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Street-level visualization is an important application of 3D city models. Challenges to street-level visualization include the 
cluttering of buildings due to fine detail and visualization performance. In this paper, a novel method is proposed for street- 
level visualization based on visual saliency evaluation. The basic idea of the method is to preserve these salient buildings in a 
scene while removing those that are non-salient. The method can be divided into pre-processing procedures and real-time visu-
alization. The first step in pre-processing is to convert 3D building models at higher Levels of Detail (LoDs) into LoD1 models 
with simplified ground plans. Then, a number of index viewpoints are created along the streets; these indices refer to both the 
position and the direction of each street site. A visual saliency value is computed for each building, with respect to the index 
site, based on a visual difference between the original model and the generalized model. We calculate and evaluate three 
methods for visual saliency: local difference, global difference and minimum projection area. The real-time visualization pro-
cess begins by mapping the observer to its closest indices. The street view is then generated based on the building information 
stored in those indexes. A user study shows that the local visual saliency method performs better than do the global visual sa-
liency, area and image-based methods and that the framework proposed in this paper may improve the performance of 3D vis-
ualization. 
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3D city models are widely used in a variety of fields (Kolbe, 
2008). Street-level visualization is one of its fundamental 
applications because many of our daily activities occur at 
street level, such as navigation and travel. This application 
is also one of the major advantages of 3D city models com-
pared with traditional 2D maps.  

One major challenge to street-level visualization is the 
cluttering of buildings. Another challenge is the performance 
of the visualization itself, which is especially important for 

mobile devices or Internet browsers that are increasingly 
being used for 3D location related applications (Rakko-
lainen and Vainio, 2001; Nurminen, 2008; Sun et al., 2009). 
These challenges call for efficient methods of street-level 
visualization.   

In reality, the number of visible buildings is limited when 
viewed at street level, so only the visible ones should be 
loaded to generate a 3D scene of a particular viewpoint. 
Meanwhile, these buildings have varying levels of im-
portance to the viewer due to their color, size or location. 
Therefore, we can further simplify the 3D scene by select-
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ing only those buildings that are most salient for the viewer. 
The overall objective of this study is to improve the 

street-level visualization capabilities of 3D city models. 
There are three specific aims. The first is to develop evalua-
tion algorithms to assess the visual saliency of each building 
at street level. We propose and test area, local and global- 
based methods to compute visual saliency. The second aim 
is to create a structure that is capable of storing the visual 
saliency information of each building in support of real-time 
visualization. The final aim is to improve the performance 
of real-time visualization for usage on devices with small 
processors, e.g., mobile devices or Internet browsers. 

1  Research on street-level 3D visualization/ 
generalization and building saliency 

1.1  Street-level visualization 

The street level view of 3D city models is gaining attention 
from both industry and academic fields. Google launched its 
street view service on May 25, 2007 (Vincent, 2007). Other 
companies, such as Microsoft (Kopf et al., 2010) and Ten-
cent (http://map.qq.com, accessed Dec 13, 2013), also pro-
vide a street view service for several cities. These street 
view services have been applied to many applications such 
as accessibility identification (Hara et al. 2013) and driver 
assistance systems (Salmen et al. 2012). However, these 
existing street view services are mainly based on images 
that are insufficient for certain applications requiring 3D 
view. Therefore, researchers are trying to construct and use 
object-based 3D city models at street level. For example, 
Xiao et al. (2009) proposed an image-based street city mod-
eling method that takes street view images as input, gener-
ates the 3D points and lines of the buildings using SFM 
(structure-from-motion) and then maps the textures using 
image segmentation. Lee (2009) introduced a robust 3D 
reconstruction system that combines the SFM filter with 
bundle adjustment. Micusik and Kosecka (2009) modeled 
the 3D city at street level using Panoramic Sequences. Cur-
rently, the number of 3D city models in street view is in-
creasing dramatically by implementing automatic 3D re-
construction methods. Considering the data volume of 3D 
city models in street view, the generalization of these mod-
els is required to improve visualization efficiency. 

1.2  Generalization of 3D buildings 

Generalization methods can be used to simplify 2D maps 
and 3D city models. Several studies have been performed 
that simplify single 3D buildings (Thiemann, 2002; Forberg, 
2007; Kada, 2002; Sester and Brenner, 2000) and building 
groups (Anders, 2005; Mao et al., 2011; Guercke et al., 
2011; Mao and Ban, 2013).  

Viewpoint has been a consideration in the 3D generaliza-
tion studies. Zhu et al. (2002) divided 3D city models into 

blocks and loaded the blocks around a viewpoint in dynamic 
visualization. They also selected different LoDs for 3D city 
models based on the block distance to the viewpoint. How-
ever, certain long-distance landmark buildings may be missed 
in this method. Parry et al. (2002) proposed a view-    
dependent structure for the simplification of high-resolution 
3D city facades. However, few studies have concentrated on 
the selection of buildings for street-level visualization, 
which is the focus of this paper. 

1.3  Visual saliency of buildings 

According to Itti et al. (1998), visual saliency is defined as a 
measure of how visually important an object is to a viewer. 
Scientists have proven the effect of visual saliency on the 
human recognition process (Yantis, 2005; Cole et al., 2004; 
Thompson and Bichot, 2005). Visual saliency has been em-
ployed in many fields such as automatic target detection 
(Itti and Koch 2000), robotics (Frintrop et al., 2006) and 
video compression (Itti, 2004). In 3D related applications, 
saliency is used primarily for shape enhancement (Kim and 
Varshney, 2006), shape simplification (Menzel and Guthe, 
2010), lighting (Lee et al., 2009), viewpoint selection 
(Mortara and Spagnuolo, 2009) and shape matching (Miao 
and Feng, 2010).  

