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Conditional nonlinear optimal perturbation (CNOP) is an extension of the linear singular vector technique in the nonlinear re-
gime. It represents the initial perturbation that is subjected to a given physical constraint, and results in the largest nonlinear 
evolution at the prediction time. CNOP-type errors play an important role in the predictability of weather and climate. Gener-
ally, when calculating CNOP in a complicated numerical model, we need the gradient of the objective function with respect to 
the initial perturbations to provide the descent direction for searching the phase space. The adjoint technique is widely used to 
calculate the gradient of the objective function. However, it is difficult and cumbersome to construct the adjoint model of a 
complicated numerical model, which imposes a limitation on the application of CNOP. Based on previous research, this study 
proposes a new ensemble projection algorithm based on singular vector decomposition (SVD). The new algorithm avoids the 
localization procedure of previous ensemble projection algorithms, and overcomes the uncertainty caused by choosing the lo-
calization radius empirically. The new algorithm is applied to calculate the CNOP in an intermediate forecasting model. The 
results show that the CNOP obtained by the new ensemble-based algorithm can effectively approximate that calculated by the 
adjoint algorithm, and retains the general spatial characteristics of the latter. Hence, the new SVD-based ensemble projection 
algorithm proposed in this study is an effective method of approximating the CNOP.  
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Determining the fastest growing initial error is a key issue 
in the numerical forecasting of weather and climate, and is 
effectively accomplished by an optimization method. Since 
Lorenz (1965) first introduced the concept of linear singular 
vectors (LSVs) into meteorology to investigate the problem 
of the fastest growing initial error, they have been widely 
applied to the study of predictability in weather and climate 
(Palmer et al., 1998; Buizza et al., 1999). However, LSVs 
represent the direction of fastest growth for initial perturba-
tions in a linear model. In the case of a nonlinear model, 

LSV is a reasonable approximation of the fastest growing 
initial perturbation when the amplitude of perturbation is 
sufficiently small and the forecast time is short. That is, 
LSVs cannot determine the fastest growing initial perturba-
tions in the nonlinear model, nor can they reveal the effect 
of nonlinear physical processes imposed on the evolution of 
the initial error. 

To overcome these limitations of LSVs, Mu et al. (2003) 
proposed the concept of conditional nonlinear optimal per-
turbation (CNOP). CNOP is characterized by the initial 
perturbation that satisfies given constraint conditions and 
results in the largest nonlinear evolution at the prediction 
time. Physically, CNOP represents the initial error that in-
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duces the largest forecast at the prediction time. Mu et al. 
(2003, 2007), Duan et al. (2004, 2009, 2012), and Yu et al. 
(2009, 2012) used CNOP to investigate problems concern-
ing the optimal precursor of El Niño, the fastest growing 
initial error, spring predictability barrier, and so on. Their 
results revealed the impact of nonlinear physical processes 
on the predictability of El Niño, and supplied useful infor-
mation for improving the accuracy of forecasting of this 
phenomenon. CNOP has also been applied to the determi-
nation of sensitive areas in adaptive observations of ty-
phoons (Qin et al., 2011, 2013) and the transition of clima-
tology in grassland ecosystems (Sun et al., 2011). In brief, 
CNOP is gradually increasing in importance in the study of 
the predictability of weather and climate. 

The application of CNOP first requires the computation 
of the optimal perturbation. That is, mathematically, we 
must find the global maximum value of a nonlinear func-
tional. An appropriate nonlinear optimization algorithm is 
then necessary. There are two main types of optimization 
algorithm: traditional algorithms that calculate the gradient 
of the objective function (such as Conjugate Gradient, 
LBFGS, and SPG2), and intelligent algorithms that do not 
require gradient information (such as particle swarm opti-
mization and genetic algorithms). However, the number of 
degrees of freedom in a complicated atmosphere-ocean 
coupled numerical model is generally around 106–107, and 
the cost of computing the CNOP using intelligent algo-
rithms is almost unacceptable. Of the traditional optimiza-
tion algorithms, the adjoint method is the most efficient 
means of numerically calculating the gradient. Nevertheless, 
many numerical models have no corresponding adjoint 
model. In particular, coding the adjoint model of a complex 
numerical model is a large, tedious, time-consuming job, 
which limits the further application of CNOP.  

