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Underground fractures play an important role in the storage and movement of hydrocarbon fluid. Fracture rock physics has 
been the useful bridge between fracture parameters and seismic response. In this paper, we aim to use seismic data to predict 
subsurface fractures based on rock physics. We begin with the construction of fracture rock physics model. Using the model, 
we may estimate P-wave velocity, S-wave velocity and fracture rock physics parameters. Then we derive a new approximate 
formula for the analysis of the relationship between fracture rock physics parameters and seismic response, and we also pro-
pose the method which uses seismic data to invert the elastic and rock physics parameters of fractured rock. We end with the 
method verification, which includes using well-logging data to confirm the reliability of fracture rock physics effective model 
and utilizing real seismic data to validate the applicability of the inversion method. Tests show that the fracture rock physics 
effective model may be used to estimate velocities and fracture rock physics parameters reliably, and the inversion method is 
resultful even when the seismic data is added with random noise. Real data test also indicates the inversion method can be ap-
plied into the estimation of the elastic and fracture weaknesses parameters in the target area. 
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Subsurface fractures are an important part of the carbonate 
reservoirs and unconventional reservoirs. Fractures may 
connect isolated pores, increase the effective porosity of 
reservoirs, provide path for hydrocarbon migration and im-
prove the permeability. Study shows that subsurface frac-
tures identification which is based on the theory of seismic 
anisotropy has achieved good application effect (Liu et al., 
2012). In addition, Rock physics may build an effective 
bridge for using seismic data to predict fractured reservoirs. 
Hence, in this paper, we aim to choose the parameters 
which are effective for the prediction of underground frac-
tures, and we may use azimuthal seismic data to invert these 

parameters based on fracture rock physics. We propose a 
method which utilizes seismic inversion to estimate fracture 
rock physics parameters directly. This may avoid the errors 
caused by the conversion of elastic parameters to rock 
physics parameters. We need to remind that the rock phy- 
sics parameters are related with fracture parameters (frac-
ture density, fracture fillings, etc.). 

There are many studies on fracture rock physics. Nowa-
days, there are two common rock physics effective models. 
One is penny-shaped model for cracked media (Hudson, 
1981). The other is linear slip deformation (LSD) theory for 
fractured media (Schoenberg, 1980). The difference be-
tween two models is fracture scale. Penny-shaped model 
assumes that there are thin, penny-shaped ellipsoidal cracks 
or inclusions in an elastic solid. However LSD model holds 
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that there are discontinuities in a rock and two parts sepa-
rated by the fracture have rough surfaces. Cheng (1978, 
1993) proposed cracked anisotropic effective model, which 
improved the requirement of crack aspect ratio used in 
penny-shaped model. Schoenberg et al. (1989) presented 
layered anisotropic effective model, which assumed the 
rock containing aligned parallel cracks should be considered 
as one anisotropic medium. Schoenberg et al. (1995) ana-
lyzed the influence of fractures on seismic propagation 
characteristics, and they thought the rock should contain 
two parts, isotropic background rock and anisotropic dis-
turbance caused by fractures. Schoenberg et al. (1997) 
pointed out that layered medium where vertical fractures 
exist might be equivalent to orthogonal media, and they 
simulated the characteristics of seismic wave propagation in 
orthogonal media. Effects of pore fluid on seismic waves 
may be divided into two areas: Boit (1956a, 1956b) poro- 
elastic wave theory and Gassmann (1951) fluid substitution 
equation. The former studied the relationship between speed 
and frequency, but the latter mainly discussed the impact of 
pore fluid change in seismic frequency. It is well known 
that seismic wave energy conversion and attenuation may 
occur when the seismic wave spreads through the rock in 
which pores are connected by cracks and fractures.  

Batzle et al. (1999, 2006) studied the effects of fluid flow 
and frequency on shear wave velocity, and they showed us 
the characteristic of velocity and Q factor variation with 
water saturation and the microscopic mechanism of rock. 
Chapman (2009) simulated the characteristic of anisotropy 
affected by multiple sets of meso-scale crack, and he also 
analyzed velocity variation with azimuth for two cases: 
open fractures and closed fractures respectively contained in 
the rock. Quintal et al. (2010a, 2010b, 2011, 2012) showed 
velocity and seismic attention affected by fluid flow and 
reflection coefficient variation with water saturation. Tang 
(2011) presented the development of Boit theory and pro-
posed a cracked porous medium elastic wave theory. 

