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A least-squares reverse-time migration scheme is presented for reflectivity imaging. Based on an accurate reflection modeling 
formula, this scheme produces amplitude-preserved stacked reflectivity images with zero phase. Spatial preconditioning, 
weighting and the Barzilai-Borwein method are applied to speed up the convergence of the least-squares inversion. In addition, 
this scheme compensates the effect of ghost waves to broaden the bandwidth of the reflectivity images. Furthermore, rough-
ness penalty constraint is used to regularize the inversion, which in turn stabilizes inversion and removes high-wavenumber ar-
tifacts and mitigates spatial aliasing. The examples of synthetic and field datasets demonstrate the scheme can generate zero- 
phase reflectivity images with broader bandwidth, higher resolution, fewer artifacts and more reliable amplitudes than conven-
tional reverse-time migration.  
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Migration is a key technique for subsurface seismic imaging 
by repositioning the recorded data to the location where 
reflection occurs. Although in principle this requires the 
inverse of a modeling operator, in practice the adjoint of the 
modeling operator is used instead. There are two main rea-
sons for such use of adjoint migration operators. Firstly, 
applying adjoint operator requires significantly less calcula-
tion than inverse operators, as it is much cheaper to com-
pute the adjoint operator than the inverse operator. Second-
ly, adjoint operators are unconditionally stable, since only 
multiplication and addition are involved in their production, 
whereas division is required to compute an inverse operator. 
Adjoint operators therefore apply to nearly all migration 
methods, including reverse-time migration (RTM). In cases 
where the data is subject to significant aliasing, truncation, 

noise, or are incomplete, the adjoint operator is not a good 
approximation to the inverse operator, and will therefore 
degrade the resolution of the final migrated image. Moreo-
ver, even with perfect data, an adjoint operator still produ- 
ces imperfect images (Claerbout, 1992). Hence, it is desira-
ble to use the inverse operator to migrate seismic data. 

A generalized inverse operator can be obtained by using 
a least-squares approach. Nemeth et al. (1999) implemented 
Kirchhoff migration in the least-squares inversion frame to 
form a least-squares migration method. The examples 
demonstrate improved resolution and amplitudes of the im-
ages. In addition, the least-squares migration is able to mit-
igate the side effects of limited aperture, gaps and coarse 
spatial sampling of the recorded data. To reduce the com-
putational cost of least-squares Kirchhoff migration 
(Nemeth et al., 1999), Liu et al. (2005) combined least- 
squares inversion with wave-path migration, which is faster 
than Kirchhoff migration, to give a more efficient method 
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titled least-squares wave-path migration. Kühl et al. (2001, 
2003) presented a least-squares migration method based on 
the double-square-root (DSR) operator. This method can 
generate angle-domain common-image gathers (ADCIGs) 
with more accurate amplitude variations versus ray parame-
ter (AVP) than ADCIGs using the normal DSR operator. 
Kaplan et al. (2010) formulated a least-squares migration 
method based on the shot-profile split-step migration oper-
ator. However, practical Kirchhoff migration uses an asym- 
ptotic approximation based on ray theory; thus it cannot 
accurately image near wavefields and has difficulties to 
migrate multi-arrival events in complex velocity models 
(Gray et al., 2001). Migration methods based on the 
one-way wave equation cannot properly migrate steep 
events or deal with lateral velocity variations and turning 
waves (Gray et al., 2001). As a result, the least-squares mi-
gration methods based on the Kirchhoff migration operator 
or one-way wave equation will inherit their respective 
drawbacks. To avoid such drawbacks, whilst also maintain-
ing the advantages of least-squares migration, Dai et al. 
(2010, 2012) formulated least-squares reverse-time migra-
tion (LSRTM) and used a (simultaneous) multi-shots tech-
nique to reduce computation costs. The combination of 
least-squares inversion and conventional reverse-time mi-
gration (RTM) can retain the advantages of inverse opera-
tors and two-way wave equations for migration. However, 
an image relating to velocity perturbation was inverted for 
instead of reflectivity. In other words, the resultant images 
were the integral of reflectivity therefore had inaccurate 
phase. Dong et al. (2013) used a filter in LSRTM to match 
the scaled predicted data to the records, and in turn tried to 
address some aspects of applying LSRTM to field data, e.g., 
migration velocity errors and the amplitude errors of source 
wavelets. Zhang et al. (2015) proposed the use of zero-lag 
cross-correlation of predicted and observed data as the ob-
jective function to invert the reflectivity image. This method 
can help to mitigate the effect of the amplitude difference 
between predicted and observed data, and is equivalent to 
the least-squares function of amplitude normalized predict-
ed and observed data.  