In geographic information science, saliency is used to 
detect landmarks on a map (Elias, 2003; Elias et al., 2005) 
and measure how visible/attractive a facade is when ap-
proaching a decision point (Winter, 2003; Raubal and Winter, 
2002). In Raubal and Winter (2002), facade area, shape, color, 
visibility, cultural importance, intersections and boundary 
were measured and weighted to generate a value for the city 
object saliency. Elias (2003) determined building importance 
based on building use, size, number of immediate neighbors, 
orientation towards road, distance from road and height. 
These values were normalized to find the relative importance 
of each building. However, these building saliency defini-
tions are proposed based on 2D maps. These existing 
methods are directly based on the city model itself, without 
considering the viewpoint. Therefore, the method proposed 
in this paper is suitable for street-level visualization when 
the visibility of the model is important and the saliency 
value is determined primarily by the user’s viewpoint. 

For street-level visualization situations, viewpoint and 
angle must be considered and visual saliency should be 
calculated based on the projection of 3D models. Three 
steps (extraction, activation and normalization/combination) 
are required to compute visual saliency (Harel et al., 2006). 
Itti et al. (1998) proposed a method based on motivated 
feature selection, followed by center-surround operations 
that highlight local gradients, which ultimately generates an 
overall result. Bruce and Tsotsos (2005) added “self-infor-    
mation” and “surprise” into the feature extraction process. 
Harel et al. (2006) developed a Graph-Based Visual Sali-
ency method that creates activation maps based on certain 
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feature channels and then normalizes them in a way that 
highlights conspicuity and allows their combination with 
other maps. This method has performed better than other 
existing algorithms such as that of Itti et al. (1998). There-
fore, we reference this method as the existing image saliency 
extraction method. 

2  Street level visualization methodology 

The proposed generalization method can be described 
simply as the selection of visually salient buildings in street 
view. Visual saliency describes the distinctly subjective 
quality that makes certain items in the world stand out from 
their neighbors and immediately grab our attention. 

Based on the principle of visual saliency, three types of 
visual saliency are calculated for city models. The first is 
based solely on the visible area. The second is based on 
local difference and focuses on the change between the re-
moved building and its view from behind. The third is based 
on global difference, which requires 3D city models to be 
represented as attributed relational graphs (ARG), the nodes 
of which represent the features of objects such as buildings 
and the edges of which represent the relationships between 
these objects. Then, the overall visual saliency of a building 
is calculated by comparing the two ARGs that represent the 
original model and the generalized 3D city model without 
that building. 

2.1  Workflow of the algorithm 

The workflow for the proposed street level visualization 
method is given in Figure 1. It contains two stages: pre- 
processing and real-time visualization. In the first stage, 3D 
city models are converted into CityGML LoD1 models that 
contain only the ground plan and height. Certain points 
along streets are then selected as viewpoint indexes. Next, 
for each index, the street view is generated by 3D perspec-
tive projection and the visual saliency value is estimated for  

 

Figure 1  Workflow for street level visualization. 

each building in the index. In the second stage (real-time 
visualization), the current user viewpoint is taken as input 
and its “closest” indexes are selected. Then, the street view 
is generated based on stored building information from this 
index point and threshold values. The threshold values de-
fine the limits for building saliency values and control 
which buildings should be shown.  

2.2  Pre-processing 

2.2.1  Generating a CityGML LoD1 model 

By replacing the city models with their LoD1 simplification, 
the process used to calculate visibility and visual saliency 
can be simplified and the work time can be reduced. In this 
study, the LoD1 representation is generated by following 
the guidelines outlined here (Mao et al., 2010). First, project 
all surfaces into the horizontal plane. Then, unify the pro-
jected surfaces to the ground plan. Finally, merge the ground 
plan into one polygon. In the second step, close buildings 
are merged and simplified. For the simplification, we use 
the method proposed by Sester and Brenner (2004) and ex-
tended by Fan et al. (2009). 

2.2.2  Creating a predefined view index 

We create the predefined viewpoints by measuring a certain 
distance along the roads. Each viewpoint contains two 
views, one for each direction in which the road can be 
viewed at that point. In our implementation, the road is rep-
resented as line segments. Suppose the viewpoint is on line 
segment (A, B); then, the two directions are AB and BA. 
This is illustrated in Figure 2, where the T shapes along the 
roads indicate the two view directions at each point.  

An index structure, VPIndex, is used to store the visual 
saliency values of the buildings that are visible from each 
predefined viewpoint. The index is defined as 

VPIndex=<key, building_list>, 

where key=<position, orientation> defines the view and 
building_list refers to the buildings visible from this view, 
sorted by their visual saliency values. 

In reality, the visual saliency values vary continuously 
along the roads. Capturing this would require real-time 
computations of the visual saliency values as the user 
moves along the street. This would, however, require too 
much computation to be feasible in practice. Our pragmatic 
solution is to use the indexes as stated above. To ensure that 
visual salience values and index locations are representative, 
we generate the locations of the indexes as follows:  

Step 1: Split the road network into proximate straight line 
segments.  

Step 2: Create view indexes at both ends of a road seg-
ment in each direction.  

Step 3: Test whether the two indexes sort visible build-
ings in the same order based on their visual importance. 

Step 4: If not, add a new view index in the middle of the  
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Figure 2  Generated viewpoint index along the road. 

two indexes and repeat Step 3 until the neighboring indexes 
display the same order of visual importance for the list of 
buildings or until the distance between the index locations is 
less than a predefined threshold. 