Seismic frequency range is approximately several tens to 
hundreds of Hz. In this range, we think seismic wave atten-
uation is small because viscous coupling between the solid 
and the liquid is well. Hence, we aim to propose a rock 
physics effective model which is suitable for seismic fre-
quency band. In the model, we research the effect of ani-
sotropy caused by fractures, and we achieve fluid substitu-
tion using the formula which also considers the influence of 
fractures. Brown et al. (1975) proposed a formula for fluid 
substitution which might be used in anisotropic rock. In our 
study, we present our effective model, which considers 
these effects: mineral matrix, pores, cracks and fluid substi-
tution in anisotropic rocks. Using this model, we estimate P- 
and S-wave velocities and fracture rock physics parameters 
from well-logging data. The estimation may provide the 
evidence for seismic inversion, and the estimated fracture 
rock physics parameters can help to predict the location of 
fractured layers. 

Nowadays, the development of wide-azimuth seismic 
acquisition and processing makes utilizing seismic data to 
predict subsurface fractures become a hot research. When 
fractures are vertically aligned, the rock may be considered 
to be an equivalent Horizontal Transverse Isotropic (HTI) 
medium. In order to study the effect of anisotropy on seis-
mic propagation, Thomsen proposed weak anisotropic  
parameters to describe the degree of anisotropy. Schoenberg 
et al. (1982) used extended Zoeppritz formula to calculate 
the accurate result for seismic reflection coefficient. Rüger 
(1996, 1997, 1998) derived a linearized approximation to 
the Zoeppritz equation for HTI anisotropy. Studies show 
that AVO (amplitude variation with offset) analysis has 
been a useful tool to predict hydrocarbon reservoirs. For 
HTI media, seismic amplitude varies with incident and az-
imuthal angles (AVAZ or AVOZ). Hence, it is effective to 
use azimuthal seismic data to predict underground fractures. 
One proven method to predict fractures is AVAZ inversion 
method. Based on Rüger’s equation, azimuthal seismic 
gathers are used to estimate the elastic and anisotropic pa-
rameters (Mallick et al., 1998). With the purpose of high- 
resolution fracture characterization, a new reconstruction of 
the layer anisotropic elastic parameters was proposed 
(Bachrach et al., 2009). Downton et al. (2006) presented the 
uncertainty of using azimuthal seismic data to predict frac-
tures. In our country, there are many studies on carbonate 
rock reservoir prediction and description. Tang et al. (2002) 
proposed the method which used the frequency difference to 
predict fillings in carbonate rock cave, and they applied this 
method to Tahe oil-field. Yao et al. (2003, 2012) presented 
a method to detect fractured reservoir, and they also pro-
posed a method to identify caved reservoir by using numer-
ical modeling of wave field. Sa et al. (2011) studied seismic 
characteristic of fractured reservoir, and they use model and 
real data to describe the feature of caved reservoir. However, 
the number of studies on utilizing azimuthal seismic data to 
estimate fracture rock physics parameters is little. In this 
paper, we derive a new formula which connects reflection 
coefficient and fracture rock physics parameters, and pro-
pose a method to estimate fracture rock physics parameters 
directly by using seismic inversion. The introduced rock 
physics effective model, well-logging data and azimuthal 
seismic data may increase the accuracy of fractures predic-
tion. 

In this paper, we provide the method to predict under-
ground fractures reliably by using azimuthal seismic data. 
The method begins with rock physics effective model. Us-
ing this effective model, we estimate the velocity and frac-
ture weaknesses parameters from the well-logging data. The 
estimated results may be used as initial constraint for seis-
mic inversion. Using the method, we may predict the ani-
sotropy from well-logging data, and the estimated fracture 
rock physics parameters can describe the distribution of 
fractures. This method will be well used in carbonate rock 
and unconventional reservoirs. 
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1  Fractured rock physics model and sensibility 
of fracture weaknesses 

To model the response of seismic waves in fractured rock, 
we use a concept called “equivalent-medium representa-
tion” or “effective-medium theory” (Liu et al., 2012). In this 
paper, we present fractured rock physics model, calculate 
elastic matrix of fractured rock and estimate P- and S-wave 
velocities and fracture weaknesses. 

