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The deep ocean piezosphere accounts for a significant part of the global ocean, hosts active and diverse microbial communities 
which probably play a more important role than hitherto recognized in the global ocean carbon cycle. The conventional bio-
logical pump concept and the recently proposed microbial carbon pump mechanism provide a foundation for our understand-
ing of the role of microorganisms in cycling of carbon in the ocean. However, there are significant gaps in our knowledge and 
a lack of mechanistic understanding of the processes of microbially-mediated production, transformation, degradation, and 
export of marine dissolved and particulate organic matter (DOM and POM) in the deep ocean and the ecological consequence. 
Here we propose the POM-DOM piezophilic microorganism continuum (PDPMC) conceptual model, to address these im-
portant biogeochemical processes in the deep ocean. We propose that piezophilic microorganisms (bacteria and archaea) play a 
pivotal role in deep ocean carbon cycle where microbial production of exoenzymes, enzymatic breakdown of DOM and trans-
formation of POM fuels the rapid cycling of marine organic matter, and serve as the primary driver for carbon cycle in the 
deep ocean. 
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1  Introduction 

1.1  Ocean carbon cycle, biological pump, and microbial 
carbon pump 

The oceans play a critical role in the global carbon cycle. 
The coupling between the upper ocean and the atmosphere 
results in increasing concentrations of dissolved CO2 in 
surface seawater. A small fraction of this carbon is trans-
ported to the deep ocean via the “solubility pump” through 
the formation and sinking of dense water at selected high 
latitude sites. However, most of the carbon is moved 
through the processes of the “biological pump” (Volk and 
Hoffert, 1985) which begins with the growth of phyto-
plankton and the production of marine organic matter in the 
surface ocean. Organic matter thus produced is exported 
from the surface waters to the deep ocean and the seabed 
through, mostly, the sedimentation of particulate organic 
matter (POM) and to a less extent, export of dissolved or-
ganic matter (DOM) in overturning circulation of the ocean 
water column (e.g., advection, downwelling). The latter 
represents about 20% of total organic flux to the deep ocean 
(Carlson et al., 1994; Hansell, 2002).  

Carbon cycle in the ocean is driven largely by unicellular 
microorganisms—bacteria and archaea (Aristegui et al., 
2009). A large portion of surface ocean primary production 
is almost exclusively accessible to heterotrophic bacteria 
and archaea (Azam et al., 1983; Azam and Ammerman, 
1984; Ducklow and Carlson, 1992). Bacteria represent an 
important component of the global oceanic ecosystems and 
dominate the abundance, diversity and metabolic activity of 
the ocean (Azam and Malfatti, 2007). Bacteria mediate a 
significant flux of organic matter, from DOM to POM 
(Ducklow, 2009), and account for a substantial fraction of 
heterotrophic respiration in the oceans (del Giorgio et al., 
1997). For example, around 50% of the organic carbon 
produced by photosynthetic organisms in the euphotic zone 
is processed by bacteria and used to produce new bacterial 
biomass and meet the energy requirements for bacterial res-
piration (Azam et al., 1983).  

Archaea, once known as extremophiles, have been dis-
covered throughout the water column in the ocean (DeLong, 
1992; Fuhrman et al., 1992). Based on cell counts and mo-
lecular studies, archaea accounts for 20% of the prokaryotes 
in the ocean water column (Offre et al., 2013). The abun-
dance of pelagic archaea increases with depth in the ocean 
(Karner et al., 2001; Herndl et al., 2005; Kirchman et al., 
2007; Sato et al., 2009), suggesting that marine archaea 
probably play an important role in deep ocean carbon cycle. 

The recently proposed “microbial carbon pump” (MCP) 
(Jiao et al., 2010) provides a conceptual framework in un-
derstanding the role of microorganisms in cycling of marine 
organic matter. The MCP emphasizes the formation of re-
calcitrant DOM (RDOM) and the thus created stock of car-
bon storage in the process of microbial utilization of DOM. 

