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A joint statistical-dynamical method addressing both the internal decadal variability and effect of anthropogenic forcing was 
developed to predict the decadal components of East Asian surface air temperature (EATs) for three decades (2010–2040). As 
previous studies have revealed that the internal variability of EATs (EATs_int) is influenced mainly by the ocean, we first an-
alyzed the lead-lag connections between EATs_int and three sea surface temperature (SST) multidecadal modes using instru-
mental records from 1901 to 1999. Based on the lead-lag connections, a multiple linear regression was constructed with the 
three SST modes as predictors. The hindcast for the years from 2000 to 2005 indicated the regression model had high skill in 
simulating the observational EATs_int. Therefore, the prediction for EATs_int (Re_EATs_int) was obtained by the regression 
model based on quasi-periods of the decadal oceanic modes. External forcing from greenhouse gases is likely associated with 
global warming. Using monthly global land surface air temperature from historical and projection simulations under the Rep-
resentative Concentration Pathway (RCP) 4.5 scenario of 19 Coupled General Circulation Models participating in the fifth 
phase of the Coupled Model Intercomparison Project (CMIP5), we predicted the curve of EATs (EATs_trend) relative to 
1970–1999 by a second-order fit. EATs_int and EATs_trend were combined to form the reconstructed EATs (Re_EATs). It 
was expected that a fluctuating evolution of Re_EATs would decrease slightly from 2015 to 2030 and increase gradually 
thereafter. Compared with the decadal prediction in CMIP5 models, Re_EATs was qualitatively in agreement with the predic-
tions of most of the models and the multi-model ensemble mean, indicating that the joint statistical-dynamical approach for 
EAT is rational. 

East Asia, surface air temperature, decadal prediction, internal decadal variability, anthropogenic forcing 

 

Citation:  Luo F F, Li S L. 2014. Joint statistical-dynamical approach to decadal prediction of East Asian surface air temperature. Science China: Earth Sciences,  
57: 3062–3072, doi: 10.1007/s11430-014-4984-3 

 
 

 
Decadal climate prediction focuses on predicting time- 
evolving regional climate conditions over the next 10–30 
years, which has to take into account the initialization of the 
climate system (ocean conditions), the interaction of the 
natural internal variability, and the impact of external forc-
ing. Traditionally, it was difficult to achieve decadal predic-
tion due to a lack of observational datasets and efficient 
research methods, as well as a limited understanding of the 

climate on the multidecadal timescale. In recent years, sat-
ellite datasets have become more prevalent, and the tech-
nologies of assimilation and climate system models have 
improved rapidly. As a result, it is now possible to make 
decadal predictions with better accuracy. Because under-
standing the climate on the decadal timescale is a priority if 
human populations are to adapt to climate change, decadal 
prediction—currently in its infancy—has emerged as a hot 
topic in the field of climate research (Meehl et al., 2009; 
Hurrell et al., 2010; Murphy et al., 2010). It is one of two 
distinct focuses in the fifth phase of the Coupled Model 
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Intercomparison Project (CMIP5) under the Intergovern-
mental Panel on Climate Change (IPCC) Special Reports 
(Taylor et al., 2012). 

Methods of climate prediction mainly fall into one of 
three categories: the dynamical approach, the statistical ap-
proach, and the joint statistical-dynamical approach. Of 
these, the dynamical approach is applied most frequently 
worldwide. There are two types of dynamical approach: the 
“one-tiered” approach and the “two-tiered” approach. The 
one-tiered approach obtains predictions by offering initial 
fields and external forcing to a coupled atmosphere-ocean 
general circulation model (AOGCM) and then integrating 
them directly (Smith et al., 2007; Keenlyside et al., 2008; 
Pohlmann et al., 2009; Mochizuki et al., 2010). The two- 
tiered approach involves two steps: First, the predicted low-
er-boundary forcing (sea surface temperature, SST) is ob-
tained by coupled general circulation models (CGCMs) or 
statistics (Hoerling et al., 2011). Second, the climate is pre-
dicted with an atmospheric general circulation model 
(AGCM) based on the predicted lower-boundary forcing. 
The one-tiered approach has been commonly applied in 
China. For example, decadal hindcast and forecast experi-
ments were performed by the FGOALS_gl and FGOALS_ 
g2 CGCMs developed by the State Key Laboratory of Nu-
merical Modeling for Atmospheric Sciences and Geophysi-
cal Fluid Dynamics, the Institute of Atmospheric Physics, 
Chinese Academy of Sciences (Wu and Zhou, 2012; Wang 
et al., 2012). Gao et al. (2012) evaluated the prediction ca-
pability of the Beijing Climate Center Climate System 
Model (BCC-CSM1.1) with respect to regional and global 
surface temperatures on the decadal timescale. Chen and 
Jiang (2012) pointed out that there was a cold bias in the 
temperature field in multi-decadal hindcast results of four 
CGCMs that were involved in the ENSEMBLES project, 
and that the level of uncertainty was quite large. This great 
uncertainty in the dynamic prediction resulted from a 
shortage of sub-surface oceanic observational data, a defect 
in the technology of assimilation, and climate drift induced 
by the imperfection of the models themselves. 

