (Becker et al., 2006). 
Although the use of hexachlorocyclohexane (HCH) had 
been banned for more than 30 years, the current HCH con-
centration in the Arctic atmosphere is not decreasing, but 
slightly increasing. Ma et al. (2011) reported that secondary 
release of HCH caused by climate warming has buffered the 
effect of HCH prohibition.  

3.  Changes in the long-range transport of POPs 

Atmospheric circulation and ocean currents are two major 
ways in which POPs are globally transported. POPs can 
exist in the atmosphere in both gas and particulate phases. 
Hence, with the help of atmospheric circulation, gaseous 
and particulate POPs in atmosphere can be globally spread 
(Jones and De Voogt, 1999). During the atmospheric 
transport process, POPs are likely to be deposited on the 
land surface when the temperature decreases, while they 
will evaporate into the atmosphere to migrate again when 
the temperature rises. This process continually occurs, so 
POPs can be transported and deposited to remote areas. This 
is the so-called grasshopper effect (Gouin et al., 2004). In 
addition, some POPs with relatively higher solubility, such 
as HCH (Kucklick et al., 1991) and perfluorooctane sul-
fonates (PFOS) (Giesy and Kannan, 2002), can also enter 
into surface waters, and then feed into ocean currents and 
undergo global ocean transport (Yamashita et al., 2008). 
Climate warming leads to changes in climatic factors, such 
as temperature, wind speed, wind direction and precipita-
tion. The variation of these factors will certainly alter both 
the air and ocean transport intensity and pathways of POPs. 

The global temperature gradient decreases with increas-
ing latitude. The emission sources of POPs are mostly dis-

tributed in low-latitude areas with relatively warm tempera-
tures. Accordingly, chemicals with high volatility will un-
dergo multi-hopping, and will be easily transported to the 
high-latitude Polar Regions, while less-volatile compounds 
undergo less or single hopping. This leads to global chemi-
cal fractionation. This effect is termed the global distillation 
effect (Fernández and Grimalt, 2003). The global distilla-
tion effect of POPs is an important hypothesis to explain the 
global transport mechanism of POPs, which has been veri-
fied by numerous studies (Wania and Su, 2004; Blais, 2005; 
Yang et al., 2008). In this model, the ambient temperature is 
a decisive factor driving POP transport. If the ambient tem-
perature increases by 1°C, the volatility of POPs increases 
by 10–15% (Lamon et al., 2009b; Wohrnschimmel et al., 
2013).  

The global atmospheric circulation shows obvious fluc-
tuations with climate change. The major climate phenomena 
are the El Nino-Southern Oscillation (ENSO) in the South-
east Pacific and Indian oceans, the Northern Atlantic Oscil-
lation (NAO) and the Pacific North American (PNA) tele-
connection. Based on a 20-yearlong dataset of atmospheric 
POP observations in the Great Lakes region, Ma et al. 
(2003, 2004), Ma and Li (2006) assessed the relationship 
between POP levels and climate signals, and found that 
there was a significant correlation between variations in the 
hexachlorobenzene (HCB) concentration and ENSO fluctu-
ations, and between variations in the HCH concentration 
and NAO fluctuations in winter and spring, respectively. 
Although various studies have shown that the primary 
emission of POPs has gradually decreased, HCB and HCH 
were found in elevated concentrations, which has been at-
tributed to the increased temperature associated with the 
ENSO and NAO in the Great Lakes region. Temperature is 
a driving force for secondary emission of pollutants from 
soil and water, which is the reason for the increase in at-
mospheric concentration of HCB and HCH. Climate change 
will also affect the atmospheric transport of POPs in China. 
China was the main user of α-HCH and soils may have been 
contaminated with higher levels of residual chemicals. Tian 
et al. (2012) found that the output flux of α-HCH through 
the atmospheric circulation from Northeast China signifi-
cantly increased under climate warming. 