Microorganisms transfer organic matter from a biologically 
reactive state (labile DOM, LDOM) to a non-reactive state 
(RDOM), contributing to the storage of carbon in the ocean. 
Thus, the biological carbon pump emphasizes the passive 
vertical transport of organic matter, driven by primary pro-
duction in the surface ocean (Hansell et al., 2009), and the 
MCP highlights the importance of heterotrophic microbial 
activity in biotransformation of organic matter. However, 
there are still significant gaps in our knowledge and under-
standing of microbial processes that control secretion, 
transformation, degradation, and export of marine organic 
matter in the water column. Our present understanding of 
these important processes is speculative at best. This is par-
ticularly true for processes occurring in the deep ocean, 
which are likely mediated mainly by piezophilic micro- 
organisms. Recent studies suggest that deep ocean micro-
organisms play a more important role in mineralization of 
marine organic matter than hitherto recognized (Tamburini 
et al., 2003, 2009, 2013; Nagata, 2000; Glud et al., 2013). 
Here we propose a conceptual model, POM-DOM pie-
zophilic microorganism continuum (PDPMC), to illustrate 
the mechanistic processes of piezophilic microorganism- 
mediated carbon cycle in the deep ocean (Fang et al.,  
2012).  

1.2  Marine organic matter 

Marine organic matter is produced mostly by photosynthetic 
plankton in the surface ocean. Operationally, marine organ-
ic matter is divided as particulate organic matter (POM) and 
dissolved organic matter (DOM) based on filtration of sea-
water using a 0.7 m filter. POM is comprised of various 
components that include organic and inorganic constituents 
such as phytoplankton and bacterial cells, organic detritus, 
fecal pellets, and inorganic particles. In general, the non- 
living POM (i.e., detritus) exceeds that of plankton by a 
ratio of detritus/plankton 10:1 (Kirchman et al., 1993). Yet, 
heterotrophic bacteria can be a major part of the living bio-
mass of POM, particularly in oligotrophic areas (Caron et 
al., 1995). Thus, POM is a complex mixture of living and 
nonliving organic matter, having a broad range in size, form, 
and reactivity (Volkman and Tanoue, 2002). POM amounts 
for up to 30×1015 g C, and forming the second largest or-
ganic carbon pool in the ocean (Hansell and Carlson, 2001; 
Verdugo et al., 2004).  

DOM represents one of the largest active pools of orga- 
nic carbon in the global carbon cycle (Hedges, 1992; Hop-
kinson et al., 2002). DOM is produced from POM through 
mechanisms such as direct exudation from phytoplankton, 
from cell lyses due to viral infection, from “sloppy” zoo-
plankton feeding, and from predator grazing or from parti-
cle solubilization. The amount of carbon in oceanic DOM, 
700×1015 g C, is approximately equal to that of carbon in 
the atmosphere (750×1015 g C) (Ogawa et al., 2001). The 
dissolved organic carbon (DOC) is the carbon component of 
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the DOM. Most of the marine DOC, about 90%–95%, is 
present in the deep ocean, with concentrations of 35–45 M 
DOC (e.g., Hopkinson et al., 1997; Hansell and Carlson, 
1998; Ogawa et al., 1999). Therefore, it is imperative to 
study the deep ocean carbon cycle and the processes medi-
ated by piezophilic microorganisms in order to gain a 
mechanistic understanding of the global ocean carbon cycle. 

1.3  Hydrostatic pressure and piezophilic microorga- 
nisms in the deep-ocean piezosphere 

The deep-ocean piezosphere is the volume of the ocean with 
hydrostatic pressure over 100 atm or 10 MPa (Bartlett, 2008; 
Fang et al., 2010). It is the largest aquatic habitat on earth, 
and is probably the most understudied oceanic environ-
ments (Aristegui et al., 2009; Tambuiri et al., 2006, 2009). 
The deep ocean contains the largest pool of microbes, har-
boring 75% of the prokaryotic biomass and 50% of the 
prokaryotic production of the global ocean (Aristegui et al., 
2009). It is also the largest reservoir of inorganic carbon, 
containing greater than 98% of the global dissolved inor-
ganic carbon (Gruber et al., 2004). The importance of the 
deep piezosphere in global ocean carbon cycle is manifested 
by the fact that it is the largest reactive component of the 
global carbon cycle (Hedges, 1992; Hansell and Carlson, 
1998; Benner, 2002). 