In addition to the one-tiered approach, some scientists 
have also exploited statistical approaches for decadal pre-
diction. Qian et al. (2010) predicted that a cool floor of 
global-mean surface air temperature (GSAT) would appear 
in the 2030s based on the sum of principal harmonics and 
the linear trend of GAST. Fu et al. (2011) utilized empirical 
mode decomposition to project GSAT for the next 40 years, 
and suggested that global warming during 2011–2050 could 
be much weaker than the projection reported in IPCC AR4. 
These studies indicate that statistical approaches are feasible; 
however, they also have their limitations. For example, 
Hawkins et al. (2011) evaluated the potential of statistical 
decadal predictions of SSTs in a perfect-model analysis, and 
pointed out that the predictions depended on the predicted 
region, time, and modeled data used. 

Given that the joint statistical-dynamical approach com-

bines the two sets of advantages of the dynamical and sta-
tistical approaches, it has been widely used and successfully 
in short-term climate prediction. Luo et al. (2012) devel-
oped a simple approach that considers both the quasi-peri- 
odicities of internal decadal oceanic models and the effect 
of anthropogenic forcing to predict the decadal components 
of global SSTs. Abnormalities of observational climate are 
formed by the natural internal variability and effects of ex-
ternal forcing. The natural internal variability includes 
timescale-type variabilities such as interannual variability 
(e.g., ENSO, AO/AAO), multi-decadal variability (e.g., 
AMO, PDO), and centennial variability. Because decadal 
internal variability is influenced mainly by decadal oceanic 
modes, the quasi-periods of oceanic modes make it possible 
to predict the temporal evolution of decadal variability us-
ing the statistical approach. The external forcing consists of 
natural forcing (e.g., volcanos, solar radiation) and anthro-
pogenic forcing. It is hard to predict volcanic eruptions 
based on current technology. The evolution of solar radia-
tion can be predicted due to its quasi-11-year cycle. The 
effects of human activity on the climate mainly manifest 
through emissions of greenhouse gases and aerosols into the 
atmosphere. CMIP3 OGCMs projected climate changes in 
the twenty-first century under the A1, A1B, B1, and B2 
emissions scenarios. The datasets help us to understand the 
impacts of greenhouse gases on future climate. Relative to 
CMIP3, the four CMIP5 Representative Concentration 
Pathway (RCP) scenario runs (RCP2.6, RCP4.5, RCP6 and 
RCP8.5), which provided a range of simulated climate 
change, can be used to explore the impacts of anthropogenic 
activity. As mentioned above, it may become possible to 
achieve decadal prediction of East Asian surface air temper-
ature (EATs) using joint statistical-dynamical approaches. 

There has been little research published on the decadal 
prediction of EATs. With this in mind, the present study not 
only provides a new method for decadal prediction, but also 
affords a sample of the evolution of EATs over the next 
10–30 years. First, we calculated the lead-lag connections of 
the internal variability of EATs (EATs_int) and multi-decadal 
SST modes in instrumental records. Based on the connec-
tions, a multiple linear regression model, with the multi-  
decadal SST modes as predictors, was established to predict 
EATs_int. In the next step, the change of EATs caused by 
anthropogenic forcing was obtained using a second-order fit. 
Outputs of the historical and projected experiments in CMIP5 
were used, spanning the period from 1901 to 2040. The re-
sults of the two parts were then combined to reconstruct and 
predict the decadal components of EATs. 

1  Data and methods 

1.1  Data 

The monthly global land surface air temperature (Ts) for 
1901–2009, on a 0.5°×0.5° grid, was obtained from the 
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Climate Research Unit (CRU) TS 3.1 dataset (Mitchell and 
Jones, 2005). Two sets of observational SST were used, 
spanning the years 1870–2010. One was the Met Office 
Hadley Centre’s monthly SST records (HadISST) (Rayner 
et al., 2003), gridded to 1.0° latitude by 1.0° longitude. The 
other was the Kaplan Extended monthly SST (Kaplan et al., 
1998), on a 5°×5° grid. 

The modeled monthly global Ts was used based on the 
three types of experiments in CMIP5: (1) a future projection 
simulation forced by a midrange mitigation emissions sce-
nario (RCP4.5) in 19 models, covering 2006–2040; (2) a 
30-year decadal prediction initialized in 2005 in eight mod-
els, ranging from 2006–2035; and (3) outputs from histori-
cal experiments from the (1) and (2) CGCMs, spanning 
1901–2005. Key model details are listed in Tables 1 and 2. 
Outputs were downloaded from the project for model diag-
nostics and intercomparisons (PCMDI) CMIP5 website 
(http://pcmdi9.llnl.gov/esgf-web-fe/). 

1.2  Methods 

EATs is impacted by both natural internal variability and 
external forcing. The internal decadal variability is modu-
lated primarily by oceanic thermal conditions. We evaluated 
the rationality of three SST modes (the Atlantic Multi-  
decadal Oscillation, the Inter-decadal Pacific Oscillation, 
and the Indian Ocean Basin-wide Decadal Pattern) as fac-
tors to predict EATs_int. The correlations of these modes 
with EATs_int and the proportions of explained variance 
were calculated. 