In this work, a least-squares inversion scheme has been 
developed to recover the stacked reflectivity images based 
on a reflection modeling formula (Xu et al., 2011). Spatial 
preconditioning, weighting and the Barzilai-Borwein (BB) 
method (Barzilai et al., 1988) are used to speed up the in-
version convergence significantly. Deghosting (Perz et al., 
2014) has been integrated into this scheme thereby broad-
ening the bandwidth of the reflectivity images. In cases 
where the data is subject to significant aliasing, truncation, 
noise, or is incomplete, roughness penalty constraints can be 
used to regularize and stabilize the inversion. This will re-
move high-wavenumber artifacts and mitigate the effect of 
spatial aliasing to generate better images. Unlike the matrix 
formulation of least-squares reverse-time migration (Yao et 
al., 2012a), this scheme does not formulate the Jacobian 

matrix explicitly thus reducing the memory cost down to the 
same level as conventional RTM. Consequently, this 
scheme is ready for 3D implementation. The synthetic and 
field data examples successfully demonstrate that this 
scheme can produce images with more accurate amplitudes, 
broader bandwidth, higher resolution and fewer artifacts 
than conventional RTM. 

1  Theory 

Reflection data can be modeled with the expression (Xu et 
al., 2011): 

 ,rd  x

 

         2cos
| , , | , d d ,r r s sj G r G s

v

      x x x x x x
x

 
(1) 

where d is the reflection data, s is the source signature, 

 | ,s sG x x  is the Green’s function from the source at 

sx to the reflector at x ,  | ,r rG x x is the Green’s func-

tion from the reflector to the receiver at rx ,  ,r x is the 

angle dependent reflectivity,  is the reflection angle, v is 
the velocity at the reflector and j is the imaginary unit. Since 

the dip factor, 
 

2cos
v


x

 

in eq. (1) assumes the incident an-

gle equals the reflection angle, it is accurate for isotropic 
media. If the stacked (angle independent) reflectivity image 
is to be inverted, then eq. (1) can be simplified to 

          , | , | , d ,r r r s sd j G I G s     x x x x x x x  (2) 

where  I x  is the stacked reflectivity image and j  

gives a 90° phase shift to the modeling data, which is cru-
cial for migration to produce a zero-phase image. Eq. (2) 
models data with the stacked reflectivity image and does not 
consider the dip factor; therefore it is an approximation for 
both isotropic and anisotropic media. Conventional adjoint 
migration (Claerbout, 1992) can in turn be implemented in 
such a form as  

 I x
 

       †
| , | , , d d ,r r s s r rj G G s d        x x x x x x

 
(3) 

where †  denotes the complex conjugate. Eq. (3) illustrates 

that migration can be carried out by firstly convolving the 
source and receiver Green’s functions with the derivative of 
the source wavelet, then cross-correlating with the recorded 
data, and finally summing over all traces and samples.  
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Eq. (2) describes the forward-modeling process which 
maps reflectivity onto the data. It can be used to solve for 
the reflectivity by minimizing the objective function given 
by 
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where  ,rd x and  0 ,rd x are the predicted and rec-

orded data respectively. This minimization can be achieved 
by using a variety of localized gradient methods. If only 
primary reflections are considered, which means the 
Green’s functions are independent of reflectivity, differenti-
ating eq. (4) with respect to  I x gives the gradient of the 

objective function as 
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where Re  indicates the real part of a complex number. 
Equation (5) not only provides a means of calculating the 