The deep ocean houses the most voluminous high hydro-
static pressure environment on earth and represents a major 
fraction of the biosphere (~62%) (Jannasch and Taylor, 
1984). Piezophily is a general feature of bacteria in the deep 
ocean (Yayanos, 1998). Piezophiles are pressure-loving 
microorganisms which reproduce preferentially or exclu-
sively at pressures greater than atmospheric pressure (Bart-
lett, 2008; Kato et al., 2008). The majority of the piezophilic 
microorganisms reported thus far are Gram-negative, facul-
tative anaerobic Bacteria, and only a few piezophilic ar-
chaeal species have been isolated, which are either hyper-
thermo-piezophiles or hyperthermo-hyperpiezophiles (Fang 
et al., 2010). Most of the reported piezophilic bacterial iso-
lates are within the orders Alteromonadales and Vibrionales, 
including Colwellia, Moritella, Photobacterium, Pyschro-
monas, and Shewanella (Kato et al., 1995, 1998; DeLong et 
al., 1997). Other piezophilic isolates include a moderately 
piezophilic sulfate-reducing bacterium, Desulfovibriopro-
fundus, from sediment in the Japan Sea (Bale et al., 1997), 
Desulfovibriohydrothermalis from a hydrothermal vent 
chimney in the East Pacific Rise (Alazard et al., 2003), 
Desulfovibriopiezophilus from wood falls in the Mediterra-
nean Sea (Khelaifia et al., 2011; Pradel et al., 2013), Ma-
rinitogapiezophila of the Thermotogales isolated from a 
deep-sea hydrothermal vent (Alain et al., 2002), and two 
piezophilic Gram-positive bacteria, member of genus Car-
nobacterium, isolated from the Aleutian Trench and the 
Kermadec Trench (Lauro and Bartlett, 2007). 

There are a few piezophilic archaeal species isolated 

from the deep ocean thus far. These species include Pyro-
coccusabyssi, a moderate piezophileisolated from the Fiji 
Basin at 2000 m (Erauso et al., 1993), Thermococcusbaro- 
philus, a hyperthermo-piezophilic archaeon isolated from 
the Mid-Atlantic Ridge (MAR) (Marteinsson et al., 1999), 
Methanopyruskandleristrain 116, a methanogen isolated 
from the Central Indian Ridge, and achemoorganohetero-
trophic, hyperthermo-hyperpiezophilicarchaeon, Pyrococ-
cusyayanosii CH1, also isolated from the MAR (Zeng et al., 
2009). It appears that the diversity and abundance of deep- 
sea piezophiles are likely much greater than what we know 
today (Fang and Bazylinski, 2008: Fang et al., 2010). The 
majority of the microorganisms in the deep ocean is poorly 
represented in our current microbial databases simply be-
cause of a lack of breadth and scale in sampling, but may be 
responsible for key metabolic processes in global biogeo-
chemical cycles (Brown et al., 2009). 