Step 5: Repeat Step 2–4 for each road segment. 

2.2.3  Calculating visual saliency components 

The objective of this study is to improve the efficiency of 
street-level visualization by removing buildings that are not 
salient. Visual saliency is introduced to measure the visual 
importance of each building. For 3D buildings, color, visi-
ble area and distance to center were selected as the main 
components of visual saliency. This section describes how 
these factors are computed. 

(i) Color. Compared with other features, color is a diffi-
cult attribute to formalize (Anter, 2000). Therefore, the col-
or model is simplified in this paper. In our color model, 
each building has only one color. The texture, lighting or 
viewing distance are not considered. Furthermore, if a 
building façade has multiple colors, then our model uses the 
dominant color in the textured façade as the color of the 
building. 

From a visual saliency perspective, the color differences 
are more interesting than the color values. The color differ-
ence (E*

ab) can be defined as follows (CIE76 standard by 
the International Commission on Illumination, see CIE, 
2007): 

 * * * 2 * * 2 * * 2
2 1 2 1 2 1( ) ( ) ( )abE L L a a b b       , (1) 

where (L*
1, a

*
1, b

*
1) and (L*

2, a
*

2, b
*

2) are two colors in Lab 
color space (CIE 1976 space). In our implementation, the 
original color values in RGB are converted into Lab color 
space according to Hoffmann (2003). 

(ii) Visible area. The basic rule is that objects with larger 
visible areas should be assigned a higher saliency value. 
However, in 3D scenes, the visible area of a building is de-
pendent on the viewpoint.  

The visibility of each building is computed by determin-
ing whether all of its surfaces are completely covered by 
other surfaces. As shown in Figure 3, all of the 3D building  

 
Figure 3  Polygon visibility calculation. 

surfaces, such as pi3 and pj3, are projected onto a 2D visual 
plane (pi and pj). Then, the visibility of each pi is determined 
in the following steps: 

For every pj (j≠i), if pj and pi have overlapped a part of 
po, calculate co (the centroid of po). 

Find two corresponding 3D points of co (ci and cj) in the 
original 3D polygons of pi3 and pj3. This step is implement-
ed by creating a line from the viewpoint VP to co and then 
extending the line and calculating its intersections with pi3 
and pj3. 

If the distance from VP to cj is smaller than that from VP 
to ci, cut pi with pj. 

If the area of pi is not zero after cutting by all other pj, 
define pi as visible; otherwise, define pi as invisible. The 
building is defined as visible if at least one of its polygons is 
visible.  

(iii) Distance to center. According to the visual saliency 
theory, the location of an object is important. The center 
bias is used by Wang et al. (2010) in their image saliency 
computations. They note that “the closer a pixel is to the 
center of image, the higher probability it is observed”. In the 
case of street view visualization, the vanishing point of the 
road usually draws more attention than do other pixels in 
the image. In our implementation, the viewpoint is distrib-
uted along the road, so the vanishing point is usually at the 
center of the projection surface. Therefore, the buildings 
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projected near the center of the image are assigned higher 
saliency values than are those that are projected farther from 
the center.  

Suppose that the center of the projection plane is (0, 0) 
and the centroid of a building is projected into (xc, yc). In 
this case, the distance from the centroid to the projection 

center is 2 2
c c cd x y  . Assume that the visual saliency 

value of a building is vsb; the new adjusted visual saliency, 
based on distance to center, is represented by vsb′= 
vsb/(1+dc×wdc), where wdc is the weight of dc. The weight is 
determined based on the projection parameters and the size 
of screen. 

2.3  Computation of visual saliency values for 3D 
buildings 

In this paper, the buildings are removed to simplify the 
models. Therefore, the visual saliency of a building is cal-
culated based on the difference between the original model 
and the generalized model in which the building has been 
removed. As discussed in section 3.2.3, visual saliency is 
primarily defined by three factors: color, visible area and 
distance to center. These factors are summarized to compute 
the visual saliency values of a 3D building. 

Three methods are proposed to calculate the saliency 
value: minimum projection area, local difference and global 
difference. The minimum projection area method only con-
siders visible area in the saliency calculation. The local dif-
ference method considers visible area, color difference from 
the rear view of the building and the distance to center, but 
not the relationship of a building to other buildings. Finally, 
the global difference method calculates the overall differ-
ence between the original and the generalized models. The 
parameters of color and visible area were selected mainly 
based on the visual saliency components defined by Itti et al. 
(1998). Meanwhile, in street-level visualization, there is 
usually a road that draws the user’s view into the center of 
the scene, so it is necessary to give more weight to the 
buildings near the center. Other features, such as the shape 
of a building, can be represented by the projection area and 
color difference because, in our study, we are trying to 
identify non-salient buildings for which visual saliency val-
ues can be defined based on the selected parameters. 

2.3.1  Minimum projection area method 

In street-level visualization, buildings with relatively larger 
visible areas usually draw more attention than do others. 
Therefore, the visual saliency of a building can be deter-
mined by its visible area in the projected 2D plane.   

In the minimum projection area method, if the projected 
2D visible area of building br is ar, then Saliency(br)=ar, 
where Saliency() is a function to calculate the saliency value 
of a building. The area method is actually used as a refer-
ence point to which one can compare other methods. If sev-

eral buildings are removed, then the overall visual saliency 
is simply the sum of each building’s saliency. Because visi-
ble area is the sole factor used to calculate the saliency val-
ue in this method, there is no overlap between the removed 
buildings and the saliency value is not affected by the order 
of calculation. 