The proportion of explained variance (Sp) is defined as 

ˆ /p y yS S S , where Sy is the SST (EATs_int) variance and 

ŷS  is the variance of ˆ.y  ŷ  is the SST (EATs_int) asso-

ciated with the time series of SST modes (Xk), which is ob-
tained by the linear fitting equation 1ˆ( ) .ky t b X  In this 

equation, b1 is the regression coefficient calculated by the  

Table 1  List of historical simulations and projected simulations under the RCP4.5 scenario with 19 CMIP5 models 

Modeling groups Model ID Resolution (Lat × Lon) 

CSIRO-BOM, Australia ACCESS1.0 1.875°×1.25° 

ACCESS1.3 

Beijing Climate Center (BCC), China BCC-CSM1.1 2.8125°×2.8125° 

BCC-CSM1.1 (m) 1.125°×1.125° 

National Center for Atmospheric Research (NCAR), USA CCSM4 1.25°×0.9375° 

CESM1-BGC 

CESM1-CAM5 

CSIRO-QCCCE, Australia CSIRO-Mk3.6.0 1.875°×1.875° 

The First Institute of Oceanography, China FIO-ESM 2.8125°×2.8125° 

NASA Goddard Institute for Space Studies, USA GISS-E2-H 2.5°×2° 

GISS-E2-R 

Met Office Hadley Centre, UK HadGEM2-CC 1.875°×1.24° 

Institute for Numerical Mathematics, Russia INM-CM4 2°×1.5° 

Institute Pierre-Simon Laplace (IPSL), France IPSL-CM5A-LR 3.75°×1.875° 

IPSL-CM5A-MR 2.5°×1.258° 

IPSL-CM5B-LR 3.75°×1.875° 

Max Planck Institute for Meteorology (MPI-M), Germany MPI-ESM-LR 1.875°×1.875° 

Meteorological Research Institute, Japan MRI-CGCM3 1.125°×1.125° 

Norwegian Climate Center, Norway NorESM1-ME 2.5°×1.875° 

Table 2  List of historical simulations and decadal predictions with eight CMIP5 models 

Modeling groups Model ID Resolution (Lat × Lon) 

Beijing Climate Center (BCC), China BCC-CSM1.1 2.8125°×2.8125° 

Canadian Center for Climate Modelling and Analysis, Canada CanCM4 2.8125°×2.8125° 

Euro-Mediterranean Center on Climate Change, Italy CMCC-CM 0.75°×0.75° 

Météo-France/Centre National de Recherches Météorologiques, France CNRM-CM5 1.40625°×1.40625° 

LASG, Institute of Atmospheric Physics, China FGOALS-g2 3°×2.8125° 

Institute Pierre-Simon Laplace (IPSL), France IPSL-CM5A-LR 3.75°×1.875° 

Max Planck Institute for Meteorology (MPI-M), Germany MPI-ESM-LR 1.875°×1.875° 

Meteorological Research Institute, Japan MRI-CGCM3 1.125°×1.125° 
 



 Luo F F, et al.   Sci China Earth Sci   December (2014) Vol.57 No.12 3065 

least-squares estimation method. Based on the periodicities 
of Xk, Xk can be predicted by harmonic analysis. EATs_int 
is then predicted via the multiple linear regression model 
with predictors of the three modes, based on the respective 
lead-lag correlations between the SST modes and EATs_int. 
Since the industrial revolution, the impacts of external forc-
ing are likely to be associated with global warming induced 
by greenhouse gases, which can be established by deter-
mining the trend of EATs (EATs_trend) via the second- 
order fit. It should be pointed out that EATs_trend contains 
both the centennial-scale variability and the signal of global 
warming. First, we respectively calculated the modeled 
EATs_trend using data from the historical and projection 
runs under the RCP4.5 scenario. The multi-model ensemble 
(MME) mean was then seen as the change of EATs induced 
by anthropogenic forcing. Finally, EATs_int and EATs_ 
trend were combined to reconstruct the EATs, before per-
forming the hindcast and prediction. 

For the internal variability, the uncertainty of the oceanic 
modes or EATs_int was estimated via the ±1 standard devi-
ation range itself. For the external forcing, the model spread 
was used to evaluate the uncertainty of EATs_trend. The 
larger the value of the model spread, the wider the disparity 
among the climate models, and hence a greater level of un-
certainty. Given that this paper focuses on the prediction of 
the decadal components of EATs, all datasets were filtered 

with a nine-point running-mean filter to obtain low-    
frequency components. The indices of these oceanic modes 
and EATs_int were detrended to reduce the possible an-
thropogenic impacts, based on the assumption that the im-
pact of anthropogenic forcing on the climate is linear. Here, 
the climatic period is from 1970 to 1999. 