2  The POM-DOM piezophilic microorganism 
continuum (PDPMC) model 

2.1  The model 

The deep ocean is a huge bioreactor, holding a unique res-
ervoir of high genetic and metabolic diversity of microor-
ganisms that play a central role in ocean’s carbon cycle. The 
endless “rain” of marine aggregates has long been consid-
ered as one of the major processes linking the surface and 
deep ocean and a critical component in the global ocean 
carbon cycle (Volk and Hoffert, 1985). However, marine 
organic matter is not a static pool of isolated substances in 
the ocean, but a dynamic assemblage of organic molecules 
that interact with microorganisms at various spatial and 
temporary scales (Hedges, 2002). Microbial activity in the 
ocean is coupled to, and largely fueled by, the sinking ma-
rine aggregates from the surface ocean and thus, is limited 
by the flux of POM delivered to the depth (Martin et al., 
1987; Anderson and Williams, 1999; Nagata, 2000; Azam 
and Long, 2001; Tamburini et al., 2003).These processes in 
turn regulate the flux of sinking particles to depth. Here we 
propose the PDPMC conceptual model (Figure 1) which 
entails the interactions among descending marine particu-
lates, particulate-attached and free-living microorganisms, 
the transport and degradation of marine organic matter, and 
implications for the global ocean carbon cycle, a dynamic 
continuum of microbiological and biogeochemical process-
es mediated by piezophilic bacteria in the ocean. The main 
points of the PDPMC model include:  

(1) The POM microniche and microbial attachment. The 
descending marine particulates (POM) from the surface 
ocean to the deep ocean act as a carbon- and nutrient-rich 
microenvironment for preferred microbial colonization and 
attachment, which further promotes the coupling and inter-
actions between POM and microorganisms. 

(2) Microbial extracellular enzymatic activities. Attach-
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ment of microorganisms to the descending particulates 
tends to alter microbial physiology and stimulate microbial 
metabolism including up-regulating microbial production of 
extracellular enzymatic activity (EEA).  

(3) Microbial disintegration of POM and the formation of 
carbon- and nutrient-enriched plume. The increased EEA 
enhances the disintegration of the descending particulates, 
biotransformation of POM and production of DOM, regen-
eration of nutrients, mobilization of carbon, and biodegra-
dation of DOM. This continuum of dynamic microbial pro-
cesses serves as the primary driver for carbon cycle in the 
deep ocean. The carbon- and nutrient-enriched plume 
formed around the sinking particulates stimulates metabo-
lism of free-living piezophilic microorganisms in the sur-
rounding water column and leads to increased biotransfor-
mation and biodegradation of DOM.  

(4) The PDPMC model. The PDPMC model embodies 
the mechanistic processes of the coupling and dynamic in-

teractions among marine POM, DOM, and piezophilic micro- 
organisms in the deep ocean. Thus, piezophilic microorgan-
isms play a critical role in the global ocean carbon cycle. 

2.2  The role of deep ocean piezophilic microorganisms 
in depolymerization of marine macromolecules— 
transformation of POM and production of DOM 

The slowly sinking particulates from the surface ocean 
serve as hot-spots of microbial communities and activity as 
microorganisms preferentially attached to the descending 
particulates (Alldredge and Gottschalk, 1990; Azam, 1998; 
Simon et al., 2002; Grossart et al., 2007) (Figure 1). As a 
result, the density of microorganisms colonizing marine 
particulates can be orders of magnitude higher than the sur-
rounding waters, reaching up to 109 cell/mL (Alldredge and 
Gottschalk, 1990; Anderson and Williams, 1999). On one 
hand, microbial attachment increases and stabilizes particle  

 

 

Figure 1  The POM-DOM piezophilic microorganism continuum (PDPMC). Shown are major microbiological and biogeochemical processes, mediated by 
piezophilic microorganisms, in transformation of POM to HMW DOM, from HMW DOM to LMW DOM intermediates, and in degradation and cycling of 
DOM. POM, particulate organic matter; DOM, dissolved organic matter; HMW, high molecular weight; LMW, low molecular weight. 
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aggregation (e.g., Gardes et al., 2011) and therefore, effi-
ciently increases sedimentation and removal of marine or-
ganic matter from the surface ocean to the deep ocean. On 
the other hand, the attached microorganisms produce copi-
ous extracellular enzymes such that the particulates retain 
much higher microbial extracellular enzyme activity than 
the surrounding seawater (Smith et al., 1992; Ploug et al., 
2008; Ziervogel and Arnosti, 2008). Thus, microbial at-
tachment to particulates represents a biochemical mecha-
nism that has multifaceted biogeochemical consequences, 
including the transform of organic carbon from particle 
phase (POC) to dissolved phase (DOC) and thus, increasing 
the quality and quantity of bioavailable organic carbon, and 
enhancing the potential of microbial degradation of DOC 
and carbon cycling in the ocean. 