2.3.2  Local difference method 

In the projected 2D plane, if a building is removed, the view 
from its rear side (or its background) appears in its place. 
The background view might include other buildings, sky, 
ground or road. The overall difference between an image 
taken prior to the removal of a building and an image of its 
background can be used to determine a building’s visual 
saliency. 

To calculate the saliency value of building br, the build-
ing br is first removed from the original city models and the 
remaining buildings are then re-projected. The color differ-
ences between the visible polygons of br and the polygons 
visible from the rear side view of br in the new model are 
multiplied by their intersection area and summarized to-
gether. For buildings with different colors, the color differ-
ence between each pixel pair from br and bk is summarized 
and divided by the number of pixels. If br and bk are homo-
chromous or if their area is smaller than a certain value, 
then the color difference is based on their main color. Fi-
nally, the summarized color difference is adjusted by the 
distance from the projected centroid of br to the projection 
center. This process is described in the following pseudo 
code: 

br={pi|1inr};  
Remain={bk|1knk∩k≠r};  
Diff=0; 

Arear=
1

Area( )
rn

i
i

p

 ; 

Reproject Remain; 
For each pi in br  
{For each bk in Remain  
  {For each pj in bk  
      {Pij=Intersection of pi and pj; 
        If Area(pij) is not zero  
         {If pij in br and bk are homochromy 
   {Color difference cd=E*

ab( br.color, bk.color); } 
Else 
      {Color difference cd=; } 
      Diff=Area(pij)×cd+Diff; 
     Arear=ArearArea(pij); 
      } 
    } 
  } 
} 
Diff=Arear×Max(E*

ab)+Diff; 
dc=distance from centroid of br to the camera center 

(0,0); 
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Saliency(br)=Diff/(1+dc×wdc); 
Initially, pi is the visible polygon of br and Remain is the 

remaining building models without br. Diff is the summa-
rized color difference initialized at 0. Arear is the visible 
area of br, which becomes the background (sky or road) and 
is initialized at the sum area of the visible polygons of br.  

The set Remain is re-projected to obtain the generalized 
2D visible polygons of the remaining buildings. Then, for 
each visible polygon pi in br, intersect pi with every repro-
jected visible polygon of the remaining buildings and sum-
marize the values of their intersection areas by their color 
differences into Diff and Arear, the latter of which is re-
duced by their intersection areas. After the loop, Arear is 
multiplied by the maximum difference color and added to 
Diff because it is quite obvious if a building, or a part there-
of, has completely disappeared. Finally, the distance from 
the projected centroid of br to the camera center is calculat-

ed and weighted by wdc. In this paper, wdc is set as 1/ 2 be-
cause the maximum distance from a corner of the visible 

projection area to its center is 2 . The visual saliency of br 
is generated from Diff and dc.  

When multiple buildings are removed, we can sum their 
local differences to establish the overall visual saliency. The 
Remain set should be the original set without the removed 
buildings. Similar to the area method, the order of building 
saliency calculation does not affect the overall value. 

2.3.3  Global difference method 

The third method for calculating visual saliency is based on 
the global difference, where the overall difference between 
a simplified model and an original model is used to repre-
sent the saliency value of a deleted building. Harel et al. 
(2006) proposed a method called Graph-Based Visual Sali-
ency (GBVS) to calculate the saliency distribution of an 
image. GBVS achieved 98% of the receiver operating char-
acteristic (ROC) area of a human-based control, compared 
with the 84% that was achieved using the classical algo-
rithms of Itti et al. (1998). Their method indicates that the 
graph-based method can be used for saliency calculation. 
This method is proposed for images. In this paper, we pro-
pose a new graph-based method to calculate the global dif-
ference for 3D city models while considering the projection 
feature in a certain viewpoint. Mathematically, features in 
3D city models can be represented by attributed relational 
graphs (ARG), where the nodes contain features of city ob-
jects such as buildings and the edges contain information 
about the relationship between nodes, such as the distance 
between buildings. Therefore, the problem of visual similar-
ity between city models, as in street view, is simply con-
verted to the problem of matching two ARGs.  

A great deal of effort has been devoted to developing an 
efficient ARG matching algorithm. Kim et al. (2004, 2010) 
proposed a method using the nested structure of earth mov-
er’s distance (NEMD) to calculate the difference between 

two ARGs. This paper employs the NEMD method to 
measure the visual similarity between the original and the 
generalized city models. 

Assume two ARGs (G and G′) defined as 
G={V, R}, where V={vi,,wi|1i≤} and R={rij|1in, 

1jn} 
G′={V′, R′}, where V′={v′i′,,w′i′|1i′n′} and R′={r′i′j′ 

|1i′n′, 1j′n′} 
In the context of this paper, G represents an original 3D 

city model and G′ represents a generalized model. All vi and 
v′i′ are v-dimensional vectors to represent features of the 
buildings; wi and w′i′ are their respective weights. All rij and 
r′i′j′ are r-dimensional vectors for relationships between 
buildings.  

Because the correspondence from V to V′ is unknown, 
we calculate the difference from V to V′ under the assump-
tion that vi in V is generalized into v′i′ in V′ and create a 
distance matrix for all of {vi, v′i′|1in, 1i′n′}. This dis-
tance matrix provides the corresponding relationships be-
tween buildings from original and generalized models. If 
the minimum value in the ith row is located in the i′-th 
column, the vi in V is converted into v′i′ in V′. The saliency 
value between V and V′ is defined as the sum of the dis-
tances between their corresponding building pairs. The sa-
liency computation is a three-step procedure. First, define 
the nodes and relations, as well as the distances between 
nodes and between relations. Second, supposing that build-
ing vi in the original city model is generalized into v′i′, 
compute the difference between V and V′ with earth mover’s 
distance (EMD) and create the n×n′ distance matrix Dbuilding 
for every vi and v′i′. Third, determine the mapping from 
building vi to v′i′ that minimizes the overall difference based 
on the distance matrix Dbuilding and define the minimized 
difference as the saliency value between V and V′. 