gradient, but also gives it a physical meaning. In particular, 

sj G s  describes the forward-propagated wavefield from 

the first-order derivative of the source, while 

   0, ,r rd d x x  is the data residual, and †
rG  repre-

sents the backward propagation of the residual into the 
earth. The backward propagation is essentially equivalent to 
forward modeling the time-reversed residual as the virtual 

source. Multiplication of     †
0, ,r r rG d d x x  with 

the complex conjugate of sj G s and the following sum-

mation is then equivalent to using the zero-lag cross-   
correlation imaging condition (Claerbout, 1971). Eq. (5) can 
be expressed in the time domain as 
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where  denotes convolution,   represents cross-corre- 

lation and 
s

t




 is the first-order derivative of the source 

wavelet.  
Given the gradient of the objective function, the reflec-

tivity model can be iteratively updated as 

 1 ,k k   I Ι q  (7) 

where I  represents the vector of the image,   is an op-
timum step-length, and q  is the vector of the update direc-

tion. In practice, the step-length is determined using a linear 
search technique such as the secant method (Myron et al., 

1998) or the Barzilai-Borwein (BB) scheme (Barzilai et al., 
1988; Wang et al., 2010), which will be described in the 
next section.  

In theory, the operator for gradient calculation in eq. (5) 
is the exact adjoint of the forward modeling operator in eq. 
(2). However, this is difficult to implement numerically 
whilst also passing the “dot-product” test (Claerbout, 1992), 
which is a criterion to verify this property. As a result, the 
inversion may converge slowly or misconverge when linear 
gradient methods are used, e.g. the linear conjugate-gradient 
method (Scales, 1987). In our implementation, the residual 
and the gradient are both directly computed from the up-
dated reflectivity model at each iteration; the step-length is 
calculated with a line search or the BB method. Thereby, 
the minimization of eq. (4) is in fact achieved with a non-
linear gradient inversion scheme. This helps the conver-
gence of the minimization process. 

2  Implementation 

2.1  Regularization techniques 

In order to increase the convergence and therefore effec-
tiveness of the inversion, several regularization techniques 
can be applied. 

2.1.1  Spatial preconditioning 

If the update direction in eq. (7) is opposite to the gradient, 
then the steepest-descent method is used. However, this 
method converges slowly when the update is close to the 
minimum. To speed up the convergence of inversion, sec-
ond-order methods, e.g. Gaussian-Newton methods (Yuan 
et al., 1997), can be used. The update can then be imple-
mented as   

1
1 Hk k  
  I Ι g ,               (8) 

where 1H is the inverse of the Hessian matrix and g is the 

gradient of the objective function, given by eq. (5) or (6). If 
only primary reflections are considered, which means the 
source and receiver Green’s functions are independent to 
the reflectivity, then differentiating the gradient with respect 
to I gives each element of the Hessian matrix: 
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(9)

 

Equation (9) shows that each element of the Hessian matrix 
is the zero-lag cross-correlation of s rj sG G  for the two  
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corresponding imaging points ix  and jx . Since the seis-

mic source wavelet s is band-limited, the Hessian matrix is  
not a diagonal matrix. The adjoint (conventional) migration 
expressed by eq. (3) is just the gradient of the objective 
function with record as the residual. Consequently, without 
the Hessian matrix, it is difficult for adjoint migrations to 
produce images with correct amplitudes. Instead of using 
the full Hessian matrix, it is common practice to use the 
diagonal, which is trivial to invert (Virieux et al., 2009). 
However, the receiver Green’s functions (from an imaging 
point to all receivers) are needed in order to calculate the 
diagonal elements of the Hessian matrix. This is normally 
considered too computationally demanding to calculate. 

Consequently, †
r rG G  is approximated by a scalar, which is 

handled during the step-length calculation. Hence, the di-
agonal element of the Hessian matrix is approximated as  

   ,i i iH px x x
 

     †
Re | | .s i s s i sj G s j G s



         x x x x  (10) 

Each element in eq. (10) corresponds to the energy of the 
source wavefield at the corresponding imaging point. Di-
viding the gradient by the energy is called spatial precondi-
tioning (Warner et al., 2013) or source illumination com-
pensation (Kaelin et al., 2006). In practice, a small number is 
added into the energy to avoid the division by a zero at some 
imaging points. Numerical tests show this can speed up con-
vergence significantly but at trivially minimal extra cost. 