To overcome the above difficulties in computing the 
CNOP, Wang et al. (2010) made use of an ensemble projec-
tion algorithm (the Monte Carlo method) to approximate the 
tangent linear matrix, calculated the gradient with respect to 
initial perturbations, and then computed the CNOP. The 
algorithm is adjoint-free in terms of calculating the gradient, 
and has relatively high computational efficiency, which 
enhances the applicability of CNOP. A localization tech-
nique, which is a key component of ensemble-based algo-
rithms, is used to assess spurious correlations between ob-
servation stations and model grids. During this process, the 
covariance of the localization Schur radii should be deter-
mined artificially and empirically. Based on the algorithm 
proposed by Wang et al. (2010), we propose a new singular 
vector decomposition (SVD)-based ensemble projection 
(EP) algorithm. The algorithm constructs the CNOP using 
the main modes of historical time series of related variables 
in numerical models. Thus, the issue of searching for the 
CNOP is transformed into that of determining the optimal 
weight coefficient combination of the main modes of SVD. 
This transformation not only considers the physical mean-

ing of the CNOP, but also avoids the empirical choice of 
localization radius in Wang et al. (2010). At the same time, 
our proposed method reduces the degree of freedom of the 
optimization problem, because the control variables are the 
weight coefficients of the main modes of SVD instead of 
physical variables. 

1  CNOP method and EP algorithm 

1.1  CNOP method 

CNOP represents an initial perturbation subjected to a given 
physical constraint, and results in the largest nonlinear evo-
lution at the prediction time. CNOP x0 is the solution of the 
following optimization problem: 
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where X0 is the initial field of the reference state, x0 is the 
perturbation of X0, t0 and t are the initial optimization time 
and terminal time, respectively,  is the constraint radius of 
the initial perturbation, and M is a nonlinear propagation 
operator. The CNOP can be obtained using a nonlinear op-
timization algorithm. Generally, optimization algorithms, 
such as LBFGS, SQP, and SPG2, are used to find the mini- 
mum value of the objective function. To conveniently apply 
existing optimization algorithms, let J1(x0)J(x0) and we 
can solve the equivalent optimization problem: 
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For traditional nonlinear optimization algorithms, the key 
is to obtain the gradient of the objective function with re-
spect to the initial perturbation x0. For the above objective 
function, the gradient with respect to x0 is T

02 ( (X H M  
0 0, ,  )x t t 0 0( , ,  )) X t tM , where HT is the adjoint model of 

the tangent linear model H. Constructing the adjoint of a 
complex numerical model is very time-consuming, limiting 
the applicability of CNOP. To overcome this difficulty, 
Wang et al. (2010) developed an EP-based algorithm to 
compute CNOP. Their method is adjoint-free when calcu-
lating the gradient, and this means that the CNOP method 
can be employed conveniently. 

1.2  EP algorithm 

The primary idea of the EP algorithm of Wang et al. (2010) 
is to approximate the tangent linear matrix H in the gradient 
formula using an ensemble method, and then compute the 
CNOP. The tangent linear matrix in the algorithm is ap-
proximated as 

 T 1 T( ) y x x xp p p pH , (3) 

where 1 2
0 0 0( , , , )n

xp x x x  denotes the n sample perturba-
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tions at the initial optimization time, and py=(y1, y2,  , yn) 
denotes the prediction increments at the prediction time 
corresponding to px. Houtekamer et al. (2001) pointed out 
that, if an ensemble is composed of far fewer samples than 
the number of physical variables in the model (grid numbers 
multiplied by number of variables), there exist spurious 
long-distance correlations between the initial perturbations 
and the corresponding prediction increments on the model 
grid. To ameliorate the spurious correlations, a localization 
technique is adopted. 