In addition, higher wind speeds will lead to the large- 
scale and more-effective intercontinental transport of POPs. 
During the positive phase of the NAO, strong westerly 
winds blow over the North Atlantic, which enhances the 
transport of used POPs in the Canadian prairies to the Great 
Lakes region (Gao et al., 2010; Christoudias et al., 2012). 
When the PNA pattern is enhanced, southwesterly winds 
from Canada are increased, which leads to POP transport to 
the north polar area (Hung et al., 2005). As another kind of 
climate system, monsoons can change the direction of the 
atmospheric circulation and precipitation intensity on the 
seasonal scale. The pathways and intensity of atmospheric 
transport of POPs is thus shifted seasonally. Previous stud-
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ies have found that the monsoon enhances the vertical input 
of atmospheric POPs to the Arabian Sea (Dachs et al., 
1999). Moreover, atmospheric transport driven by the mon-
soon continuously transports POPs of South Asia to the 
Tibetan Plateau (Sheng et al., 2013). Climate change influ-
ences not only the intensity of the monsoon, but also the 
direction of the wind at large spatial scales, both of which 
affect the global transport of POPs. 

Atmospheric deposition is an important process in the 
global cycling of POPs. It plays an important role in scav-
enging. Temperature is the main factor that affects the form 
and the efficiency of atmospheric wet deposition (Lei and 
Wania, 2004). When the temperature reaches 0°C, rainfall 
has a greater removal efficiency of low-molecular-weight 
compounds existing in the gas phase, while snow has a 
higher removal efficiency of high-molecular-weight com-
pounds and non-polar compounds (Lei and Wania, 2004). 
When the temperature is below 0°C, snow can more effec-
tively remove compounds from the atmosphere (including 
both gaseous and particulate POPs); thus, this process can 
block POP transport to the atmosphere. There is a great dif-
ference in terms of atmospheric wet deposition for different 
compounds due to their different physical and chemical 
properties (Lei and Wania, 2004). From a global perspec-
tive, high POP deposition flux values in the intertropical 
convergence zone and high-latitude areas are expected due 
to high precipitation-induced wet deposition and low tem-
perature-induced cold trapping, respectively (Jurado et al., 
2005). In fact, the intertropical convergence zone will con-
tinue to move to northward under the influence of global 
warming (Frierson and Hwang, 2012), and the global pre-
cipitation patterns will be more varied (Philander et al., 
1996; Held and Soden, 2006), which could possibly further 
change the global transport and distribution pattern of 
POPs. 

Compared with the atmospheric transport (unit of speed: 
m s−1) of POPs, ocean current transport (unit of speed: cm 
s−1) is a relatively slow process. POPs enter into the ocean 
currents by both atmospheric deposition and surface runoff 
(Zingde, 2005; Zhang et al., 2011). A series of observation 
data from offshore has demonstrated that seawater of the 
European Mediterranean (Gómez-Gutiérrez et al., 2007; 
Castro-Jiménez et al., 2012), Baltic Sea (Theobald et al., 
2011), North Sea (Ilyina et al., 2006), Bohai Sea (Chen et 
al., 2011), Yellow Sea (Lin et al., 2012; Zhong et al., 2014; 
Yang et al., 2003 ), South China Sea (Lin et al., 2012), In-
dian Ocean (Xie et al., 2011; Huang et al., 2013) and the 
Bay of Bengal (Sarkar et al., 2008) contain higher levels of 
POPs. These pollutants include compounds banned in the 
Stockholm Convention as well as some emerging POPs 
(Kallenborn et al., 2012). The sea itself is a huge circulation 
system: warm streams transfer tropical heat poleward, while 
ocean currents cool and sink in the Polar Regions, transfer-
ring matter and energy on the global scale (thermohaline 
circulation). Lohmann et al. (2006) calculated the sinking 

flux of PCBs on the basis of the sink rate of seawater. The 
results showed that the sinking flux of PCBs in the Norwe-
gian Sea was larger than that in the Labrador Sea, the Ross 
Sea and Weddell Sea in the Southern Ocean. They also 
pointed out that PCBs can be used as tracers to track the 
movement of deep ocean currents. Currently, with global 
warming continuing, the temperature gradient that drives 
the thermohaline circulation is waning (Rühlemann et al., 
1999). Thereby, the global ocean transport of POPs would 
be affected and needs to be investigated in future. 