Step 1: Definition.  In our application, to reflect the 
visual saliency, node vi contains two features from the 
building: visible projected area and color. The weight of 
each node is its visible projected area divided by the maxi-
mum area in the models. The relationship between two 
nodes is defined as the difference between the centroids of 
their projected polygons (dx, dy) in street view. The differ-
ence associated to the graph edge is actually a 2D vector 
that indicates not only the length of the difference but also 
the direction of the difference, or the difference in 2D space. 
Figure 4 gives an example of two buildings (a) and the Then, 
we need to define the distance between the nodes and the 
distance between the relationships. To make the results 
comparable, the distances are normalized to [0, 1], where 0 
represents two items that are completely the same and 1 
represents two items that are completely different. The dis-
tance between two nodes is defined by both the normalized 
area difference and the color difference. As shown in eq. (2), 
the color difference *

abE  is given by eq. (1) and is nor-

malized to [0, 1] by dividing it by the maximum possible  



454 Mao B, et al.   Sci China Earth Sci   March (2015) Vol.58 No.3 

 

 
Figure 4  Buildings in street-level view and the corresponding ARG. 

color difference. The weights of area difference and color 
difference are the same in this paper (0.5) and could be 
changed according to the application requirements. Hence, 
we obtain the following expression (dnode) for the relation-
ship between two buildings (vi and vj): 

 
*

node *

| |
( , ) 0.5 0.5 .

 
   


i j ab

i j

ab

Area Area E
d v v

MaxArea Max E
 (2) 

The relationship difference refers to the Euclidean dis-
tance between two buildings divided by the maximum dis-
tance between the nodes in the projected scene, as given in 
eq. (3), where rij=(dxij, dyij), r′i′j′=(dx′i′j′, dy′i′j′). 

      2 2

relation ,ij i j ij i j ij i jd r r dx dx dy dy           . (3) 

Applying the dnote and drelation defined in eqs. (2) and (3), 
we can calculate the distance between the projected 3D city 
models.  

Step 2: Generating the difference matrix. Assuming that 
building vi corresponds to building v′i′, the difference be-
tween the original model V and the generalized model V′ is 
calculated using the EMD algorithm. The two models are 
described as V={(vi, wi)| 1in} and V′={(v′i′, w′i′)| 1i′n′}, 
where vi and v′i are the buildings and wi and w′i′ are their 
respective weights. When building vi corresponds to build-
ing v′i′, the distance between vj in V and v′j′ in V′, dinner(j, j′) 
is defined as the weighted sum of their feature difference 
(dnode(vj, v′j′)) and their relation difference from vi and v′i′, 
respectively (drelation(rij, r′i′j′)), as shown in eq. (4): 

        inner node relation, 1 , ,        j j ij i jd j j p d v v p d r r ,  (4) 

where p is in the interval [0, 1] that adjusts the weights of 
nodes and relations. In our application, p is set to 0.5, which 
means that the node and relation are equally important. 
Based on eq. (4), we obtain the distance matrix Dinner=  
[dinner(j, j′)| 1jn, 1j′n′].  

The EMD distance from V to V′ is computed by using the 
distance matrix Dinner. To obtain the EMD, the mapping 
matrix F=[f(j, j′)], where f(j, j′) represents the correspond-
ence between building vj and v′j′, is computed by minimiz-
ing the distance given by eq. (5) (Kim et al. 2004): 
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' 1

1

'

1 1 1 1

( , ) 0,  1 ,  1 ,

( , ) ,  1 ,

( , ) ,  1 ,

( , ) min , .

n

i
j

n

j
j

n n n n

j j
j j j j

f j j j n j n

f j j w j n

f j j w j n

f j j w w











    

      

   

     

 
   

 





  

 

The first constraint allows the conversion from an origi-
nal model to a generalized model, not vice versa. The next 
two constraints limit the amount of “conversion” for each 
building by its weight. The fourth constraint forces the 
equation to convert the maximum number of buildings pos-
sible. Based on the optimal mapping F, the EMD is defined 
as the work normalized by the total weights:  
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V V . (6) 

The computation of the mapping matrix is a well-known 
transportation problem (Hitchcock, 1941). We employ the 
source code supplied by Till Schulte-Coerne (2005) to im-
plement the calculation. Eq. (6) is the inner EMD, which 
yields dbuilding(i, i′), the distance between V and V′ if vi is 
converted to v′i′. It is one element in the overall Distance 
matrix Dbuilding=[dbuilding(i, i′)| 1in, 1i′n′].  

Step 3: Calculating global saliency. The difference in the 
global visual saliency values VS between the original and 
generalized models is defined as the sum of the distances 
between their corresponding nodes.The distance matrix, 
Dbuilding=[dbuilding(i, i′)| 1in, 1i′n′], is generated from the 
n×n′ EMDs and indicates the corresponding relationship 
from nodes in V to V′. To reflect the overall difference, eq. 
(7) gives the calculation of VS for an original 3D city model 
V and a generalized model V′.  

 building
1

min{ ( , ) ( ) |1 }


    
n

i i i
i

VS d v v Area v i n . (7) 

Simple example of a visual saliency computation. We 
provide a simplified example of how NEMD can be used to 
compare two views of a 3D city model. In Figure 5, (a) is 
the original projected city model and (b) is the generalized 
model created by removing one node/building and extend-
ing the remains. Items (c) and (d) in the model depict G and 
G′, respectively, which are the ARGs of the models. The 
node 0 in G represents the top left building in (a); its area is 
10×10 and its color is red. The node 0 in G′ is the top left 
building in (b); its area is 12×12 and its color is black. 