1.1  Fractured anisotropic rock physics effective model 

The process to build the model may include three parts: the 
average of mineral, fractured dry rock formation and fluid 
substitution in anisotropic rock. Figure 1 shows the basis 
steps of constructing the model. In our study, we select the 
carbonate rock as the research object. 

The details of the model are listed as follows: 
Step 1: Estimating the average moduli of the mixture of 

different minerals (Hill, 1952): 
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Step 2: Building non-fractured dry rock model after add-
ing empty intergranular pores using DEM model (Zimmer-
man, 1991). The formula used to calculate effective bulk 
modulus K  and shear modulus   is 
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with initial conditions 1(0) K K  and 1(0) ,    where 

K1 and 1  are the bulk and shear moduli of the intial host 

material (phase 1), K2 and 2  are the bulk and shear mod-

uli of the incrementally added inclusions (phase 2), and y is 
the concentration of phase 2. P and Q describe the effect of 
an inclusion of material. 

Step 3: Constructing fractured dry rock model after add-
ing fractures and cracks using linear slip fracture model 
(Schoenberg et al., 1995). The effective moduli are given  
as:
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Figure 1  Fractured carbonate rock physics model. 
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where  and  are Lame parameters, N and T are the 
normal and tangential weaknesses. N and T are related 
with the anisotropy of fractured carbonate rock. 

Bakulin et al. (2000) made a comparison of Hudson’s 
model and linear slip models. The weaknesses N and T 
can be calculated easily combined with Hudson’s model: 
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where,  2   g . e  is the crack density, and  is 

aspect ratio. K  and   are parameters of fillings in 

fractures. We assume K′ = 0 and =0  when adding 

fractures into isotropic dry rock. 
Step 4: Calculating of moduli and density of mixture of 

fluid using Wood formula (Wood, 1955): 
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where, KR is the Reuss (isostress) average of the composite, 
 is density; fi, Ki and i are the volume fraction, bulk 
moduli, and densities of the phases, respectively. 

Step 5: Fluid substitution in anisotropic rock. Gurevich 
(2003) proposed a method to calculate the elastic matrix of 
fractured rock. In this paper, according to the formula de-
rived by Brown et al. (1975), we calculate the elastic matrix 
to estimate the moduli of saturated rock: 
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where dry
ijklc  is the effective elastic stiffness element of dry 

rock, sat
ijklc  is the effective elastic stiffness element of rock 

saturated with pore fluid, K0 is the mineral bulk modulus, 
Kfl is the fluid bulk modulus, and  is porosity. 
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Huang et al. (2013) presented a new formula to describe 
the relationship between elastic matrix and fracture weak-
nesses: 
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where sat
11C , sat

33C , sat
44C  and sat

55C  are elastic parameters of 

saturated fractured rock, and dry
isoK  is bulk modulus of 

isotropic dry rock.  
Step 6: Estimating P-wave velocity, S-wave velocity and 

fracture weaknesses. According to the definition of aniso-
tropic parameters proposed by Thomsen (1986), we may es-
timate P- and S-wave velocities of saturated fractured rock: 
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Eq. (10) describes the relationship between anisotropic 
parameters and fracture weaknesses (Bakulin et al., 2000): 
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Using eq. (11), we may estimate weaknesses of saturated 
fractured rock:  
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We develop the fractured carbonate rock physics model 
proposed by Zhang et al. (2013). In the process of 
constructing the model, we use linear slip model to describe 
the effect of fractures, and calculate N and T of fractured 
dry rock ( 0 K  and 0  ). We utilize eq. (8) to calcu-

late elastic matrix of saturated fractured rock. The estima-
tion of velocities and fracture weaknesses from well-   
logging data may be the initial constraint for the derivation 
of reflection coefficient approximate formula and seismic 
inversion. In addition, using our model to estimate parame-
ters from well-logging data may help to reduce the error 
introduced in the transformation from anisotropic parame-

(8) 
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ters to fracture weaknesses. 