4.  Effect of climate change on the fate of POPs  

After transport, POPs eventually sink into the ocean, cry-
osphere, forest and soil (Figure 1). The ocean accounts for 
more than 70% of the global surface and is the largest sink 
of most pollutants (Sobek and Gustafsson, 2014). Seawater, 
zooplankton and particles contain measurable amounts of 
POPs, but most POPs are stored in ocean sediments (Niz-
zetto et al., 2010). Moreover, the forest canopy and soil or-
ganic matter can effectively accumulate atmospheric POPs. 
Therefore, the terrestrial ecosystem also stores a large 
amount of POPs (Ockenden et al., 2003; Nizzetto et al., 
2010). As well as marine and terrestrial ecosystems, the 
cryosphere is another important destination for POPs. With 
wet deposition, atmospheric POPs can be scavenged by rain 
and snow and further stored in glaciers (Hermanson et al., 
2005; Meyer and Wania, 2008). The cryosphere is ex-
tremely sensitive to climate change, so POPs stored in the 
cryosphere are prone to re-release under global or regional 
warming, and become secondary sources of POPs. Under 
the influence of global warming, the role (sink or source) of 
marine and terrestrial ecosystems and the cryosphere in 
POP global cycling will certainly change.  

Owing to the hydrophobicity of POPs, they exist in the 
ocean in the particulate phase. Dissolved organic carbon, 
particulate matter, phytoplankton and so on all act as carri-
ers of hydrophobic POPs in water. Maldonado et al. (1999) 
studied the vertical profile of PAHs in the Black Sea, and 
the results indicated that the highest value of PAHs ap-
peared at a depth of 30 m, which was mainly attributed to 
the high biomass of phytoplankton at that depth. Phyto-
plankton plays an important role in the transport of POPs 
from water to sediment. On the one hand, phytoplankton 
absorb POPs, which decreases the POP concentration in 
water (Dachs et al., 2000). On the other hand, POPs associ-
ated with phytoplankton sink down the water column and 
finally accumulate in sediment. These two processes drive 
the flow of POPs from the atmosphere to the ocean, which 
is known as the biological pump (Dachs et al., 2002). Ob-
viously, POPs in the atmosphere continuously enter into the 
deep-sea sediments through this effect. However, seawater 
temperature is rising as a consequence of global warming, 
which has reduced ocean primary productivity by 6% since 
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the 1980s (Hoegh-Guldberg and Bruno, 2010; Gal-
bán-Malagón et al., 2012). Therefore, climate warming in-
directly affects the ocean’s ability to absorb POPs by 
changing ocean primary productivity. 

Soil with a high organic matter content has a higher POP 
storage capacity. Owing to the different distributions of soil 
temperature and organic matter content at different scales, 
the POP storage ability of soil varies. The POP storage abil-
ity in the Sahara Desert with a low soil organic matter con-
tent is relatively weak, while the POP storage ability in Si-
beria, Scandinavia, Canada and Alaska, which are charac-
terized by a higher organic matter content, is much stronger 
(Dalla Valle et al., 2005).  

Forest accounts for about 31% of the land area world-
wide (Guan, 2003). The forest canopy provides an extensive 
organic surface for the partitioning of POPs in the atmos-
phere, and increases the net atmospheric deposition of POPs 
(Horstmann and McLachlan, 1998; McLachlan and Horst-
mann, 1998, Wania and McLachlan, 2001). Owing to vege-
tation renewal and litter fall, forest increases the atmos-
pheric deposition of POPs. As a consequence, terrestrial 
forest ecosystems are important sinks for environmental 
POPs (Horstmann and McLachlan, 1998; McLachlan and 
Horstmann, 1998). It is well established that boreal forest 
can store 2–20% of global PCB emissions (Moeckel et al., 
2009). From a global perspective, land cover has been 
transforming at a relatively high speed. Deforestation, agri-
cultural reclamation and urbanization destroy the soil layer, 
so POPs that have accumulated in soil are re-released. 
These processes also reduce the POP retention capacity of 
soil (Komprda et al., 2013). In contrast, climate warming 
may also exert positive effects on the storage of POPs; for 
example, climate warming can extend the vegetation grow-
ing season and increase the content of soil organic carbon 
(Komprda et al., 2013), which may consequently increase 
the accumulation of POPs in terrestrial ecosystems. 