To obtain the NEMD value of G and G′, we first need to  
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Figure 5  Example of NEMD calculation. 

create the inner distance matrix Dinner of every node pair. 
For two ARGs in Figure 5, 12 Dinner matrixes are created 
based on eq. (2). For example, Dinner of v0 and v′0 is given in 
eq. (8). Then, based on the Dinner that was just created, we 
compute one element in Douter matrix at a time by summa-
rizing the smallest values in different columns and rows and 
dividing by the number of rows. The first element is 0.13, 
so no elements in the third column and third row are con-
sidered in the next selection round. Therefore, 0.19 and 0.20 
are selected. For example, douter(v0, v′0)=(0.2+0.19+0.13)/ 
(1+1+1)=0.173; because the area is the same, the weights 
are 1. Including all elements, it is generated as shown in eq. 
(9). 

dnote(v0,v′0)=0.5×|area0-area0′|/MaxArea+0.5×∆E((255,0,0), (0,0,0))/∆Emax=0.5×|100144|/144+0.5×125.4/130=0.635, 

drelation(r00, r′00)=0 because r00=r′00=(0,0), dinner(v0, v′0, v0, v′0)=(1p)×dnote(v0,v′0)+p×drelation(r00, r′00)=0.667×0.635+0.333×0=0.42, 
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Douter shows the distance between nodes from two ARGs 
and this distance indicates the corresponding relation be-
tween nodes. For example, in eq. (9), the minimum value in 
the second row is Douter(v1, v′0), which means that node 1 in 
G is generalized into node 0 in G′. The minimum value in 
the first row of eq. (9) is Douter(v0, v′0), which indicates that 
the node v0 is merged into v′0 in the generalization process. 
The NEMD value of the two ARGs is generated from the 
Douter by summarizing the smallest values in each row to 
reflect the influence of removing nodes (the row number is 
the original node number and the column number is the se-
lected node). Therefore, the NEMD value between G and 
G′ is 0.173+0.113+0.109+0.113=0.508. 

2.4  Storing visual saliency values of 3D buildings 

As described in section 3.2.2, the viewpoint index is defined 
as VPIndex=<key, building_list>. When the visible building 
list of an index is generated, the visual saliency values are 
calculated for each of the buildings in the list. The saliency 
value of a building is calculated to be the visual distance 
between the original model and the model without the 
building (for any of the three methods proposed above). In 
pseudo code, the process is as follows:  

Original={All visible buildings}; 
Remain={All visible buildings}; 

Result={}; 
While(Remain!=NULL){ 

For each building bi in Remain{ 
di=Saliency(Remainbi, Original);      

} 
Select the bmin with minimum di (dmin); 
Set the visual saliency value of bmin into dmin; 
Remove bmin from Remain; 
Insert bmin into the front of Result.} 
 
In the pseudo code, all visible buildings are saved in a set 

called Original. In the beginning, the set Remain contains 
all visible buildings and the set Result is empty. Then, for 
each building bi in Remain, the difference in saliency values 
between the Remain set without bi and the Original set is 
calculated. The calculation function, Saliency(), can be the 
area difference, local difference, or global difference. Next, 
select the bi with the minimum di as bmin, remove bmin from 
set Remain and insert it into the front of the set Result. By 
storing each minimum di value, we can easily obtain the 
visual difference between the generalized models and the 
original ones. 

2.5  Real-time visualization 

The first step in the real-time visualization process is to map 
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the current user’s view to a predefined view (stored in the 
Viewpoint index). Assuming that the user viewpoint (vp) is 
restricted along the road, this mapping is done by selecting 
the two nearest predefined viewpoints that are set in the 
same direction as the user’s view. As shown in Figure 6, r1 
and r2 are the selected viewpoints for the current user’s 
view vp. Because the predefined views are different from 
the current user’s view, there may be some missing build-
ings if we replace the visible buildings at vp by r1 or r2. To 
account for as many visible buildings in vp as possible, r1 is 
a more reasonable choice than r2, though r2 may be closer to 
vp than r1. The detailed coverage analysis is given in this 
section.  

The visible buildings in the selected predefined view are 
generalized by their visual saliency values and visualized 
for the current user. The generalization strategy should be 
adjusted for different applications by resetting the thresh-
olds that determine which buildings are visualized. 

When the user moves around the models at street level, 
we continuously check the user’s viewpoint and find its 
corresponding predefined view, which is indicated by cur-
rent indexes CI. If the new selected indexes are the same as 
the current indexes CI, then nothing is done; otherwise, CI 
is set as the new indexes, those visible buildings are loaded 
and the 3D scenes are refreshed accordingly.  

Although the user viewpoint is located nearby the prede-
fined viewpoint index, there is still a certain distance from 
the index. The distance dvp is in [0, step], where step repre-
sents the interval between neighbor indexes, as shown in 
Figure 6. Therefore, some buildings that are visible in vp 
may not be visible in r1. To reduce the number of discrep-
ancies, two methods are tested. One is to reduce the step 
and another is to include both of the indexes that are near 
the viewpoints (r1 and r2, as shown in Figure 6). We calcu-
late the number of missing buildings using different index 
selection strategies by randomly generating the viewpoint 
along the street. Table 1 gives the distribution of missing 
building numbers for each index selection strategy. In Table 
1, Step=N means that the step is set to N meters and Step= 
N(2) means that the step is set to N meters and the visible 
models in both nearby indexes are selected.  