Wang et al. (2010) approximate the tangent linear matrix 
as T 1 T( ) ,   y x x xp p p pH  where   denotes the Schur 

product of two matrices. The elements of matrix  are 

, 0 , 0 0 , 0( ) ( )h h v v
i j i j i jC d d C d d   , where , ,h

i jd  0 ,hd  , ,v
i jd  

and vd0  represent the horizontal distance, horizontal local-

ization radius, vertical distance, and vertical localization 
radius, respectively. C0 is a monotonously decreasing 
smooth filter function given by 
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where r is either , 0
h h
i jd d  or , 0

v v
i jd d . It can be seen from 

eq. (3) that the approximation of the tangent linear matrix H 
obtained by the EP algorithm depends on the choice of lo-
calization radius. However, the size of the latter depends, to 
some extent, on the quality and quantity of samples. These 
factors mean that the approximation of the tangent linear 
matrix is affected by artificial experiences. In view of the 
above limitations, this paper proposes a new EP algorithm 
based on SVD. Using the new algorithm, the CNOP not 
only reflects the dynamical characteristics of the numerical 
models, but is also independent of the choice of localization 
radius. 

2  SVD-based EP algorithm 

A forced, dissipative dynamical system tends toward a 
low-dimensional attractor after long evolution (Teman et 
al., 1991; Osborne et al., 1993; Foias et al., 1997). Such a 
system can be expressed as  
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where X is the state space of some physical variables in the 
model and ui is the primary function of the spatial modes in 
Hilbert space. As i→, ai(t)→0 with probability u. 

The projection of a continuous system into a discrete 
numerical model can be expressed as  

 * * T
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where N is the degree of freedom of a numerical model, i 

are singular values arranged from highest to lowest, ui is the 
spatial mode corresponding to i, and vi is the time series of 
ui. There exists an integer m (m  N) such that when i  m, 
|i|<, ( is a small positive number), and then the original 
N-dimensional system can be truncated to an m-dimensional 
approximate system. 

To investigate the degree of approximation in the 
m-dimensional truncated system, we use a primary inequal-
ity from probability theory: 
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This gives the approximate information loss caused by the 
reduction of dimension of the original system. Strictly 
speaking, the formula is only applicable in the case of infi-
nite dimensional (N→) systems. However, eq. (7) shows 
that if the spatial modes ui are chosen such that |i| monot-
onously decreases quickly enough as i increases, the m spa-
tial modes can be used as the bases to construct the ap-
proximate state space of the whole system. To solve this 
problem, SVD statistically provides a standard method that 
reduces the dimension of the system by effectively choosing 
spatial modes. 

If m spatial modes are chosen and combined linearly to 
approximate the state vector of the discrete system, the ob-
jective function with regard to the optimization problem (2) 
is then transformed into the form:  
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where m is the truncated number of chosen bases and ai is 
the weight coefficient corresponding to the chosen base ui. 
This searches for the optimal combination of weight coeffi-
cients for the chosen bases. 
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the optimization problem (8) is transformed into 
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The gradient of the objective function with respect to the 
coefficients is 
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The tangent linear matrix L of the model with respect to 
the coefficients satisfies 

1 1,1 , ,
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To compute the inverse efficiently, we set , ,∆ i j i ja . 

That is to say, the gradient is approximated by the differ-
ences (y, , yi, , ym) and (a, , ai,i, , am,m). 
The computational cost of calculating the gradient in this 
manner depends on the number of chosen bases, and is gen-
erally greater than that using the adjoint method. However, 
to some extent, the bases can be chosen to reduce the com-
putational cost. 

Based on the above idea for calculating the gradient, the 
SPG2 algorithm proposed by Birgin et al. (2000) is used to 
calculate the CNOP by finding the optimal combination of 
weight coefficients for the chosen bases. 