1.2  The sensitivity of fracture weaknesses 

In this part, we mainly present the relationship between 
fracture weaknesses and fracture parameters (fracture den-
sity and fillings in fractures), as shown in Figure 2. This 
may reveal the importance of estimating fracture weakness-
es and lay a foundation for seismic inversion. 

Accord to eq. (10), we analyze the characteristic of frac-
ture weaknesses variation with fracture density and fillings. 
Figure 2 ((a), (b)), ((c), (d)) and ((e), (f)) are the relationship 
between fracture weaknesses and S-wave to P-wave veloci-
ty ratio when fractures are saturated with water, oil and gas, 
respectively. From Figure 2, we may find N and T in-
crease with fracture density. N changes most obviously 
when fractures are full of gas, followed by oil-filled 
fractures, and finally water-saturated fractures. However, 
the differences of T changes among gas-filled fractures, 
oil-filled and water-filled fractures are small. Hence, we 
may predict fracture density and the type of fracture fillings 
after estimating N and T by adopting AVAZ inversion 
method. 

2  AVAZ inversion for fracture weaknesses 

2.1  Reflection coefficient approximate equation con-
taining fracture weaknesses 

Rüger (1996) proposed the P-P wave reflection coefficient 
for an isotropic half space over an anisotropic half space: 
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where, 2G , Z ;   is the incidence angle, and 

 is azimuth angle; ,  and  are P-wave velocity, S-wave 

velocity and density, respectively;    is P-wave re-

flection coefficient;  V ,   V  and   are the dif-

ferent in anisotropic parameters between the upper and 
lower layers.  

A new formula which contains fracture weaknesses is 
derived at small incident angle: 
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S2I  are P-wave and S-wave impedances of the upper and 

lower layers, respectively; N1 , N2 , T1  and T2  are 

the vertical and tangential weaknesses of the upper and 
lower layers, respectively.  

2.2  AVAZ inversion for elastic parameters and frac-
ture weaknesses 

Eq. (13) shows the reflection coefficient of fractured rock is 
influenced by incident and azimuthal angles. For n offsets 
and m azimuthal angles, it may be written as 
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Figure 2  The relationship between fracture rock physics parameters and fracture density and fillings. 

By using damped least squares method, we get  

1
mod_ ( mod_ )


      

T TX X G G I G d G X , (16) 

where mod_ X  represents the initial model which may be 

calculated by using rock physics model. GT is transpose of 
matrix G.  is damping factor. I is an identity matrix. The 
choice of damping factor depends mainly on experiments 
(Yang, 1997). There are many methods about the selection 
of damping factor. The very useful one is using the covari-
ance matrix of random noise and the inverse covariance 
matrix of unknown parameters to calculate the damping 
factor (Downton, 2005). 

3  Example 

Well-logging and seismic data from fractured carbonate 

reservoirs are used to verify our method. We first estimate 
S-wave velocity and fracture weaknesses by using our rock 
physics effective model, then utilize azimuthal seismic da-
taset to estimate elastic parameters and fracture weaknesses 
of the target area. 

3.1  Velocities and fracture weaknesses estimation 

Acoustic slowness, density, porosity, clay content and water 
saturation curves of well A are necessary when we estimate 
velocities and fracture weaknesses. Figure 3(a) is the esti-
mated results of P- and S-wave velocities, and Figure 3(b) is 
the estimated fracture weaknesses. 

From Figure 3, we find the estimated P-wave velocity 
has a good match with real well-logging data, and the esti-
mated fracture weaknesses may help to predict the location 
of fractures. By analyzing the characteristic of the estimated 
results, we also find the value of P- and S-wave velocities is  
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Figure 3  The estimation of velocities and fracture weaknesses. (a) The 
comparison between estimated velocity and true value, the red line means 
the estimated result, the blue line means the true value. (b) Fracture weak-
nesses parameter estimated results. 

small and the value of fracture weaknesses is large in frac-
tured layers. 