The sinking organic detritus is a composite of macromo-
lecular compounds that include structural carbohydrates, 
proteins, nucleic acids, and lipid complexes (Jorgensen, 
2009). Microorganisms are unable to take up particles or 
even large organic molecules in size greater than ca. 600 
Daltons (Da) (Weiss et al., 1991). A simple depolymeriza-
tion (e.g., hydrolysis) of these large molecules to monomer-
ic products is necessary. This depolymerization process is 
initiated by exoenzymes produced by the particulate-   
attached microorganisms. The depolymerized products are 
either released freely into the surrounding environment or 
associated with the outer membrane or cell wall of the mi-
croorganisms (Arnosti, 2011). The extracellular enzymes 
break down high molecular weight (HMW) biopolymers 
into low molecular weight (LMW) (<600 Da) DOM inter-
mediates. As a result, the marine particulates enroute to the 
deep ocean gradually release DOM through enzymatic pro-
cesses of the attached microorganisms (Figure 1). The re-
leased LMW DOM intermediates forms a nutrient-rich 
plume streaming behind the marine particulates (Alldredge, 
2000; Simon et al., 2002), constituting the POM-DOM pie-
zophilic microorganism continuum (Figure 1). 

2.3  The free-living microorganisms (FLM) and their 
role in degradation of DOM  

From a biogeochemical perspective, the deep ocean can also 
be viewed as a large, dilute organic carbon bioreactor that 
operates at low-temperature and high-pressure conditions. It 
has been a widespread view that microbial activities in the 
deep ocean are extremely low and largely suppressed under 
the dark, cold, high pressure conditions, and the reduced 
quantity and quality of organic matter and nutrient content 
(Jannasch and Wirsen, 1973). Thus, marine microbes dis-
play minimum responses to the inputs of organic matter and 
likely play only a minor role in ocean biogeochemical cy-
cles. The PDPMC model suggests the otherwise: the quality 
and quantity of organic matter and nutrients in the sur-
rounding water of a descending particulate increases as a 
result of microbial disintegration of POM. In fact, recent 

studies suggest that the deep ocean is a heterogeneous habi-
tat (Hewson et al., 2006) with distinctive and previously 
unknown communities of remarkably diverse microorga- 
nisms (Sogin et al., 2006; DeLong et al., 2006). Further-
more, the deep ocean microbial assemblages are adapted to 
high-pressure conditions and display unique molecular ar-
chitectures and metabolic capabilities (Vezzi et al., 2005; 
DeLong et al., 2006; Lauro and Bartlett, 2007) that allow 
them to thrive under high-pressure conditions in the deep 
ocean (Lauro and Bartlett, 2008) and play an important role 
in mineralization of marine organic matter (Glud et al., 
2013). Activity of deep ocean piezophilic microorganisms is 
higher than our laboratory decompressed measurements 
have showed. Cell-specific in situ measurements of micro-
bial activities (ectoenzymatic activity, heterotrophic micro-
bial production and dark fixation of CO2) suggest that mi-
crobial metabolic rates in the deep ocean are as much as 
11-fold higher than previous estimates obtained under sur-
face decompression conditions (Tamburini, 2006; Tam-
burini et al., 2006, 2009). These ectoenzymatic activities are 
considered to be the limiting step for the heterotrophic min-
eralization of organic matter (Chrost, 1991). Specific meta-
bolic genes related to the degradation of refractory pools of 
organic matter (e.g., chitin, cellulose and pullulan) meta-
bolic pathways have been recovered from the deep ocean 
(DeLong et al., 2006; Martin-Cuadrado et al., 2007). Vezzi 
et al. (2005) showed that piezophilic bacterium Photobacte-
riumprofundum SS9 degraded many refractory compounds 
such as chitin, cellulose and pullulan. Additionally, when 
the measured rates are integrated over the entire water col-
umn of the deep ocean, the mineralization fluxes mediated 
by microbial populations in the deep sea are far from negli-
gible (del Giorgio et al., 1997; Lefevre et al., 1996; Bianchi 
et al., 1998; Tamburini et al., 2002). These results suggest 
that the deep ocean piezophilic microorganisms are more 
resilient and expressing higher ectoenzymatic activities in 
degrading recalcitrant organic matter. 