3  Application of SVD-based EP algorithm to 
calculation of CNOP 

In this section, we consider the optimal precursor of an 
ENSO event to investigate the effectiveness of our SVD- 
based EP algorithm for calculating CNOP. That is, we seek 
the pattern of initial sea surface temperature anomalies 
(SSTA) and thermocline height anomalies (THA) that cause 
the largest evolution in SSTA in the tropical Pacific, thus 
inducing an ENSO event. To find the optimal precursor of 
ENSO, the SVD-based EP and adjoint methods are utilized 
to calculate the CNOP of the climatological state. The vali- 
dity of the CNOP calculated by SVD-based EP is checked 
by comparing the precursors and evolution of SSTA ob-
tained by the two methods. The LSV method is also used to 
investigate the optimal precursor of ENSO reported in pre-
vious studies (Blumenthal, 1991; Thompson et al., 1995; 
Moore et al., 1996). These three methods are applied to the 
medium-complexity ZC model. 

3.1  Model and numerical experiment scheme 

The ZC model successfully predicted the El Niño event of 
1986–1987, and has since been extensively applied to the 
research of the predictability and dynamics of ENSO 
(Mantua et al., 1995; Thompson, 1998; Cai et al., 2003). 
Recently, the ZC model was used to investigate the dynam-
ics of error evolution in ENSO (Mu et al., 2003, 2007; Duan 
et al., 2004, 2009, 2012; Yu et al., 2009, 2012) using the 
CNOP method. In these studies, CNOP is calculated by the 
adjoint method, which limits its application in other com-
plex numerical models. To extend the applicability of 
CNOP, we attempt to calculate CNOP in the ZC model us-
ing the SVD-based EP algorithm. 

The ZC model is composed of three modules. The at-

mosphere module covers the area of 101.25°E–73.125°W 
and 29°S–29°N, the ocean dynamics extend over 124°E– 
80°W and 28.75°S–28.75°N, and the SSTA equation covers 
129.375°E–84.375°W and 19°S–19°N. The resolution of 
the ocean dynamical module is 2°×0.5°, and the atmosphere 
module and SSTA equation have a resolution of 5.625°×2°. 
We initially consider SSTA and THA over the area 
129.375°E–84.375°W and 19°S–19°N. The related varia-
bles form 1080-dimensional vectors. 

For the optimal precursor of ENSO, consider the follow-
ing problem: 
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T w T   , where ,i jT  is the evolution of 

SSTA at prediction time  . The optimal initial fields 0x  

can be found such that the objective function gives the larg-
est evolution at the prediction time. 

Before applying the new EP algorithm to calculate the 
CNOP, we verify whether the long-time integrated behavior 
of the model can be approximately represented by a finite 
number of stable modes. We set all initial anomalies of to 
zero, apply wind forcing to the model for the first 5 months, 
and run the model freely for 200 years. This gives a group 
of 200-year samples. SVD is carried out over the scaled 
samples, and a series of spatial modes ui (i=1, , m) are 
obtained. These modes are mutually orthogonal with unit 
norms. Hence, the constraint condition for the perturbations 
of the initial fields can be expressed as 1.0a


 , where a 

represents the weight coefficient vector of the linearly com-
bined spatial modes that approximate CNOP. On this basis, 
we calculate the gradient of the objective function with re-
spect to the weight coefficients, and then obtain the CNOP. 

Figure 1 shows the distribution of the squares of the first 
100 singular values. It can be seen that the singular value 
deceases rapidly as the mode number increases. According 
to the discussions in Section 3, a small number of modes 
can be selected to approximate the whole sample space. 

3.2  Numerical results 

To verify the effectiveness of our SVD-based EP algorithm,  
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Figure 1  Squares of the first 100 singular values obtained by SVD in the 
long-term integration series of the ZC model ( is the singular value). 

the proposed algorithm is applied to a 9-month optimization 
period with different initial months and numbers of bases. 
The results are compared with those obtained by other 
methods. 