Precipitation plays an important role in the deposition of 
POPs. POPs scavenged by atmospheric wet deposition can 
be stored in glaciers, snow pack and sea ice (Yao et al., 
2002; Hermanson et al., 2005; Wang et al., 2007a; Meyer et 
al., 2008a, 2008b; Meyer and Wania, 2008; Wang et al., 
2008, 2014; Guglielmo et al., 2012). Antarctica has the 
largest glacial area worldwide. Peterle et al. (1969) esti-
mated the storage of DDT in Antarctica (2.4×106 kg) based 
on concentrations of DDT and Antarctic snow-ice reserves 
(24×10730×107m3) measured in 1966. Hofmann et al. 
(2012) calculated the storage of HCH and DDT in environ-
mental medium and identified that approximately 8.4% of 
atmospheric γ-HCH and 10.4% of atmospheric DDT were 
deposited to snow and glaciers. 

It is possible to evaluate the atmospheric concentration 
level, accumulation flux and historical accumulation trend 
of POPs based on dated ice cores (Hong et al., 2009). Cur-
rently, research regarding accumulation of POPs in ice 
cores is mainly focused on Arctic Svalbard (Hermanson et 

al., 2010), the Italian Alps (Villa et al., 2003, 2006; Maggi 
et al., 2006), China’s Tibet (Wang et al., 2008, 2010a, 2014) 
and the Canadian Ellesmere Island (Veillette et al., 2012; 
Zhang et al., 2013). Ice cores are regarded as natural ar-
chives of pollutants as well as past climate. Global warming 
is having a remarkable impact on the cryosphere (Parry, 
2007). The IPCC report states that during the past 30 years, 
global glaciers have continued to retreat in length, area and 
volume (Stocker, 2014). In addition, snow cover in the 
Northern Hemisphere has decreased, and the thickness and 
area of permafrost in Russia and northern Europe evidently 
reduced between 1975 and 2005 (IPCC, 2013). Melting of 
Arctic glaciers has released massive amounts of POPs back 
into atmosphere, leading to a slight increase in the concen-
tration of a variety of POPs in the Arctic atmosphere during 
the past 20 years (Ma et al., 2011). Furthermore, the con-
centration of DDT in penguins from Antarctic has not de-
creased, which might be associated with the release of POPs 
from melting glaciers (Geisz et al., 2008). Melting glaciers 
may also increase the concentration of POPs in fresh water 
(Ma et al., 2011). Blais et al. (2001) found that 50–90% of 
POPs in Glacier Lake were sourced from glacial melt water. 
Under global warming, POPs can also migrate into the lakes 
through the water cycle and even accumulate in lake sedi-
ments (Bettinetti et al., 2008; Bogdal et al., 2009). 

In summary, climate warming will alter the role (source 
or sink) of the land surface in the global cycling of POPs. 
Originally, glaciers, oceans and soil were sinks of POPs. 
However, the re-release of accumulated POPs under the 
influence of global or regional warming has resulted in 
glaciers, oceans and soil becoming sources of POPs (Betti-
netti et al., 2008; Cabrerizo et al., 2011). As the primary 
emission of POPs has been regulated, secondary emission is 
now the main source of POPs in the atmospheric environ-
ment. 

5.  Effect of climate change on degradation, bi-
oavailability and toxicity of POPs 

The degradation of POPs in the environment is mainly di-
vided into two types: photodegradation and biodegradation. 
The degradation rate of POPs is influenced by hydroxyl 
radical (·OH) and ozone (O3) contents in the atmosphere 
(Klöpffer, 1992; Sinkkonen and Paasivirta, 2000; Wania 
and Daly, 2002). The microbial degradation of POPs pri-
marily occurs in soils and sediments (Kawamoto and Urano, 
1990; Hirano et al., 2007). The pH value of soil and sedi-
ment, organic carbon content and the amount and type of 
microorganisms affect the biodegradation rate of POPs. A 
higher organic carbon content can provide microorganisms 
with the energy to degrade POPs, thus speeding up the deg-
radation process of pollutants (Hirano et al., 2007). 