3  Summary and future research directions 

The PDPMC represents a dynamic model of piezophilic 
microorganism-mediated deep ocean carbon cycle (Fang et 
al., 2012). The model is different from the BP and the MCP 
in a number of different ways. First, it elucidates the mech-
anistic processes of carbon cycle at the molecular level and 
emphasizes the dominated role of piezophilic microorga- 
nisms in the entire continuum of microbiological and bio-
geochemical processes of the deep ocean carbon cycle. 
Second, the model provides a conceptual framework for 
illustrating the interactions between marine organic matter 
and piezophilic microorganisms, entailed in the transfor-
mation of POM to DOM and the partitioning between POM 
and DOM, regulation of the channeling and export flux of 
organic matter from the surface ocean to the deep ocean, 
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degradation of DOM, and the biogeochemical dynamics of 
carbon cycling in the deep ocean. Finally, the PDPMC em-
phasizes the interactions between marine particulates and 
piezophilic microorganisms in the broader biogeochemical 
and enzymatic context of carbon cycling at in situ environ-
mental conditions, particularly, the in situ hydrostatic pres-
sure. Within the POM-DOM piezophilic microorganism 
continuum, marine particulates are continuously trans-
formed to HMW DOM which are further transformed into 
LMW DOM intermediates. The LMW DOM are either re-
mineralized directly to CO2 within the microbial food web, 
supporting heterotrophic microbial production, or converted 
to recalcitrant DOM and ultimately, incorporated into ma-
rine sediment as sedimentary organic matter (SOM). 
Chemolithoautotrophic microorganisms may utilize the re-
leased CO2 for in situ dark fixation (Figure 1). Thus, the 
chemistry and reactivity of DOC, the quality, quantity, and 
degradability of marine organic matter changes dynamically 
with changes in the physic-chemical condition and the mi-
crobiology of the deep ocean environment.  

Given our current limited understanding of these micro-
biological and biogeochemical processes under high pres-
sure conditions in the deep ocean, future research should 
focus on:  

(1) Determining the abundance, composition and diver-
sity of piezophilic microorganisms in the deep ocean, in-
cluding those attached to and free-living microbes around 
the sinking particulates. Additionally, the distribution and 
stratification of distinct microbial populations in different 
water masses and pressure regimes must be determined, in 
relation to changes in the chemistry and biological reactivity 
of organic matter with depth, and adaptations to pressure 
and temperature must be revealed. Further, quantitative 
linkages between microbial diversity, activity and ecosys-
tem function must be determined. Combining modern mo-
lecular microbiological techniques, such as catalyzed re-
porter deposition-fluorescence in situ hybridization (CARD- 
FISH) which reveals spatial distribution of the microbial 
community (e.g., Scrippers et al., 2005), and single-cell 
genomics and metatranscriptomes which uncover metaboli-
cally active and dormant microorganisms of microbial popu- 
lations (Siegl et al., 2011), with imaging secondary ion mass 
spectrometry on a nanometer scale (Boxer et al., 2009), can 
be a powerful approach to link microbial community struc-
ture, enzyme production, and microbial degradation activity 
at the submicromolecular scale (Hermann et al., 2007; Am-
stalden et al., 2010). The uptake and transformation of or-
ganic matter by heterotrophic piezophilic microorganisms is 
a major carbon-flow pathway and therefore, the variability 
of microbial abundance, diversity, metabolic activity, and 
ecosystem function can change the overall patterns of or-
ganic matter flux and carbon cycle in the oceans (Azam, 
1998; Williams, 1998). Currently, the microbial diversity of 
piezophilic microorganisms is seriously underestimated 
because of various problems in (i) sampling and preserva-