2.1.2  Weighting 

Another feature of this implementation is the option to 
weight up the residual of events of interest, e.g. later arri-
vals, which thereby enhances imaging of the corresponding 
areas in the model. The weighting increases the contribu-
tions of these events to the objective function, and in turn 
affects the gradient and updates, ultimately favoring the 
weighted terms. By contrast, the unweighted residual be-
comes weaker than the weighted, and is unable to dominate 
the inversion. Weighting up the events of interest therefore 
helps improve the speed of convergence for the corre-
sponding imaging areas. In practice, prior to migration, 
these events need to be determined and a weighting function 
is generated. During inversion, the residual of each iteration 
is then scaled by the weighting function. 

2.1.3  Roughness penalty constraint 

If the recorded data is sparse, incomplete, or the data is 
contaminated by noise, the inversion becomes an ill-posed 
problem, and may produce high-wavenumber artifacts. One 
way of reducing the artifacts is to use a roughness penalty 
constraint (Bube et al., 2008). In this implementation, this is 
achieved by using first-order derivatives to measure the 
roughness of the model. Specifically, the objective func-

tions of the roughness penalty constraint for the horizontal 
and vertical directions are respectively 

      2

2

1
,

2h hI I  x x  (11) 

and 

      2

2

1
,

2v vI I  x x  (12) 

where h  and v are first-order derivative operators along 

the horizontal and vertical directions of the model. An ex-
ample of the implementation of the roughness operators, 

h  and v , can be found in eqs. (3.19) and (3.20) in Yao 

(2013). Combining these constraints with the original ob-
jective function, and scaling the penalty terms by the 
trade-off parameters, h  and v , then gives the final ob-

jective function as  

 ,d h h v v         (13) 

where , 0h v   . With proper choice of regularization  

parameters h  and v and incorporating a priori con-

straints h  and v  on the solution, minimizing eq. (13) 

can yield a stable solution with significantly fewer high- 
wavenumber artifacts. The two regularization parameters 
can be different. The value of them is also affected by the 
numerical implementation of the modeling kernel as differ-
ent modeling kernels may produce different amplitudes in 
the data for the same model. In practice, we use the trial- 
and-error method to find the acceptable regularization pa-
rameters. 

2.2  Deghosting 

Ghost waves are generated by the reflection off a free sur-
face. Since the free surface has negative reflectivity, ghost 
waves can significantly weaken the energy of low frequen-
cies and create notches within the high frequencies in the 
seismic record. This reduces the resolution of seismic im-
ages (Perz et al., 2014). This effect is especially noticeable 
for marine seismic data because the sea surface is a perfect 
reflection interface and has reflectivity of almost 1. The 
mechanism of ghost waves can be interpreted as a set of 
mirror sources and mirror receivers, which are located 
above the free surface and have the same distance as the 
true counterparts to the free surface, to respectively inject and 
record energy. The strength of the mirror sources and records 
is equal to the true counterparts scaled by the reflectivity. 
According to this theory, ghost waves can be simulated by 
using this setting. In the forward modeling process, the mirror 
and true sources are excited simultaneously, and final pre-
dicted data is the sum of records of the mirror and true re-
ceivers. In the back propagation step, the source side proce-
dure is the same as that in the forward modeling process; the 
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residual is injected at the true receivers but simultaneously at 
the mirror receivers with the strength scaled by the reflectivi-
ty. In this way, LSRTM can compensate the effect of the 
ghost waves and give broad-band reflectivity images.  