3.2.1  Comparison between maximumvalues of the objec-
tive function 

We first compare the norm of the SSTA evolution (that is, 
the maximum value of the objective function) given by the 
CNOPs of the new EP algorithm and adjoint method. 

Figure 2 shows the ratio of the optimal value J*of the 
objective objection calculated by the new EP algorithm to J, 
which is the optimal value given by the adjoint method, for 
different numbers of bases. The larger the ratio, the better 
the approximation. The horizontal axis is the number of 
bases used in the new algorithm, and the vertical axis shows 
the initial optimization month. The thick dashed line de-
notes the 70% isoline. 

It can be seen from Figure 2 that, for all initial optimiza-
tion months, the maximum value of the objective function 
in the new algorithm becomes closer to that obtained by the 
adjoint method as the number of modes increases. When  

 
 

 
Figure 2  Ratio of the objective function values obtained by the new EP 
algorithm and the adjoint algorithm. Horizontal axis represents the mode 
number and vertical axis represents the initial optimization month. Thick 
dashed line denotes the isoline of 70%. The blue solid line represents the 
case of April as the initial optimization month. 

this number exceeds 80, the ratio of the former to the latter 
is no less than 70%. For different initial optimization 
months, as the number of the chosen bases increases from 
10 to 30, the approximation effect is clearly improved. 
Nonetheless, when the number continues to increase from 
30 to 100, the speed of improvement becomes slow, and the 
computational cost increases rapidly. The horizontal blue 
line denotes the best approximation effect for an initial op-
timization month of April. When the base number increases 
from 10 to 30, the degree of approximation increases from 
40% to 70%. However, as the number of bases rises toward 
100, the degree of approximation remains below 90%. This 
suggests that, by choosing a reasonable number of bases, 
the CNOP obtained by the new EP algorithm can lead to 
relatively large developments in SSTA at the prediction 
time. The more bases are chosen, the better the norm of the 
SSTA evolution approximates that given by the adjoint 
method. 

It can also be seen from Figure 2 that, for different initial 
optimization months, different numbers of bases are needed 
to achieve the same approximation effect. Taking the 70% 
effect for example, 30 modes are needed when the initial 
optimization is in February, March, April, August, or Sep-
tember, 40–70 modes are needed for January, May, June, 
July, October, and November, and 80–90 modes are re-
quired for December. In the following analysis, we examine 
the cases of April (30 modes) and October (70 modes) to 
investigate the similarities and differences in the maximum 
objective function values, the precursor signals of ENSO 
and nonlinear SSTA evolutions, given by several algo-
rithms. 

The LSV method is often used to study the precursors of 
ENSO. Thus, we compare the numerical results obtained by 
the new algorithm with those given by LSV, and then com-
pare the degree of approximation of the optimal precursors 
obtained by these two methods to those produced by the 
adjoint method. Figure 3 shows that, from an initial optimi-
zation month of April, the norms of the SSTA evolutions at 
the prediction time vary with the different constraint radii. 
Comparing the nonlinear evolution of the optimal precur-
sors, we can see that the norm of the SSTA evolution is 
given by the precursor obtained by the LSV method are 
closer to those of the adjoint method for smaller constraint 
radii. The results of the new EP algorithm are better than 
those given by LSV at larger constraint radii. This is be-
cause of the increasing nonlinearity in the ZC model. Thus, 
the validity of the maximum objective function value ob-
tained by the new EP algorithm is no worse than that of 
LSV. It is worth pointing out that the number of chosen 
bases in the new algorithm is 30, and the approximation can 
be improved by increasing the base number. Additionally, 
when calculating CNOP with the new EP algorithm, the 
tangent linear model and adjoint model are not needed, 
which extends the scope of applications and increases the 
flexibility of the CNOP. 
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Figure 3  Norms of the SSTA evolutions at the prediction time based on 
SVD-based EP, adjoint method, and LSV for initial optimization time of 
April. Horizontal axis is the constraint radius. Black solid line denotes the 
results based on adjoint method, black solid line marked by black dots 
denotes the results based on SVD-based EP algorithm (with 30 bases), 
black dashed line shows nonlinear evolution of LSV, and black dashed line 
marded by black dots corresponds to the linear evolution of LSV. 