tion of deep ocean samples at in situ conditions, (ii) prefer-
ential use of rich, heterotrophic growth media in the isola-
tion of piezophilic microbes, (iii) the currently used piezo-
phile-culturing devices incapable of reproducing the chem-
istry of the microorganisms’ surrounding environment in 
the deep ocean; and (iv) inappropriate techniques used in 
microbial identification and quantification (Fang et al., 
2010). It is predicted that the diversity of deep ocean pie-
zophilic microorganisms will increase significantly as the 
use of new types of growth media, novel culturing strategies, 
and novel molecular sequencing techniques are employed 
(Fang et al., 2010). 

(2) Addressing the mechanism of bacteria attachment to 
and interaction with marine particulates, and the associated 
changes in bacterial physiology, metabolism, enzymology, 
and ecological dynamics with increasing depth (pressure). It 
is essential that relevant experiments characterizing micro-
bial physiology, metabolism, and enzymology be carried 
out under in situ pressure conditions, so that microbial met-
abolic activity and enzymatic processes in transformation of 
POM, uptake and degradation of DOM can be accurately 
determined. Furthermore, the interaction between phyto-
plankton and heterotrophic bacteria may affect the for-
mation and disintegration of particulates, microbial enzyme 
production, and the production and interconversion of POM 
and DOM and therefore, the export of organic carbon from 
the surface ocean to the deep ocean. Thus, it is crucial to 
quantify the POM and DOM pools, fluxes, and microbio-
logical controls in order to understand oceanic carbon cy-
cling mediated by microorganisms. It is clear that the activ-
ity of deep-sea piezophilic microbes under in situ conditions 
is higher than our laboratory decompressed measurements 
have showed. The gross underestimation of microbial activ-
ities in the deep ocean can be attributed to two main factors: 
(i) our inability to take uncompressed deep ocean wa-
ter/sediment samples to preserve the microbial physiology 
and metabolic lifestyles for land laboratory measurements; 
and (ii) our inability to measure the in situ microbial activity. 
Thus, collecting non-decompressed deep ocean samples and 
accurately measuring deep ocean microbial physiologies 
and activities are crucial to better assess the real impact of 
deep ocean microbial activity in global carbon cycle. Com-
bining the traditional enzymatic approach and the new ge-
netic and protein-based tools (e.g., enzymatic gene expres-
sion) enable the revelation of microbial community compo-
sition and functioning, particularly, linking microbial abun-
dance to the rates and pathways of DOM processing and 
transformation (von Mering et al., 2007). 