2  Predicted model for EATs_int with the oce-
anic modes as the predictor 

2.1  Oceanic modes 

The Atlantic Multidecadal Oscillation (AMO) is a leading 
fluctuation pattern of SST in the North Atlantic region, 
which has been linked to the Meridional Overturning Cir-
culation (MOC) in many models (Delworth and Mann, 2000; 
Enfield et al., 2001; Sutton and Hodson, 2005, 2007; Knight 
et al., 2005). The AMO has a period of 65 years and an am-
plitude of 0.4°C in instrumental records (Delworth and 
Mann, 2000; Enfield et al., 2001; Sutton and Hodson, 2005). 
Following earlier AMO definitions (Enfield et al., 2001; 
Wang et al., 2009), the AMO index was defined as the an-
nual averaged low-frequency SST anomaly (SSTA) in the 
North Atlantic basin (0°–60°N, 75°–7.5°W). The temporal 
evolution of AMO index (dashed line in Figure 1(a)) is 
characterized by two cold phases from the early-1900s to  

 

 

Figure 1  Annual averaged temporal evolution and power spectrum of oceanic modes. (a)–(c) The original AMO, IPO, and IOBD indices from 1870 to 
2010 (dashed lines); principal component (PC) of the indices from 1870 to 2040 (solid lines); ±1 standard deviation range (gray shading). Unit: °C. (d)–(f) 
Power spectrum of the PCs of indices (solid lines); significance level (α = 0.05) of a standard red noise spectrum (dashed lines). 
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the late-1920s and from the mid-1960s to the 1990s, and 
two warm phases from the 1930s to the 1960s and from the 
mid-1990s until now. These are in agreement with previous 
studies (Delworth and Mann, 2000; Enfield et al., 2001; 
Sutton and Hodson, 2005, 2007; Knight et al., 2005; Wang 
et al., 2009). Figure 2(a) shows that the AMO explains ap-
proximately 50% of the internal decadal variance of SSTs 
over the North Atlantic. In particular, the proportions of 
variance are greater than 70% over the tropical and eastern 
North Atlantic. Besides, the proportion is approximately 
50% in the western tropical Pacific. 

The Inter-decadal Pacific Oscillation (IPO) is the decadal 
climate variability in the leading Pacific SST pattern. Dur-
ing the positive phase, the IPO is marked mainly by cool 
anomalies over the mid-high latitudes of the South and 
North Pacific, while it is warm along the west coast of 
the United States and the tropical Pacific (Power et al., 1999; 
Folland et al., 1999). The situation is opposite in the nega-
tive phase. The IPO index is defined as the time series of 
the first empirical orthogonal function (EOF) of SSTAs in 
the Pacific basin (60°S–60°N, 120°E–80°W) (Power et al., 
1999; Folland et al., 1999). The first mode accounts for 
43% of Pacific SSTs. The IPO (dashed line in Figure 1(b)) 
experiences one cold period from the mid-1940s to the 
mid-1970s, and two warm periods from the 1920s to 1940s 
and from the 1970s to 1990s. The warm phase of the IPO 
shifts to a cold phase at the beginning of the 21st century. 
This is consistent with previous results (Folland et al., 1999). 
The IPO is the most important in the tropical mid-eastern 
Pacific, explaining 60% of the variance. In the mid-high lati-
tudes of the Pacific, the proportion is approximately 50% 
(Figure 2(b)). 

The Indian Ocean Basin-wide Decadal (IOBD) pattern is 

characterized by a uniform basin-wide warming or cooling 
in the Indian Ocean on the decadal timescale (Allan et al., 
1995; Li et al., 2012). The IOBD pattern is defined as the 
leading EOF of SSTAs over the Indian Ocean (20°S–25°N, 
35°–120°E), which explains 70% of the total variance. 
From the dashed line in Figure 1(c), it can be seen that the 
IOBD pattern has a warm period from the 1870s to the late 
1880s, and subsequently moves into a cold phase with a 
weak amplitude in the 1890s until the 1950s. The IOBD 
pattern remains in a cold phase from the 1950s to 1980s, 
and thereafter shifts to a warm phase. Figure 2(c) shows that 
the IOBD pattern is more important over the tropical Indian 
Ocean and western Pacific (eastern Philippine Sea) and ex-
plains approximately 60% of the variance. 

Accordingly, the AMO, IPO, and IOBD pattern represent 
the leading mode of the internal decadal variance of SST in 
the North Atlantic, Pacific, and Indian Ocean, respectively. 
The sum of the proportions of variance of the three modes is 
greater than 90% over most of the North Atlantic, tropical 
mid-eastern Pacific, Indian Ocean, and parts of the western 
Pacific (Figure 2(d)). 

2.2  Connections of the oceanic modes with EATs_int 

An index of EATs_int was defined as the Ts anomalous 
mean over the domain (22.5°–45°N, 100°–125°E), as was 
done in previous studies (Wang et al., 2009; Li and Luo, 
2013). There are two cold periods and two warm periods 
during the past 100 years (see Figure 1(a) in Li and Luo 
(2013)). The two cold periods are from the early 1900s to 
1920s and from the 1950s to the early 1990s, whereas the 
warm periods are from the 1920s to the late 1940s and from 
the mid-1990s to now. EATs_int has an amplitude of 0.6°C  

 

 

Figure 2  Proportion of explained variance for (a) AMO, (b) IPO, (c) IOBD pattern and (d) AMO+IPO+IOBD relative to the decadal internal SST variability. 
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and a significant period of 60–70 years. 
Figure 3 shows the lead-lag correlation coefficients of 

the AMO, IPO, and IOBD pattern with EATs_int. When 
EATs_int leads the AMO by 6 years, a positive correlation 
reaches a maximum (correlation coefficient of 0.79). This is 
contrary to the connection of the IPO/IOBD pattern with  

 
 

 

Figure 3  Lead-lag correlations: AMO-EATs_int (solid line); IPO-EATs_ 
int (dashed line); IOBD-EATs_int (dotted line). 