Global warming has led to an increased ozone concentra-
tion in the troposphere (Racherla and Adams, 2006; Steven- 
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son et al., 2006 ; Cheng et al., 2007). In addition, model 
simulations have shown that the concentration of ozone will 
continue to rise from now to 2050 (Hogrefe et al., 2004). 
From this point of view, the scientific community generally 
believes that photodegradation of POPs will become more 
severe under the effect of global warming (Brubaker and 
Hites, 1998; Macdonald et al., 2003; Sweetman et al., 2005; 
Ma et al., 2004; Meyer and Wania, 2008).  

Similarly, Dalla Valle et al. (2007) concluded that in-
creasing temperatures will lead to the prosperity of the mi-
crobial community in Italy’s Venice Lake, which should 
enhance the biodegradation of PCBs and chlorinated furan. 
The decomposition of organic carbon in terrestrial and 
aquatic ecosystems is an important biological process that 
affects the bioavailability of POPs. Research in Ontario 
revealed that drought and dissolved organic carbon decom-
position associated with global warming increased the ef-
fective content of POPs, which meant the bioavailability of 
POPs increased (Magnuson et al., 1997; Schindler et al., 
1997). 

Numerous studies have concluded that the bioavailability 
and toxicity of POPs in wild organisms increases with the 
increase of temperature and salinity (Wang et al., 2001; 
Waring and Moore, 2004; Capkin et al., 2006; Jenssen, 
2006; Schiedek et al., 2007). Possible mechanisms for this 
are as follows. (1) The dynamic toxicity effect of com-
pounds increases with the increasing temperature (Buch-
walter et al., 2003; Maruya et al., 2005). (2) Warming gives 
rise to a weak immune ability of wildlife to POPs 
(Broomhall, 2002, 2004; Patra et al., 2007), which results in 
increasing toxicity of POPs. (3) Studies in Seattle Bay iden-
tified that increasing water salinity led to acute toxicity   
of salmon as anticholinesterase metabolites increased 
(Schlenk and Lavado, 2011). (4) Compared with the  
above three mechanisms, structural changes in ecosystem 
food chains derived from global warming is the leading 
factor that increases the toxicity of POPs to whole ecosys-
tems (Macdonald et al., 2005; Jenssen, 2006; Burek et al., 
2008; Noyes et al., 2009; Borgå et al., 2010; Bustnes et al., 
2011). 

6.  Model simulation and prediction of the en-
vironmental behavior of POPs 

So far, plenty of models have been applied to simulate and 
predict the environmental behavior and transport trends of 
POPs under the influence of global warming (Huang et al., 
2007; Shindell et al., 2008; Guglielmo et al., 2009; Lamon 
et al., 2009a, 2009b; Stemmler and Lammel, 2009, 2012; 
Lammel and Stemmler, 2012; Gouin et al., 2013; Kong et 
al., 2013, 2014). These models can be grouped into two 
general categories. One is multimedia models based on fu-
gacity theory, which is simple and has been widely used 
(Mackay, 2001). The other is general circulation models 
(GCMs), which divides the world into different areas and 
focuses on the transfer processes of mass, energy and mo-
mentum of chemicals among the atmosphere, land surface 
and ocean (Ilyina et al., 2006). These models can not only 
predict the environmental behaviors of POPs, but also de-
termine the key environmental factors that affect the global 
transport of POPs. The main characteristics of these models 
are summarized below and in Table 1. 

The Berkeley-Trent Global Model (BETR-Global) is a 
global mass-balance model based on steady state (level III) 
or unsteady state (level IV) fugacity scenarios. It syntheti-
cally considers the influence of temperature, atmospheric 
stability, atmospheric boundary layer and photochemical 
reaction processes on the transport of POPs under different 
environmental conditions (MacLeod et al., 2005).  