3.2.2  Comparison between spatial patterns of optimal 
precursors and SSTA evolutions 

The maximum objective function values output by the new 
EP algorithm, adjoint method, and LSV can be used to as-
sess the effectiveness of the new algorithm. In this section, 
the spatial pattern of the ENSO precursors and correspond-
ing SSTA evolutions based on the three methods are com-

pared to assess the validity of the new algorithm. 
Figures 4 and 5 depict the optimal precursors and corre-

sponding 9-month SSTA evolutions for a constraint radius 
of 1.0 and initial optimization months of April and October, 
respectively. We can see that all three precursors evolve 
into an El Niño event. The intensity of the El Niño event 
predicted by the adjoint method is the strongest, followed 
by that of LSV, and the El Niño obtained by the new EP 
algorithm is the weakest. The results agree with those in 
Figure 3, which demonstrates that the new algorithm can be 
used to determine the optimal precursors of ENSO, and 
these optimal precursors can evolve into an El Niño event. 

It can also be seen from the figures that the precursors 
given by the new EP algorithm retain the main large-scale 
characteristics of those from the adjoint method. Both 
methods give spatial patterns of the SSTA components that 
show a zonal dipole with positive anomalies in the eastern 
tropical Pacific and negative anomalies in the central tropi-
cal Pacific, and THA components that show a uniform 
deepening across the whole equatorial Pacific.  

However, there are some differences between the THA 
components of the optimal precursors obtained by the new 
method and the adjoint method. The THA given by the ad-
joint method has more small-scale signals. The new algo-
rithm gives relatively smoother results and larger anomalies 
at higher latitudes in the tropical Pacific. This may be be-
cause the CNOP is constructed by the selected modes with 
significant explained variance. This truncation makes the  

 

 

Figure 4  CNOP patterns and corresponding SSTA evolutions obtained by the SVD-based EP method (left column), adjoint method (middle column), and 
LSV method (right column) with April as the initial optimization time. (a), (b) and (c) SSTA component of CNOP; (d), (e) and (f) THA component of CNOP; 
(g), (h) and (i) nonlinear evolution of SSTA after 9 months. 
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Figure 5  As in Figure 4, but with initial optimization month of October. 

new algorithm adjoint-free, but has the limitation of filter-
ing out some contributive signals with low explained vari-
ance and transferring this energy to the selected modes with 
high explained variance. However, the results of the new EP 
algorithm catch the large-scale features of the optimal pre-
cursors in the ZC model, and outline the main structures of 
the CNOP. 

To verify our conjecture and further explore the similari-
ties and differences in the CNOPs, Figure 6 compares the 
projection coefficients of CNOPs on the selected bases for 
the new algorithm and the adjoint method. The projection 
coefficients of CNOPs on the selected bases have similar 
distributions, but the CNOP of the new algorithm possesses 
coefficients with larger absolute values than those of the 
adjoint method. Thus, the CNOP of the new algorithm in-
deed occupies more energy across the chosen bases, and the 
CNOP of the adjoint method allocates this energy to the 
modes truncated by the new EP algorithm. The lower this 
energy, the better the approximation of the new ensemble 
method. 

Therefore, the coefficient distribution of the CNOP from 
the adjoint method is investigated with respect to the bases 
discarded by the new algorithm. Figure 7 represents the 
coefficient distribution of the CNOP based on the adjoint 
method on all 1080 modes for initial optimization months of 
April and October. It can be seen that the coefficients of the 
selected modes (30 for April, 70 for October) are much 
larger than those of the abandoned modes, and the selected 
modes have much more energy than the abandoned modes. 