From Table 1, we can see that the visualization accuracy 
is increased by using two nearby indexes and that there is 
less improvement when only the strategy for reducing the 
intervals between indexes is used. Meanwhile, the average  

 

Figure 6  Viewpoint-based index selection. 

Table 1  Distribution of missing buildings in different index strategies 

Selection strategy 
Distribution of the No. of missing buildings 

0 1 2 >2 

Step=40 62% 18% 10% 10% 

Step=30 68% 17% 6% 9% 

Step=20 72% 16% 6% 6% 

Step=10 81% 13% 4% 2% 

Step=5 88% 9% 2% 1% 

Step=40(2) 79% 17% 3% 1% 

Step=20(2) 92% 7% 1% 

Step=10(2) 95% 4% 1% 

 
 
number of visible buildings in two neighbor indexes is not 
as high as the sum of visible buildings in the two indexes 
because many buildings are visible in both indexes. Table 2 
gives the average visible number in different steps.  

Two indexes are involved in the visualization of a view-
point, so some buildings may overlap and have two visual 
saliency values. The selection is based on the maximum 
visual saliency, which preserves important buildings, though 
some invisible buildings may also be preserved. 

3  Case study 

3.1  Implementation 

The experimental environment was implemented in Java. 
The platform was Eclipse 3.4.1 running on a PC with Inter 
2.4 GHz Core2 Duo CPU, 2.39 GHz 3.25GB RAM and 
Microsoft Windows XP SP3. The CityGML data were 
parsed by citygml4j 0.2.0 (CityGML4j, 2013, http://oppor-     
tunity.bv.tu-erlin.de/software/projects/show/citygml4j,acce-   
ssed Nov 12, 2013). The 3D city model was visualized with 
Xj3D 2.0.0 (Xj3D, 2013). The test datasets were obtained 
from CityGML.org (with random generated textures). 

The visualization framework is given in Figure 7. CityGML 
datasets were parsed with CityGML4j and converted into 
Java objects representing City Objects, such as buildings 
and roads. These were then converted to city object classes 
and assigned to one or several X3D Scenes with JTS (2013) 
and Xj3D (2013). The Java X3D scenes were viewed in 
Xj3D Viewer (Xj3D, 2013) and the user interaction infor-
mation (e.g., viewpoint location, orientation) was obtained 
from the viewer. Based on the viewpoint index information, 
the generalized scenes are generated dynamically. 

Table 2  Average node numbers in different index selection methods 

 Step=40 Step=20 Step=10 

One index 8.662 8.853 8.711 

Two neighbor indexes 10.518 9.75 9.277 



 Mao B, et al.   Sci China Earth Sci   March (2015) Vol.58 No.3 457 

 

 
Figure 7  Framework of the 3D city model preprocess and visualization. 

3.2  User study of street level visualization 

(i) Method.  To evaluate the three proposed visual sali-
ency methods, a user survey was conducted. The user sur-
vey included five questions about how similar the general-
ized street views were to the original view. In each question, 
three generalizations were created using the proposed local 
difference, global difference or minimum projection area 
method. In questions 1–5 (Q1–Q5), the reduced building 
numbers were 2, 3, 4, 5 and 6. An example of the question 
is given in Figure 8, in which Images (b)–(d) were generated 
by removing 5 buildings according to (b) their minimum 
projection area, (c) minimizing the local difference and (d) 
minimizing the global difference. The different areas from 
the original model were highlighted with a red circle, as 
shown in Figure 8. The user was asked to order these three 
images (without the highlights) according to their similarity 
to the original image.  

The user test was conducted by 38 specialists in the field 
(colleagues at KTH and Lund University). They received 
the user queries by email and viewed the images on the 
screen.  

(ii) Result.  Table 3 provides the result of the user study. 
To digitize the users’ replies, the image ranked as most sim-
ilar was given 2 points, followed by 1 point and 0 point. All 
user replies were averaged. Therefore, an image assigned 2 

points would imply that everyone thought it was the most 
similar to the original image. The average values of the user 
replies and the local visual saliency are listed in Table 3.  

(iii) Discussion.  From Table 3, we can conclude that 
the majority of case study participants replied that mini-
mizing the local difference created the most similar image 
to the original image. When the number of removed build-
ings is small (2–4 in Q1–Q3), we can assume that it is dif-
ficult for users to choose between the area projection meth-
od and the global difference method because these methods 
provided quite similar results. However, when more build-
ings are removed (Q4 and Q5), users replied that the global 
method provided better results than did the area method.  

In Table 4, the saliency values computed using the local 
difference method (denoted local saliency) for all images 
are given. By comparing Tables 3 and 4, we can identify a 
strong relationship between local saliency and user prefer-
ence. An increasing difference between the local saliency 
value (in the three images) implied a clearer vote for the 
local saliency difference method, as illustrated in Figure 9. 
The graph is constructed as follows. Let nu be the average 
point of the best results (local difference method in all tests), 
e.g., nu=1.55 in Q1. Then, suppose n′u=(nu1.5)×5 and 
dl=(dmindmin2)×100, where dmin is the minimum local sali-
ency value and dmin2 is the second lowest local saliency 
value in Table 4.  

During the survey, many users replied that the generali-
zation results in Q1, Q2 and Q3 were quite similar to the 
original one and that it was difficult to identify the differ-
ence, which demonstrates that it may be safe to remove 
some visually unimportant buildings in street-level visuali-
zation.  