EATs_int. When the IPO (IOBD pattern) leads EATs_int by 
10 (5) years, a positive correlation reaches a maximum, 
with correlation coefficients of 0.56 (0.74). As we know, 
the response of the atmosphere to SST is a rapid process. 
Hence, the simultaneous correlation between the AMO and 
EATs should be the strongest. However, this finding that 
EATs_int leads the AMO challenges the traditional view. Li 
and Luo (2013) proposed two hypotheses to explain the 
connection between the AMO and EATs: (1) external forc-
ing disturbs the intrinsic connection of the climate system; 
and (2) a connection exists via some processes of the cli-
mate system itself, such as the “the atmospheric bridge”, 
“oceanic bridge” or atmosphere-ocean interaction. Unfor-
tunately, due to a lack of observational datasets, it is diffi-
cult to validate the connection and investigate the physical 
mechanism at present. When the correlation between the 
AMO and EATs is strongest, the AMO explains approxi-
mately 40% of EATs_int in the Midwest (Figure 4(a)), 
which is in agreement with a previous study (Li and Bates, 
2007). The IOBD pattern accounts for more than 30% 
above 30°N (Figure 4(b)), whereas the IPO is less than 10% 
in most of East Asia (Figure 4(c)). The total of proportions 
is greater than 60% in the Midwest and north, and nearly 
30% in the region south of 30°N (Figure 4(d)). 

 

 

Figure 4  Proportion of explained variance for (a) AMO, (b) IPO, (c) IOBD pattern, and (d) AMO+IPO+IOBD relative to EATs_int when the correlations 
of the oceanic modes with EATs_int are strongest. 
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Similar lead-lag correlations were calculated among the 
AMO, IPO, and the IOBD pattern. The simultaneous corre-
lation between the AMO and IPO is much less significant 
(correlation coefficient of less than 0.1). When the AMO 
leads the IPO by 17 years, their correlation is the strongest 
negative (0.66), and when the AMO lags the IPO by 20 
years their correlation is the strongest positive. A similar 
result was obtained by d’Orgeville and Peltier (2007). There 
is also no significant simultaneous connection between the 
AMO and IOBD pattern, with a coefficient of 0.33. When 
the AMO lead period is 19 years, the negative correlation 
reaches a maximum (0.66), but when the AMO lags the 
IOBD pattern the correlation is less significant. Either the 
simultaneous or the lead-lag correlations between the IPO 
and IOBD pattern are much less significant. 

2.3  Predicted models for EATs_int and validation 

On the basis of the lead-lag correlations of the AMO, IPO, 
and IOBD pattern with EATs_int, we constructed eq. (1) 
with a multiple linear regression, 

 0 1 AMO 2 IPO

3 IOBD

EATs _ int( ) ( 6) ( 10)

  ( 5),

t b b X t b X t

b X t

    

 
  (1) 

where t is time, b0, b1, b2, b3 are regression coefficients; 
EATs_int is the mean of the Ts anomaly over the domain 
(22.5°–45°N, 100°–125°E); and XAMO, XIPO, XIOBD are the 
time series of principal components (PCs) by harmonic 
analyses based on the original indices of the AMO, IPO, 
and IOBD pattern (black solid lines in Figure 1(a)–(c)). The 
purpose of harmonic analysis is to obtain the PCs of the 
original indices and predict the time evolution of these in-
dices in future. Due to the great differences among the pe-
riods of the three oceanic modes, the instrumental data have 
different numbers of full cycles for different modes. There-
fore, different harmonic components were selected for dif-
ferent modes. One harmonic was used to reconstruct the 
XAMO, which captures 83% of the AMO index; four har-
monics were used to reconstruct the XIPO, which captures 
70%; and two harmonics were used to reconstruct the XIOBD, 
which captures 81%. Based on the periodicities of harmonic 
series, the time evolutions of indices can be predicted. In 
Figure 1(a) and (c), both of the predicting AMO and IOBD 
indices begin to fall at 2010 and shift to a negative phase 
around 2040. The predicting IPO index (Figure 1(b)) is 
characterized by one and a half fluctuations from 2010 to 
2040. The index has a positive phase during 2015–2025 and 
a negative phase during 2025–2035. After 2035, it changes 
into a positive phase. 