We now compare the numerical results given by the two 
methods when all 12 months are used as the initial optimi-
zation time (see Table 1). It can be seen that whichever 
month is taken as the initial optimization time, most of the 
energy of the CNOP based on the adjoint method is distrib-
uted on the selected modes with larger explained variances, 
and less energy is allocated on the discarded modes. This 
leads to relatively high similarity between the spatial pat-
terns of the CNOPs obtained by the new algorithm and the 
adjoint method. Accordingly, the maximum value of the 
objective function based on the former is an effective ap-
proximation to that based on the latter, which conforms to 
the above analysis. 

Considering the maximum values of the objective func-
tions, optimal precursors, and SSTA evolutions at the pre-
diction time, this section compares the numerical experi-
mental results of the new SVD-based EP algorithm, adjoint 
method, and LSV method, and estimates the effectiveness 
of the new approach. The results show that the CNOP given 
by the new algorithm is a good approximation of the CNOP 
from the adjoint method, indicating that the SVD-based EP 
algorithm produces a valid calculation of the CNOP. It 
should be pointed out that the new algorithm uses a differ-
ence method to compute the gradients directly, and has a 
longer calculation time than the adjoint method. However, 
considering the difficulties and time required to code an 
adjoint model, using the new algorithm to calculate CNOP 
is an acceptable and feasible method that extends the ap-
plicability of the CNOP. 
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Figure 6  Projection coefficients of CNOP on the chosen modes for the SV-based EP method (solid line) and the adjoint method (solid line marked by 
black dots). (a) Initial optimization monthof April; (b) initial optimization month of October. 

 

Figure 7  Projection coefficients of the CNOP based on the adjoint method for all 1080 modes. (a) Initial optimization monthof April; (b) initial optimiza-
tion month of October. 
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Table 1  Degree of similarity between the results based on SVD-based EP 
method and adjoint method 

Initial timea) 
Number of  

chosen basesb) 
Ratios 
(%)c) 

Similarity  
coefficients (%)d) 

J*/J 
(%)e) 

Jan 70 72 72 75 

Feb 30 68 68 71 

Mar 30 68 68 72 

Apr 30 63 63 73 

May 70 69 69 73 

Jun 60 69 69 70 

Jul 50 70 70 73 

Aug 30 66 66 70 

Sep 30 65 65 70 

Oct 70 73 73 71 

Nov 40 64 64 71 

Dec 90 73 73 72 

a) Initial optimization time; b) number of bases chosen for the new al-
gorithm; c) ratio of the energy of the CNOP obtained by the adjoint method 
on the chosen bases to the total energy on all 1080 modes; d) similarity 
coefficients of CNOPs based on SVD-based EP method and adjoint meth-
od; e) ratio of the maximum values of the objective functions calculated by 
two methods. 

4  Discusssions and conclusions  

This study proposed a new SVD-based EP algorithm. The 
new algorithm avoids the localization procedure in previous 
EP algorithms, and overcomes the uncertainty caused by 
empirically choosing the localization radius. The main idea 
of the new algorithm is to conduct SVD on the long histori-
cal data of the system, and determine a group of bases that 
reflects the dynamics of the system. Thus, physical varia-
bles are treated as the combination of selected bases, and 
the optimization is transformed into one concerning the 
combination coefficients. For a forced dissipative dynam-
ical system, a small number of bases can reflect the dynam-
ics of the system. Hence, the dimension of the system can 
be reduced, and the CNOP can be obtained by the optimiza-
tion process. 