2.3  Gradient descent with BB scheme 

Since only primary reflections are generated in the predicted 
data, the objective functions in eqs. (4) and (13) are convex. 
Gradient methods can be used to minimize the objective 
functions. The simplest method is a steepest descent. How-
ever, it converges slowly for ill-posed inversion problems. 
To speed up the inversion, conjugate-gradient and qua-
si-Newton methods can be used. But these methods may 
require performing a line search along update directions in a 
single iteration for the calculation of the optimal step- 
length. The line search needs extra forward modeling and/or 
back propagation and therefore increases computational cost 
significantly. To avoid the line search as well as speed up 
convergence by using the Hessian information, a non-  
monotone gradient method called the Barzilai-Borwein 
(BB) method (Figure 1) can be utilized (Barzilai et al., 
1988; Wang et al., 2010). According to our tests, the BB 
method converges much faster than the steepest-descent 
method, but slightly slower than conjugate-gradient and 
quasi-Newton methods. However, the most valuable benefit 
is that in one iteration, the BB method only needs to calcu-
late the gradient once and finds the step-length with negli-
gible calculation cost; consequently the method can save the 
effort for more iterations. 
 

 
Figure 1  BB scheme for LSRTM. 

3  Synthetic and field data examples 

3.1  Point diffractor model 

Four models are used to demonstrate the LSRTM scheme. 
The first model consists of nine point diffractors embedded 
in a medium with a constant velocity of 2000 m/s (Figure 
2(a)). Figure 2(d) is one of the three shots, which have all 
been computed using the acoustic wave equation. A 30 Hz 
Ricker wavelet source is positioned at 200, 500 and 800 m 
on the surface with receivers spaced at 10 m intervals on the 
surface. The direct arrivals, which do not contribute to im-
aging, have been removed prior to migration. Figure 2(b) 
and (c) show the results of applying conventional RTM and 
LSRTM to the three shots, while Figure 2(e) and (f) show 
the modeled data corresponding to the RTM and LSRTM 
images. Figure 2(g) and (h) represent the LSRTM images 
inverted with 1950 and 2050 m/s respectively. Figure 2(i) 
shows the normalized residual against the percentage of 
velocity error, which is the ratio of the migration velocity 
subtracted by the true velocity and the actual true velocity. 

Figure 2 shows that LSRTM has three advantages rela-
tive to RTM. Firstly, the LSRTM image has fewer artifacts 
than the RTM image. Eq. (5) and Figure 1 show that RTM 
is just the first iteration of LSRTM for an initial model with 
zero-value. The modeled data of the artifacts in the RTM 
image becomes residuals, which will be progressively di-
minished in the following iterations. As a result, the 
LSRTM generates neater images. Secondly, the diffractors 
in the LSRTM image have weaker sidelobes, and are sig-
nificantly better resolved than those from RTM. This is be-
cause the imaging condition for RTM is based on 
cross-correlation, and therefore retains (actually amplifies) 
the imprint of the source signature. Unlike RTM, by fitting 
the image to recorded data, LSRTM compensates for the 
source signature using a deconvolution imaging condition 
(Yao et al., 2012a). Consequently, the LSRTM image has 
weaker sidelobes and higher resolution. Finally, the 
LSRTM image amplitudes are more accurate. For example, 
the deep diffractors in the LSRTM image, as expected, have 
almost the same amplitude as the shallow diffractors in Fig-
ure 2(c). This is due to the use of the inverse operator and 
the deconvolution imaging condition. Thereby, the ampli-
tudes of the later arrivals in the modeled data of LSRTM 
(Figure 2(f)) are closer to those in the recorded data (Figure 
2(d)) than in the case of RTM (Figure 2(e)). These ad-
vantages of LSRTM are intrinsic to the combination of 
least-squares inversion and reverse-time migration, and can 
be obtained with other implementations of LSRTM, such as 
that of Yao et al., (2012a). However, LSRTM is not im-
mune to the effect of migration velocity errors. Migrations 
with a lower than correct velocity produces under-migrated 
images (Figure 2(g)) while higher velocities generate over- 
migrated images (Figure 2(h)). As shown by Figure 2(i),  

Step 1: Choose an initial model  0I x ; 

Step 2: Calculate gradient  
  
 






I x
g x

I x
 using eq. (5) or (6); 

Step 3: Spatially precondition the gradient with eq. (10); then the 
update direction becomes 

      1
diag


 q x p x g x , where diag means to 

formulate a diagonal matrix with a vector; 

Step 4: At the kth iterative step: calculate 

step-length 1 1 1

1 1

T
BB k k
k T

k k

  

 


e e
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 or 2 1 1
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T
BB k k
k T
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
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where 1k k k e I Ι ,  1k k k  y q q  and 

kΙ and kq are the image model and the update direc-

tion of the kth iterative step, respectively. 