As verification, the power spectrums of XAMO, XIPO, XIOBD 
were used to evaluate whether or not these PCs can repre-
sent the periods of the oceanic modes. From Figures 
1(d)–(f), the three periods are 50 years, 20–50 years, and 70 
years, respectively. Hence, XAMO, XIPO, XIOBD reflect the 

primary periods of the original indices. The regression 
model of EATs_int (eq. (1)) is established using time series 
of EATs_int and XAMO, XIPO, XIOBD from 1905 to 1999, 
where XAMO, XIPO, XIOBD are the factors. The regression co-
efficients (b0=−0.04, b1=0.13, b2=−0.04, b3=0.18) were then 
obtained by the least-squares method. These regression co-
efficients were substituted into eq. (1) to obtain the recon-
structed EATs_int, referred to as Re_EATs_int. The 
hindcasted Re_EATs_int from 2000 to 2005 was compared 
to the observation, with the values from 2006 to 2040 as a 
prediction. It can be seen that Re_EATs_int captures the 
main features of EATs_int to a certain extent (red dashed 
line in Figure 5), as indicated by the high correlation coeffi-
cient of 0.7. For example, the two warm phases from the 
1920s to 1950s and from the mid-1990s to now in EATs_int 
exist in Re_EATs_int, as do the two cold phases. However, 
Re_EATs_int cannot simulate the period of 20 years in 
EATs_int. One reason for this could be that the impact of 
the IPO with the period of 20 years on EATs_int is weaker 
than the impacts from the AMO or IOBD pattern. Another 
reason could be that some predictors with the period of 
20–30 years were not considered. 
 
 

 

Figure 5  Annual averaged temporal evolution of East Asian surface 
temperature indices. (a) EATs_int from 1901 to 2009 (blue solid line) and 
Re_EATs_int from 1901 to 2040 (red dashed line): reconstructed period 
(1905–1999); hindcast period (2000–2005); predicted period (2006–2040). 
The light red shading indicates the ±1 standard deviation range of Re_ 
EATs_int. (b) EATs trend by a second-order fit in different models (col-
ored thin lines), multi-model ensemble mean (red solid line), and observa-
tions (blue dashed line), relative to 1970–1999. The light red shading indi-
cates the model spread. (c) Same as EATs_int, but for EATs. Unit: °C. 
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In Figure 5(a), for the hindcast from 2000 to 2005, the 
mean of Re_EATs_int is 0.37°C, which is quite close to the 
observational mean of 0.34°C. This indicates the predicted 
model has a certain degree of prediction skill. Re_EATs_int 
remains stable throughout 2006–2015, and thereafter begins 
to fall. Up until 2025, Re_EATs_int shifts into a negative 
phase. This is in agreement with the prediction of Qian et al. 
(2010) for GSAT, which they showed will begin a cold pe-
riod in the 2030s. Quantitatively, given the ±1 standard de-
viation ranges of the AMO, IPO, and IOBD pattern 
(±0.35°C, ±0.008°C, and ±0.02°C) (gray shading in Figure 
1(a)–(c)), we could easily estimate Re_EATs_int to be 
0.2±0.27°C in 2040 upon the predicted model. 

3  Predicted trend of EATs based on the impact 
of greenhouse gases 

The main effect of anthropogenic forcing is global warming 
induced by emissions of greenhouse gases after the Indus-
trial Revolution. The long-term trend of observational EATs 
with a warming rate of 0.87°C/100 a increases by about 1°C 
from 1901 to 2010 (thick blue dashed line in Figure 5(b)). 
The warming rate is roughly equivalent to the rate of 
0.81°C/100 a (Tang and Ren, 2005). The colored thin lines 
in Figure 5(b) display the trends of EATs according to the 
CMIP5 models. The correlation coefficients between the 
modeled and observed trends are summarized in Table 3. 
Apart from CSIRO-Mk3.6.0 and HadGEM2-CC, the other 
models perform well in simulating the upward trend of 
EATs, exhibiting high correlation coefficients (>0.7). The 
range of root-mean-square error (RMSE) is from 0.001°C to 
0.04°C (Table 3). CCSM4, with an RMSE of 0.001°C ex-
hibits the highest skill in simulating the observed long-term 
trend. CCSM4 predicts that EATs will increase to 1.4°C by 
2040. Besides, the RMSEs of CSIRO-Mk3.6.0 and HadG-
EM2-CC are the highest among the models. 

The long-term trend of the MME mean (MME_rcp45) 
bears a strong resemblance to the observation (thick red 
solid line in Figure 5(b)), showing a linear trend of 

0.74°C/100 a during 1901–2009, a high correlation coeffi-
cient of 0.98, and a small RMSE of 0.005°C. The mean 
MME_rcp45 of 0.01°C during 1901–2009 is equal to the 
observation. These results indicate a high skill of MME_ 
rcp45 in simulating the observed long-term trend, and the 
prediction of MME_rcp45 is reasonable. It is expected that 
the trend of EATs will increase to 1.5±0.37°C by 2040. Its 
warming rate will be approximately 3°C/100 a during the 
period 2010–2040. 