3.2  The analysis of reflection coefficient comparison 

The estimated results of well A are used to generate syn-
thetic seismic data with 45 Hz Ricker wavelet. Figure 4 
gives the composite show of the synthetic common mid-
point profile generated by using extended anisotropic Zoep-
pritz equation (Schoenberg et al., 1992) and our simplified 
equation. Figure 4 shows that two profiles match well until 
the incident angle is around 30 degree. 

3.3  AVAZ inversion for elastic parameters and frac-
ture weaknesses 

We first verify AVAZ inversion method on synthetic seis-
mic data. To test the stability of the inversion method, we 
add random noise to the synthetic traces, with different sig-
nal-to-noise ratio (S/N), and the S/N is 4 and 1, respectively 
(Figure 5). Figure 6 shows original and inverted P-wave  

 
Figure 4  Synthetic data generated by using exact equation and our ap-
proximate equation. (a) Azimuthal angle is 0°, (b) angle is 60°, (c) azi-
muthal angle is 120°. The red line means the approximate equation, the 
blue line means the exact equation. 

impedance, S-wave impedance, the normal weakness and 
the tangential weakness with different S/N. We perform the 
inversion with eq. (16). It is easy to demonstrate that the 
P-wave impedance, S-wave impedance, the normal weak-
ness and tangential weakness may be estimated well even 
when S/N ratio is 1. 

Real data is used to validate the application of AVAZ 
inversion method. Figure 7 is real CDP seismic profiles of 
different azimuthal angles, and Figure 8 is the difference 
between azimuthal seismic data. From Figure 7 and Figure 
8, we may find the difference between azimuthal seismic 
data is not obvious while the incident angle is small, and the 
difference will become larger when the incident angle 
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Figure 5  Synthetic profiles with different S/N noise. (a) S/N=4, (b) S/N=1. 

 

Figure 6  Model inversion result with different noise. The red one means the estimated result, the blue one means the true value.  

 

Figure 7  Seismic data of different azimuthal angles. 

increases. 
The estimated P-wave and S-wave impedances, the nor-

mal and tangential weaknesses using AVAZ inversion as 
discussed in this paper are displayed in Figure 9. Figure 9 
shows the target reservoir is around 47 ms (CDP 148). From  

 

Figure 8  The difference between different azimuthal seismic data. (a) 
The difference between azimuth 1 and azimuth 2, (b) the difference be-
tween azimuth 4 and azimuth 3. 

the inverted results, we may find the P-wave impedance and 
S-wave impedance show low value, and the normal weak- 
ness and tangential weakness show high value. This result is  
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Figure 9  Elastic and fracture weaknesses parameters estimated results. 

consistent with the drilling and rock physics analysis result. 
Although we use azimuthal seismic data to estimate elastic 
parameters and fracture weaknesses, the influence of ran-
dom noise is still great, and the accuracy of estimation 
strongly depends on initial constraint. 

Schoenberg et al. (1995) proposed fracture fluid factor. 
The fluid factor is closely related to the S-wave to P-wave 
velocity ratio and fracture weaknesses. Hence, the type of 
fluid filled in fractures may be identified after estimating 
the P-wave impedance, S-wave impedance and fracture 
weaknesses. 

4  Conclusions 

In this paper, a rock physics effective model is proposed to 
estimate P-wave velocity, S-wave velocity and fracture 
weaknesses from well-logging data, and a new approximate 
formula which contains fracture weaknesses parameters is 
derived for HTI media. The new approach which is based 
on AVAZ inversion for P-wave impedance, S-wave imped-
ance and facture weaknesses is proposed. At last, well A is 

used to test the rock physics effective model, and synthetic 
and real data are used to verify AVAZ inversion method. 
The results estimated by rock physics effective model may 
provide an initial constraint for AVAZ inversion, and it may 
improve the inversion accuracy of the estimation.  

The next work will be carried out as follows: 
(1) Seismic scattering should be considered when we uti-

lize real data to predict fractured reservoirs in carbonate 
rock area.  

(2) The more stable inversion method should be pro-
posed when processing real data. Well-logging data and 
rock physics estimated results may be used as the constraint 
to improve the accuracy of the inversion. 

(3) The effective fluid factor is necessary. We may in-
troduce a useful fluid identification factor by using rock 
physics analysis, and find a new inversion method to esti-
mate the fluid factor. 
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