Step 5: Update model      1k k k  I x Ι x q x , where k  is 

the BB step-length and calculated in Step 4, and then 

return to Step 2 until model  1kI x  is acceptable. 
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Figure 2  RTM and LSRTM images for a nine point model. (a) Model containing nine point diffractors embedded in a medium with a constant velocity of 
2000 m/s; (b) RTM for three shot record from the model shown in (a); (c) the same as (b) but using LSRTM; (d) original one shot record; (e) modeled shot 
record for RTM; (f) modeled shot record for LSRTM. LSRTM images with a velocity of 1950 m/s (g) and 2050 m/s (h); (i) normalized residual against the 
percentage of velocity error,  

however, only the correct migration velocity achieves the 
minimum residual. As can be seen, the normalized residual 
still has a small value when the velocity error is zero. This 
is because the recorded and predicted data are generated in 
different ways. The recorded data is produced by solving a 
single wave equation; the reflections are caused by the ve-
locity contrasts and the amplitudes of which vary with re-
flection angle. However, the predicted data of LSRTM is 
modeled by solving eq. (2), which involves solving two 
wave equations. Here the reflections are generated by the 
stacked reflectivity and their amplitudes are invariant to the 
reflection angle. As a result, LSRTM provides a reflectivity 
model to achieve a least-squares fit, but not actually a full 
fit to the data. Nevertheless, this implies that LSRTM can 
be used for updating migration velocity. For the details of 
the theory, the reader is referred to Wang et al. (2013), Yao 
et al. (2014), and the references therein.  

3.2  Three-layer model 

The second example uses a three-layer model, the second 
layer of which has 200 m/s higher velocity than the first and 
third layers (Figure 3(a)). Three shots are generated using 
exactly the same sources and acquisition geometry as the 
first example. Figure 3(b) and (c) show the RTM and 
LSRTM images of the three shot data with 10 m trace spac-
ing respectively. Compared with the RTM image, the 
LSRTM image also has three advantages. Firstly, the re-
flectors have more uniform amplitudes, which means 
LSRTM can better preserve the amplitudes. Secondly, the 
reflectors in the LSRTM image are slimmer, which implies 
LSRTM is able to improve the resolution of images. Final-
ly, the LSRTM image has fewer artifacts. If the three shots 
are resampled to 40 m trace spacing, then RTM produces an 
image with noticeable arc-shaped aliasing artifacts (Figure 
3(d)) and LSRTM generates an image with fewer aliasing  
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artifacts (Figure 3(e)). If a roughness penalty is applied in 
LSRTM and both h  and v  are chosen as to make the 

horizontal and vertical regularization terms be 0.25 and 
0.125 times the data misfit term, respectively, LSRTM re-
moves nearly all the aliasing artifacts and generates a 
high-quality image (Figure 3(f)). This is because large trace 
spacing is more likely to cause aliasing to the higher fre-
quencies of the record and in turn aliasing artifacts have 
higher wavenumbers than reflector images. Hence, they can 
be suppressed by a roughness penalty being incorporated 
into LSRTM. This demonstrates LSRTM with a roughness 
penalty constraint can mitigate data aliasing artifacts. 