In an example regarding the precursors of ENSO, the 
SVD-based ensemble projection algorithm was used to cal-
culate the CNOP of the medium-complexity ZC model. The 
numerical experimental results show that, for different ini-
tial optimization months, the maximum values of the objec-
tive function obtained by the new algorithm gradually be-
came closer to those obtained by the adjoint method as the 
number of chosen modes increased. For different initial 
months, the new algorithm requires different numbers of 
modes to achieve a reasonable degree of approximation. For 
example, the 70% approximation level may require from 30 
to 90 bases. By comparing the spatial patterns of the 
CNOPs and corresponding SSTA evolutions, we showed 
that the new algorithm retains the main large-scale features 
of the precursors given by the adjoint method. For the 
SSTA component of CNOP, the patterns show a zonal di-
pole with positive anomalies in the eastern tropical Pacific 

and negative anomalies in the central tropical Pacific. The 
THA component exhibits a uniform deepening across the 
whole equatorial Pacific. These initial anomalies finally 
evolve into an El Nino event. These results illustrate that the 
new algorithm effectively calculates the CNOP, and its ad-
joint-free advantage extends the applicability of the CNOP 
to more complex ocean-atmosphere coupled models for 
predictions of weather and climate. 

The new algorithm selects some bases with larger ex-
plained variances when constructing the CNOP. This re-
duces the dimensionality of the system, leading to an ad-
joint-free method of calculating the CNOP. However, some 
contributive signals with small explained variances may be 
filtered out and their energies transferred to the chosen ba-
ses with larger explained variances. This leads to differ-
ences between the results given by the two methods. Practi-
cally, as long as the computational cost remains acceptable, 
we can increase the number of selected modes so that the 
transferred energies of the discarded modes occupy a small-
er proportion of the total energy. In this way, the degree of 
approximation of the new algorithm to the adjoint method 
can be improved. 

The application of the new algorithm is directly related to 
the nature of the investigated dynamical system. If the at-
tractor of the system is of low dimension, the approximation 
of the new algorithm to the adjoint method is more effec-
tive. Hence, for some rapidly changing phenomena, if the 
attractor is low dimensional and the system converges 
quickly to a stationary state, the new algorithm is applica-
ble. But other rapid processes may not have a structure with 
simple attractors, in which case more bases are needed to 
construct the CNOP and the computational load increases. 
Moreover, in this case, the approximation of the new algo-
rithm to the adjoint method is not satisfactory. Thus, it may 
be difficult to apply the new method to systems that contain 
such rapid processes. 

The number of modes chosen for the SVD-based EP al-
gorithm influences its computational cost. How many 
modes are needed is related not only to the degree of com-
plexity of the attractors, but also to characteristics of the 
numerical models, such as the resolution and discretization 
scheme. However, the number of modes required for the 
new method is not simply proportional to the number of 
variables as the resolution of the model is enhanced. For 
example, a high-resolution model that is four times finer 
than a low-resolution model in each direction will have 64 
times as many variables. For an equal percentage of ex-
plained variances, the number of modes required in the 
high-resolution model may be more than that in the 
low-resolution model, but the former needs far fewer than 
64 times that of the latter. That is to say, as the resolution of 
the model is enhanced, though the number of required bases 
may also increase, the amplitude of this increase is much 
less than that of the variables. 

In particular, if a numerical model is a relatively perfect 
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description of a continuous system, then modes with large 
explained variance are determined by the continuous system 
itself, and do not depend on the model resolution. In this 
case, we can choose these bases to construct the CNOP. For 
this type of high-resolution model, the increase in computa-
tional cost of the new algorithm is limited, and the new 
method is suitable for calculating the CNOP. 

It is important to select appropriate bases in our algo-
rithm, and a series of tests are required to produce these 
bases when using large samples. Hence, choosing samples 
more effectively for specific physical problems is an im-
portant issue for future studies. Additionally, when calcu-
lating the gradient with respect to the initial fields, the 
number of nonlinear models is equal to the number of cho-
sen modes, which leads to a relatively large computational 
cost. Therefore, choosing as few modes as possible and us-
ing parallel computation will significantly reduce time con-
sumption. 
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