4  Prediction over 30 years 

Re_EATs_int and MME_rcp45 were combined to form the 
reconstructed decadal component of EATs (Re_EATs) (red 
dashed line in Figure 5(c)). Compared with EATs (blue 
solid line in Figure 5(c)), Re_EATs reproduces well the two 
periods of increase during the 1910s–1930s and 1970s– 
1990s, and one period of decrease from the mid-1930s to 
the early-1970s, and has a high correlation coefficient of 
0.83. During 2000–2005, Re_EATs shows an upward trend 
with a warming rate of 0.03°C/a, which qualitatively ac-
cords with the trend of EATs (0.007°C/a). The difference of 
the mean between Re_EATs and the EATs is small (0.02°C). 
From 2010 to 2040, Re_EATs can be seen to rise during 
2010–2015, and decrease thereafter. A cold floor will occur 
during 2025–2030, and thereafter warm gradually. Because 
Re_EATs_int decreases continuously from 2030 to 2040, 
and will be in its negative phase, the warming trend of 
Re_EATs is a result of anthropogenic forcing. Quantita-
tively, with a linear trend of 0.01°C/a during 2010–2040, 
Re_EATs is 1.3±0.64°C by 2040. This result is similar to 
the prediction from the Hadley Center for the period 
2011–2020 (Tollefson, 2013), e.g., the warming phase dur-
ing 2010–2015, and a slight cooling phase after 2015. 

The Re_EATs was compared with the results of the de-
cadal prediction in eight CMIP5 models (Table 2). During 
2006–2035 (Figure 6 and Table 4), the linear trends of three 
models (BCC-CSM1.1, CNRM-CM5, and FGOALS-g2) is 
negative, while in the remaining five models (CanCM4,  

Table 3  Evaluation of the model skill in simulating EATs_trend 

Model ID Correlation coefficient RMSE (°C) Model ID Correlation coefficient RMSE (°C) 

ACCESS1.0 0.79 0.02 GISS-E2-R 0.90 0.01 

ACCESS1.3 0.72 0.03 HadGEM2-CC 0.54 0.04 

BCC-CSM1.1 0.99 0.01 INM-CM4 0.96 0.01 

BCC-CSM1.1(m) 0.99 0.02 IPSL-CM5A-LR 0.99 0.02 

CCSM4 0.99 0.001 IPSL-CM5A-MR 0.97 0.01 

CESM1-BGC 0.99 0.01 IPSL-CM5B-LR 0.97 0.01 

CESM1-CAM5 0.87 0.02 MPI-ESM-LR 0.99 0.02 

CSIRO-Mk3.6.0 0.54 0.04 MRI-CGCM3 0.99 0.005 

FIO-ESM 0.99 0.01 NorESM1-ME 0.95 0.02 

GISS-E2-H 0.97 0.02 MME_rcp45 0.98 0.005 
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CMCC-CM, IPSL-CM5A, MPI-ESM-LR, and MRI- 
CGCM3) it is positive, and the MME trend is 0.01°C/a. The 
mean predicted EATs from the models ranges from 0.3°C to 
1.4°C. The MME mean is approximately 0.9±0.3°C. In 
Figure 6, the EATs in the three models of BCC-CSM1.1, 
CMCC-CM, and FGOALS-g2 is shown to decrease during 
2010–2020, and then increase. The four models of CanCM4, 
IPSL-CM5A, MPI-ESM-LR, and MRI-CGCM3 show a 
warming throughout the 30 years, while CNRM-CM5 
shows a cooling. The prediction of the MME is stability 
during 2010–2025, and then a rise. According to the above 
analyses, the level of uncertainty in the predictions of the 
models is quite large. Despite the obvious difference be-
tween the Re_EATs and modeled curve, the linear trend of 
Re_EATs (0.002°C/a) is qualitatively in agreement with the 
trend of most of the models and the MME. 
 

 

Figure 6  Comparison of Re_EATs with the decadal prediction of CMIP5 
models and the MME. Top: temporal evolution of Re_EATs (light red 
shading indicates the ±1 standard deviation range. Bottom: blue solid line 
is the temporal evolution of the MME; colored thin lines are the temporal 
evolutions of the models. The light blue shading indicates the model spread. 
Unit: °C. 

5  Discussion and summary 

On the basis of the view that the real climate consists of 
natural internal variability and external forcing, we predict-
ed EATs over 30 years using a joint statistical-dynamical 
approach. For the decadal internal variability of EATs 
(EATs_int), we constructed a multiple linear regression 
model with predictors of the oceanic modes, considering the 
lead-lag correlations of the oceanic modes with the EATs_ 
int. The regression model was used to reconstruct EATs_int 
(Re_EATs_int). It was also applied to obtain the prediction 
of EATs_int based on the quasi-periods of the decadal oce-
anic modes. For the anthropogenic forcing, using the output 
of historical experiments and projections under the RCP4.5 
scenario in CMIP5 models, we assessed the historical evo-
lution of EATs via a second fit, and predicted the trend by 
calculating the MME mean (MME_rcp45). The sum of Re_ 
EATs_int and MME_rcp45 was the reproduced/predicted 
EATs (Re_EATs). The Re_EATs was compared with the 
results of the decadal prediction in eight CMIP5 models. 
The main conclusions can be summarized as follows: 

(1) The three oceanic modes (the AMO, IPO and IOBD 
pattern) account for more than 90% of the internal decadal 
variance of SST over the North Atlantic, tropical mid-  
eastern Pacific, Indian Ocean, and tropical western Pacific. 
The three modes can capture the major features of the de-
cadal internal SST variability. 