Globo-POP is an integrated model with a prediction 
function based on the level IV fugacity model. Compared 
with the differences between this model and other fugacity 
models, Globo-POP considers non-temporal resolved input 
parameters, including organic carbon, aerosol and suspend-
ed particulate matter (Wania and Mackay, 1995; Meyer and 
Wania, 2007). Globo-POP resolves inputs consisting of 
temperature, ice cover and hydroxyl radical concentration. 
In the improvement of the Globo-POP model by Stocker et 
al. (2007), the impact of glacier melting on POPs was also 
taken into consideration.  

Table 1  The main multimedia fate and transport models cited in this paper 

Model Description Features 

BETR-Global 
Level III-IV fugacity model. The world is divided latitudinally and longitudinally 

into 288 regions. Seven environmental compartments are considered (two at-
mospheric layers, soil, vegetation, coastal water, freshwater and sediments). 

This model can be flexibly applied on different 
scales (local) or global simulation. 

Globo-POP 
Level IV fugacity model. Latitudinal resolution up to 10 regions. It takes into 
account 9 compartments (freshwater and sediment, four vertical atmospheric 

layers, upper ocean layer, cultivated and uncultivated soils). 

This model can be used for assessing the POPs 
fate and under the influence of ice melting. 

G-CIEMS 
Level IV fugacity model. GIS-based models. Six environmental compartments 
are assumed in this model (atmosphere, freshwater - rivers and lakes, coastal 

water, sediments, soil). 

It could be used for calculating the fate of per-
sistent pollutants in a climate change perspective 
especially at high spatial resolution for the dry 
land areas, where this model allows to easily 

distinguish different environments. 
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Another possibility for POP fate modeling is the spatially 
resolved and geo-referenced dynamic multimedia environ-
mental fate model, G-CIEMS (Grid-Catchment Integrated 
Environmental Modelling System). This model integrates a 
basic fugacity formulation following a level IV calculation, 
on a geographic information system (GIS) (Suzuki et al., 
2004). Six compartments, namely air, freshwater (rivers and 
lakes), sediments, forest, seawater, soil, and advective 
transport are considered. 

Given that POP fate models can predict the transport 
pathways, intensity and concentrations of POPs for future 
climate scenarios, the model results provide policy makers 
with scientific information for an early response to these 
changes. Recently, on the basis of the moderate intensity 
greenhouse gas emission scenario, Octaviani et al. (2015) 
used a GCM to study meridional transport of POPs under 
the present-day (1970–1999) and future (2070–2099) cli-
mate. POP transport channels into the Arctic were identified 
as (1) the Alaska-North America channel, (2) the Greenland 
channel, (3) the Norwegian Sea-West Russia channel (Eu-
rope) and (4) the Urals-Siberian channel (Asia). Moreover, 
ignoring the primary emission of POPs, the model also pre-
dicts that secondary volatilization of DDT caused by global 
warming will still be continuously transported to the north 
polar area. However, in contrast, the results also predicted 
that the net export of PCB 153 out of the Arctic will in-
crease under future climate conditions (2070–2099, Octa-
viani et al., 2015).  

In general, model application provides a view for evalu-

ating the process and degree of the rise, cycling and fading 
away of POPs on the larger spatial and longer temporal 
scales. The current laws and regulations regarding environ-
mental pollution do not consider the influence of climate 
change on the concentration of POPs in the environment. In 
fact, several studies have demonstrated that global warming 
could increase the long-range transport ability of POPs. As 
a result, it is necessary to consider the impact of climate 
warming on environmental loading of POPs in the formula-
tion of relevant policies in future. 

7.  Research prospects 

From the statistical results of the literature, studies related to 
climate change and the global transport of POPs were rarely 
reported until 2004. However, this research direction began 
to flourish from 2004 onwards and has made considerable 
progress during the past ten years. Both field observations 
and model simulations have proved that warming directly 
and indirectly affects the transport, distribution and final 
fate of POPs. Table 2 summarizes the response of POPs to 
global change for publicity and policy-making departments 
to understand and judge the factors. 