As described in the section of deghosting, ghost waves 
exist in real seismic data and weaken low frequencies and 
create notches for some high frequencies. Figure 4 shows 
the ghost effect for LSRTM. In this test, three shots are 
generated in the same way as the shots in Figure 3 except a 
free surface is applied and source and receivers are at a 
depth of 10 m under surface. As a result, ghost waves are 
produced in the record (Figure 4(a)), which appears to have 
more wiggles for each event than the record without ghost 
waves in Figure 4(b). Figure 4(c) shows the LSRTM image 
by directly setting the source and receivers at the surface 
without applying ghost compensation, whilst Figure 4(e) 
shows the LSRTM image with ghost compensation. By 
comparison, the first noticeable difference is that the two 
images have opposite polarity; secondly, Figure 4(e) has 
less ringing; thirdly, the image with ghost compensation has 

broader bandwidth, which can be seen by comparing the 
spectral of the images in Figure 4(d) and (f). 

3.3  The Marmousi model 

The third example uses the Marmousi model. The geometry 
of acquisition is set to be the same as the original study 
(Versteeg, 1993) and a 20 Hz Ricker wavelet is used as the 
source signature. The synthetic seismic record is modeled 
by using the acoustic wave equation with constant density. 
The source and receivers are located at a depth of 8 m. In 
order to generate ghost waves but no multiples, mirror 
sources and mirror receivers are used. The source wavelet 
used for migration is the same as the wavelet used for mod-
eling. Figure 5 shows the reflectivity images obtained by 
migrating 16 shots and 240 shots across the Marmousi 
model. Figure 5(b) and (c) are the results of conventional 
RTM and LSRTM of 16 shots respectively without ghost 
compensation, which is achieved by setting the sources and 
receivers at surface. By contrast, Figure 5(d) is the LSRTM 
image after ghost compensation. Figure 5(e)–(g) are the 
counterparts of Figure 5(b)–(d) for 240 shots. By compari-
son of these results, it is obvious to see four features of 
LSRTM. Firstly, LSRTM can produce a thinner image of a 
reflector than conventional RTM, which suggests a higher 
resolution has been achieved. Secondly, LSRTM attenuates 
artifacts, including the low-wavenumber artifacts. This is 
especially noticeable in the results of 16 shots. Thirdly,  

 

 

Figure 3  RTM and LSRTM images for a three-layer model. (a) The schematic diagram of the model; (b) RTM image of the three shots with sources lo-
cated at 200, 500 and 800 m on the surface and 10 m trace spacing and (c) the corresponding LSRTM image; (d) RTM image of the same three shots but 
with 40 m trace spacing and the corresponding LSRTM image without (e) and with (f) roughness penalty.  
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Figure 4  Ghost effect for LSRTM. Reflection data generated with free surface (a) whereas with absorbing boundary (b). LSRTM images without (c) and 
with (e) ghost compensation for reflection data generated with free surface; (d) and (f) are the amplitude spectral of the images in (c) and (e), respectively.  

LSRTM without considering ghosting produces an incorrect 
polarity in the images. Finally, the reflectivity images pro-
duced by LSRTM without ghost compensation fit recorded 
data less well than with ghost compensation. This is 
demonstrated by Figure 5(h).  

In this example, the BB scheme is used. In an iteration, 
one forward modeling step and one back propagation are 
needed to compute the gradient, with the cost of step-length 
calculation being trivial. Therefore, the computational cost 
of one iteration is equivalent to RTM. As a result, multi- 
iterative LSRTM is much more expensive than conventional 
RTM. However, by comparing Figure 5(d) and (g), it can be 
seen that even only 16 shots, which are one fifteenth of the 
whole set of 240 shots, can still produce a good image. To 
reduce the computational cost as well as use all of the in-
formation available, a random shots technique could be ap-
plied, which randomly selects a subset of the data for one or 
several iterations and chooses another subset for the next 
(Warner et al., 2013).  