(2) When EATs_int leads the AMO by 6–7 years, a posi-
tive correlation reaches a maximum (correlation coefficient 
of 0.79). When EATs_int lags the IPO (IOBD pattern) by 
10 (5) years, the positive correlation is a maximum, with a 
correlation coefficient of 0.56 (0.74). The proportions of 
variance explained by the AMO and IOBD pattern are ap-
proximately 30%–40%, whereas the IPO is less than 10%. 
The total of the proportions is greater than 60% in the Mid-
west and north, and nearly 30% in the region south of 30°N. 
Hence, the effects of the oceanic modes can explain most of 
EATs_int. 

(3) Re_EATs_int was reconstructed and predicted by the 
multiple linear regression model with the three oceanic 
modes as predictors. During the reconstructed period 
(1901–1999), Re_EATs_int reproduced the warm and cold 

Table 4  Decadal prediction of the Re_EATs and CMIP5 models for 2010–2031 

Model ID BCC-CSM1.1 CanCM4 CMCC-CM CNRM-CM5 FGOALS-g2 

Trend (°C/a) 0.006 0.03 0.017 0.01 0.003 

Mean (°C） 0.27 0.1 1.4 1.0 0.84 

Model ID IPSL-CM5A-LR MPI-ESM-LR MRI-CGCM3 MME Re_EATs 

Trend (°C/a) 0.025 0.027 0.03 0.01 0.002 

Mean (°C） 1.32 1.06 0.66 0.94 1.11 
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phases in the observation, with a correlation coefficient of 
0.7. During the hindcast period (2000–2005), there was lit-
tle difference between the mean of Re_EATs_int and the 
observation. The prediction of Re_EATs_int suggested that 
it would remain stable during 2006–2015, and start to fall 
after 2015. Furthermore, Re_EATs_int will be in negative 
phase from 2025 to 2040, which is consistent with the pre-
diction by Qian and Lu (2010). 

(4) MME_rcp45 simulated the long-term trend of the 
observation well during 1901–2009, with a high correlation 
coefficient of 0.98. The prediction showed MME_rcp45 
with a warming rate of 0.3°C/10 a would increase to 
1.5±0.37°C by 2040. 

(5) During the reconstructed period (1905–1999), Re_ 
EATs corresponded to the upward and downward tenden-
cies in the observation, with a correlation coefficient of 0.83. 
During the hindcast period (2000–2005), the linear trend of 
Re_EATs (0.03°C/a) was qualitatively consistent with the 
observation (0.007°C/a). During the predicted period 
(2006–2040), Re_EATs was shown to increase during 
2010–2015, decrease thereafter until 2030, and then warm 
again. The Re_EATs, with a linear trend of 0.01°C/yr dur-
ing the 30 years, was predicted to be 1.3±0.64°C by 2040. 
Compared with the prediction in the CMIP5 models, the 
linear trend of Re_EATs is qualitatively in agreement with 
the trend of most of the models and the MME. 

The joint statistical-dynamical approach used in this 
study for decadal prediction is still at an exploratory stage. 
Many issues are unclear and deserve further examination. 
First, the impacts of volcanic eruptions and solar radiation 
on EATs were not taken into account in the prediction. 
Compared with decadal hindcast experiments with volcanic 
eruptions in MPI-ESM-LR, the EATs may be 0.14°C 
warmer in experiments without volcanic eruptions. The 
quasi-11-year period of solar radiation was used as a pre-
dictor in the regression equation for the model. The regres-
sion coefficient of 0.001 indicates that a direct impact of 
solar radiation does not play a key role. Second, there might 
be a systematic deviation between the EATs_int obtained by 
the statistical approach and the MME_rcp45 based on the 
modeled dataset. We will try to replace EATs_int in future 
work based on observational records by modeled predic-
tions of EATs. Moreover, no consideration was given to the 
nonlinear interaction between the internal climate variability 
and external forcing, which could have great impacts on the 
prediction. In addition, current knowledge of decadal oce-
anic modes is insufficient to accurately use the modes for 
prediction, because of the limitations of the length of in-
strumental records, the validity of proxy datasets, and the 
diversity of models (Medhaug and Furevik, 2011). Recent 
studies (Otterå et al., 2010; Chylek et al., 2010; Wang et al., 
2012) have argued that oceanic modes, such as the AMO 
and PDO, should be influenced by external solar and vol-
canic forcing. It can be speculated that the evolution of 
these modes is not regular. Therefore, prediction, based on 

the quasi-periods of decadal modes, should be noted. Final-
ly, why EATs_int leads the AMO is still unclear in instru-
mental records. Whether or not it is a real connection in the 
natural climate system or a result of impacts of the external 
forcing since the industrial revolution requires further re-
search. In future, as observational data proliferate, climate 
models improve, and understanding of multi-decadal varia-
bility deepens, we will also be able to improve the predic-
tion skill of the joint statistical-dynamical approach. 
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