(3) Determining the chemistry and biological reactivity 
of DOM in different pressure/ecological regimes of the deep 
ocean. The chemistry (chemical composition and structure) 
of marine organic matter is one of the biggest black-box 
problems in chemical oceanography. Marine DOM is a 
complex mixture of thousands of compounds consisting of 
intact and transformed biomolecules from living and dead 
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organisms (Mopper et al., 2007), yet the common compo-
nents of marine biomass, such as lipids, amino acids, and 
carbohydrates, represent less than 10% of DOM (Hedges et 
al., 2000). Furthermore, the chemistry of POM and DOM 
changes with depth and DOM ages in the ocean (Flerus et 
al., 2012). Additionally, microbial degradation of marine 
organic matter, one of the most important components of 
ocean carbon cycle, is dependent upon the chemistry of the 
organic matter, as well as the composition and diversity of 
the microbial community. Indeed, the recalcitrance of ma-
rine organic matter is not only a molecular chemical prop-
erty, but also an ecosystem (microbiological) and environ-
mental (geochemical) property. Thus, the chemistry of 
DOM affects the relative biological reactivity, the potential 
storage capacity and turnover times of the deep ocean car-
bon pool, whereas the in situ microbiology and microbial 
metabolism of the deep ocean affects the recalcitrance of 
marine organic matter. However, the mechanisms of the 
production, digenesis, and preservation of DOM in the 
ocean are unknown (Flerus et al., 2012). In addition, we 
know little about how deep ocean microorganisms respond 
to shifts in the composition, distribution and supply of or-
ganic carbon (Azam, 1998). Therefore, characterizing the 
chemical composition and molecular structure of DOM is 
imperative for determining the dynamics of microbial utili-
zation of DOM. The recently developed Fourier transform 
ion cyclotron resonance mass spectrometry (FT-ICR-MS) is 
a powerful analytical technique for molecular-level charac-
terization of the complex composition and structure of 
DOM (e.g., Kim et al., 2003; Koch et al., 2005; D’Andrilli 
et al., 2010; Flerus et al., 2012). It has the capacity to re-
solve the thousands of components in DOM, assign exact 
molecular formula, reveal the structural relationships among 
families of compounds, and determine the biological reac-
tivity of DOM (Kim et al., 2003; Flerus et al., 2012). Re-
sults from our recent analysis of DOM samples from the 
South China Sea demonstrate the power of this technique, 
where different families of compounds and the reaction 
pathways leading to the groups of compounds can be identi-
fied (Figure 2). 

Radiocarbon dating provides another constrain on the 
production and export of DOM, microbial degradation state, 
and the accumulated molecular structural changes of DOM 
(Druffel et al., 1992; Loh et al., 2004; Beaupre et al., 2009; 
Flerus et al., 2012). This presumably reflects a good corre-
lation between recalcitrance of DOM and the 14C of bulk 
DOM and its components (Siegl et al., 2011). 

(4) Finally, assessing the capacity of the PDPMC in the 
processing of POM and DOM and the role of piezophilic 
microorganisms in the global ocean carbon cycle. The ca-
pacity of PDPMC can be determined accurately only when 
the microbiology of piezophilic microorganisms, the chem-
istry and reactivity of marine organic matter, and metabo-
lism and enzymology of piezophilic microorganisms in 
transformation and degradation of DOM are determined in  

 

Figure 2  The van Krevelen diagram, showing results of Fourier trans-
formion cyclotron resonance mass spectrometry (FT-ICR-MS) analysis of 
a seawater sample collected at depth of 1500 m in South China Sea in 2012. 
A broad range of organic compounds were detected in the sample. Shown 
are positions of major biomolecular components: Pn, protein; Ps, polysac-
charides; c-HC, condensed hydrocarbons; Lg, lignin. Trend lines represent 
reaction pathways that results in the formation of the families of com-
pounds. Line A: methylation/demethylation/alkyl chain elongation; Line B: 
hydrogenation/ dehydrogenation; Line C: hydration/condensation; Line D: 
oxidation/reduction (Kim et al., 2003; Koch et a., 2005). 

different pressure regimes and integrated in the global ocean. 
Until then, the PDPMC will provide a mechanistic basis for 
our understanding of the piezophilic microorganism-    
mediated deep ocean biogeochemical processes and the 
global carbon cycle (Fang and Kato, 2008; Fang et al., 
2012). We propose that piezophilic microbialenzyme pro-
duction, enzymatic breakdown and transformation of ma-
rine particulates fuels the rapidly cycling of dissolved or-
ganic matter pool, and serve as the primary driver for car-
bon cycle in the deep ocean. The PDPMC conceptual 
framework will help to unravel the variation of the dynam-
ics of deep ocean carbon cycle at different depths and in 
different regions of the ocean, and provides a significant 
step in integrating the emerging paradigm regarding 
high-pressure microbiology and enzymology of piezophilic 
microorganisms with global ocean carbon cycle. We foresee 
that the integration of high-pressure microbiological, mo-
lecular chemical and biogeochemical information will pro-
vide global ocean carbon cycle science with a more mecha-
nistic basis for predictions of carbon cycle dynamics in, e.g., 
climate change. 
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