Relevant research work in the Arctic is impressive. Sci-
entists are conducting systematic studies in the following 
areas: (1) the effect of melting snow and ice on the second-
ary release of POPs; (2) the effect of secondary release of 
POPs on the temporal and spatial distribution of POPs in 

Table 2  Environmental behavior of persistent organic pollutant in response to global change a) 

Scenario Environmental consequence Response of POPs 
Effect on 

POPs level 
Reference 

Glaciers melting 
Fresh water was injected into the 

environment; chemicals stored in the 
glacier were released. 

POPs were rereleased into the envi-
ronment e.g. atmosphere and lakes 

+ 
UNEP, 2010; Grannas et 

al., 2013 

Permafrost degradation Exacerbated surface erosion 
Increased the second emission of 

POPs 
+ 

Evans et al., 2005; 
Grannas et al., 2013 

Sea level rise Increased erosion 
Increased the second emission of 

POPs 
+ Kwok et al., 2009 

Salinity of sea water 
changes 

Two situation: salinity is decreased 
due to injection of glacier melting 

water; seawater salinity increase be-
cause of local drought 

Change of the marine food chain 
structure, variation of  metabolism 

of marine biota 
± Olsen et al., 2011 

Flood Severe erosion 
Increased the second emission of 

POPs 
+ Holoubek et al., 2007 

Forest fire 
Surface soil temperature rise up the 

non-intentional POPs 
Increased both the primary and 
secondary discharge of POPs 

+ 
Kim et al., 2003; 

Kallenborn et al., 2011 
Changes of  atmos-

pheric circulation 
Changed POPs transport intensity and 

direction of 
Changed the environment distribu-

tion of POPs 
± 

Ma et al., 2004, 2011; 
Ma and Li, 2006 

Ocean current change 
Changed POPs transport intensity and 

direction of 
Changed the environment distribu-

tion of POPs 
± Lohmann et al., 2006 

Population increase 
Increased use of pesticides, malaria 

outbreak, and worsened environmen-
tal pollution 

Increased both the primary and 
secondary discharge of POPs 

+ Noyes et al., 2009 

Soil desertification 
The reconstruction of the vegetation 

zone around the world 
Changed the fate of POPs + Noyes et al., 2009 

Variation of biodiversity 
The components of regional biosphere 

changed 
Changes on the biological enrich-

ment of POPs at regional scale 
± Brander, 2007 

a) +, positive; −, negative 
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multimedia of the Arctic; (3) changes in the accumulation 
characteristics of POPs in Arctic ecosystems (marine food 
chain and tundra food chain) under the background of cli-
mate warming; (4) long-distance transport potential of dif-
ferent POPs to enter into the Arctic under the condition of 
climate warming; (5) how POPs will be imported to and 
exported from the Arctic area in a warming future. Howev-
er, there are still various research gaps:  

(1) The POP emission inventory is relatively clear, but 
under the gradual decrease of primary source POPs and the 
increasing importance of secondary emission, caused by 
climate warming, from the soil and sea, how can the con-
tribution of secondary emission of POPs be quantified ? 

(2) It is necessary to study the effect of extreme weather, 
such as floods and storms, and soil sustainable desertifica-
tion on migration of POPs on the global scale. 

(3) It is necessary to carry out research on the relation-
ship between emerging POPs and climate change. 

(4) It is necessary to comprehensively assess the envi-
ronmental and ecological impacts of POPs released from 
glaciers melting on global main mountain areas, e.g. the 
Alps, the Himalayas, and the Rocky Mountain. 

(5) How can the relative contribution of secondary emis-
sion and degradation of POPs prompted by climate warming 
be measured? 

In conclusion, the impacts of climate change on the 
global cycling of POPs are linked to the production and use 
of chemicals, temperature increases, variations in ocean and 
atmospheric circulation, change of land cover, biological 
absorption and metabolism, multiple photochemical reac-
tions, multiple interface processes and other complex pro-
cesses. The study of these impacts requires long time series 
observational data and large-scale research projects with 
international cooperation (Hung et al., 2010; Kallenborn et 
al., 2015; Pacyna et al., 2015), as well as collaborations of 
scientists from various disciplines (Nadal et al., 2015). 
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