3.4  A field dataset  

The fourth example applies the two migration methods on a 
field dataset provided by PGS. A dataset of 143 shots of a 
2D line in a 3D towed stream survey is migrated in this 
example. The shot spacing is 200 m. Each of the shots has 
500 traces with 12.5 m trace spacing and 6 s duration of 
recording with a 4 ms sample interval. Air guns and receiv-
ers were fixed at a depth of 8 and 10 m respectively. The 

pre-processing, such as demultiple, deghosting and noise 
removal, was carried out by PGS. Due to the difference of 
wave propagation in 2D and 3D space, partial compensation 
(Wang et al., 2009) for this effect was applied on the 
pre-processed dataset. Afterwards, the dataset was migrated 
with RTM and LSRTM. Since this data was acquired with 
geo-streamers, which remove the receiver ghost waves, and 
source deghost was applied, ghost compensation is not 
needed for LSRTM. Prior to migration, an accurate source 
wavelet needs to be estimated. Otherwise, the source wave-
let errors are imprinted into the image, thus reducing the 
image quality. In this example, the source wavelet used for 
migration is the processed air gun signature provided by 
PGS. Weighting regularization is applied to boost the con-
vergence speed of the middle and low parts of the model 
(For more details please see Section 5.2 of the PhD thesis of 
Yao (2013)). By comparison of the two images in Figure 6, 
the three advantages of LSRTM shown in the previous ex-
amples can also be seen in this example. Firstly, LSRTM 
produces fewer artifact images. For example, the dip ringing 
artifacts above 2 km depth are largely removed in the 
LSRTM image. In addition, in the area indicated by the top 
dashed line box in Figure 6(a), the reflector images are con-
taminated by low-wavenumber artifacts, which still persist 
after Laplacian and further low-cut filtering. However, 
LSRTM suppresses these artifacts significantly (Figure 
6(b)). Secondly, LSRTM achieves higher resolution images. 
For example, some fat reflectors in the RTM image become 
thinner in the LSRTM image. Finally, LSRTM generates 
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Figure 5  Different migrations applied to 16 shots and 240 shots with ghost waves from the Marmousi model. (a) True reflectivity of the Marmousi model; 
(b) RTM and (c) LSRTM images of 16 shots without ghost compensation whilst (d) LSRTM image with ghost compensation; (e)–(g) are the counterparts of 
(b)–(d) for 240 shots. Low-cut filtering wavenumbers below 4e4 along depth is applied to (b)–(g); (h) the data residual evolution with iteration. The curves 
in (h) from top to bottom are corresponding to the images in (f), (c), (g) and (d).  

images with more accurate amplitudes. For instance, more 
continuous reflectors in the middle dashed line box are 
shown in the LSRTM image. From this example, LSRTM 
improves image quality for the field dataset. In both images 
below 3.8 km, however, artifacts are noticeable and many 
reflectors are discontinuous. The main reason probably is 
because only one line of data of a 3D survey was used in the 
migration. Almost 60% residual remains throughout inver-
sion. This may be caused by two main reasons. First and 
foremost, the 2D isotropic acoustic wave equation used in 
the LSRTM does not fully simulate the waves propagating 
in the real 3D world. The second reason is the noise. 
LSRTM is unable to find a model to fit the noise in all shots 
because the noise of one shot is inconsistent with that of 
other shots. As a result, it is kept in the residual throughout 

the whole inversion. 

4  Conclusions 

A least-squares reverse-time migration scheme has been 
formulated and applied to a variety of synthetic and real 
datasets. It is based on an accurate modeling formula and 
uses an inverse of the forward modeling operator along with 
the two-way wave equation. Thereby, it gives correct phase 
in the image and inherits all the advantages of both conven-
tional reverse-time migration and also least-squares migra-
tion. In this implementation, the spatial preconditioning, 
weighting and the BB scheme are all used to boost the con-
vergence speed. With the aid of deghosting, this LSRTM 
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Figure 6  RTM and LSRTM applied to the field dataset. (a) RTM with Laplacian and further mild low-cut filtering; (b) LSRTM with Laplacian filtering. 

scheme can produce broad bandwidth reflectivity images. 
Furthermore, the roughness constraint is also integrated to 
stabilize the inversion and suppress high-wavenumber arti-
facts including the spatial aliasing. All the examples 
demonstrate this scheme can produce stacked reflectivity 
images with broader bandwidth, higher resolution, fewer 
artifacts and more accurate amplitudes than conventional 
RTM. In particular, this scheme calculates the action of the 
Jacobian matrix instead of the explicit matrix; therefore it 
needs the same memory as RTM and is suitable for applica-
tion in 3D.  
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