3.3  A comparison with GBVS 

We compare our methods with the image based saliency 
method, Graph-Based Visual Saliency (GBVS), proposed by 
Harel et al. (2006). According to their test, GBVS achieved 
98% of the receiver operating characteristic (ROC) area of a  

 

Figure 8  Question in the user test. (a) Original image; (b) minimum projection area; (c) minimize the local difference; (d) minimize the global difference. 
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Table 3  User survey results 

 Minimum area projection Local difference Global difference 

Q1 1.0 1.55 1.05 

Q2 0.66 1.66 0.86 

Q3 0.63 1.71 0.52 

Q4 0.26 1.84 1.1 

Q5 0.34 1.79 1.21 

Table 4  Saliency values computed using the proposed method 

 Minimum area projection Local difference Global difference 

Q1 0.0107 0.00422 0.010478 

Q2 0.022987 0.008342 0.020752 

Q3 0.0330 0.01611 0.0330 

Q4 0.05992 0.01987 0.045869 

Q5 0.064044 0.030146 0.049986 

 

 

Figure 9  Correlation between user reply and local saliency difference. 

human-based control, compared with the 84% obtained us-
ing the classical algorithms of Itti et al. (1998). This paper 
tests the ability of the GBVS method to measure the visual 
similarity between an original and a generalized city model. 
We use the implementation of GBVS found in Harel (2013). 
This Matlab implementation is integrated with Xj3D in the 
Eclipse development platform.  

We first generate the image of the 3D scene with Xj3D 
render engine. However, the lighting of the scene may 
change based on time and environmental settings, such as 
sun light, day/night, or season, so we set parallel light as the 
predefined light and blue sky as the background.  

Assume that Img represents the projection of an original 
3D city model and Img’ represents a generalized model. We 
then compute the GBVS map of both Img and Img’ as gbvs 
and gbvs’. The visual saliency difference of two images is 
represented as the sum of all elements of |gbvs-gbvs’|. The 
results of the GBVS are given in Figure 10. 

The most salient areas are located near the sides of the 
images, as indicated in Figure 10(c) and (d). Therefore, it is 
difficult to identify the less salient buildings. According to 
our experiment, the GBVS method cannot calculate the 
visual saliency effectively. We performed the GBVS on the 
images from Q1 to Q5 and the saliency did not increase in 
conjunction with the number of removed buildings, which is 

not supported by the user survey. In fact, the image-based 
visual saliency algorithms are mainly focused on the visu-
ally important buildings, but they cannot address those that 
are less salient. The results also indicate that the considera-
tion of too many features (GBVS has eight features includ-
ing color, shape, orientation and flicker) does not improve 
the accuracy of saliency computation at street level. 

3.4  Performance 

There were 90 buildings in the test area. Two view indexes 
were created along the two directions of the road every 20 
meters. A total of 368 indexes were generated in the test 
area. We repeated the process of image loading 30 times to 
calculate the average time. The average load time was line-
arly related to the number of buildings loaded; therefore, if 
the model were to become too large, the load time would 
become unacceptable. By using the index based street level 
visualization method, the number of loaded buildings is 
dramatically reduced (from 90 to 9.75). Because we can 
control the number of buildings being visualized by their 
saliency values, the number can be reduced even further. In 
our implementation, the viewpoint indexes were stored in a 
list, where the complexity of matching is O(n). For large 
city models, these indexes can be better organized to in-
crease the matching speed. 

Preprocessing was implemented and tested in the same 
platform. After 10 tests, the average time for generating the 
indices was approximately 103 s for 90 buildings when us-
ing the minimum color difference method. For the mini-
mum area method, the index creation time was approxi-
mately 30 s and it took more than 10 min for the NEMD 
based global difference method. Because the index can be 
generated offline, it would be acceptable if the process were 
to take some time.  

In the visualization step, the relationship between FPS 
(Frame per Second) and the number of loaded models was 
tested in a web access environment. The 3D city models 
were converted into X3D files, which were rendered directly 
in the Internet browser using X3DOM technology (Behr et 
al., 2009). This platform was implemented by Mao and Ban 
(2011) and the browser is Mozilla Firefox 4.06bpre. Figure 
11 gives the relationship between the stable FPS in the 
browser and the loaded number of textured buildings and 
indicates that the FPS is quite low (<5) when the building 
number is more than 10. Therefore, it is essential to reduce 
the building number, especially in web/mobile 3D visuali-
zation situations. The proposed generalization method is 
capable of doing just that and should be applied in web/ 
mobile related 3D city visualization applications.  

4  Discussion 

In this section, the results of local and global saliency  



 Mao B, et al.   Sci China Earth Sci   March (2015) Vol.58 No.3 459 

 

 

Figure 10  Visual saliency using GBVS. (a) Original image; (b) generalized (one building removed); (c) original GBVS overlap map; (d) generalized 
GBVS overlap map; (e) original GBVS value; (f) generalized GBVS value. 

 

Figure 11  FPS and building number in X3DOM. 

calculation methods are analyzed. The performance of the 
proposed dynamic visualization method is further discussed, 
especially in relation to mobile/web applications. 

4.1  Analysis of local and global difference methods 

According to the user survey, the local difference method 
provides better results than does the global difference method 
because in street-level visualization, there are usually no 
clear patterns in the overall level.  For example, the build-
ings along the road are completely different from each other. 
Therefore, it is quite difficult for people to remember a 
whole picture at street level that contains so many details. 
The users focus on local landmarks and therefore mainly 
recognize differences at the local level. That is why the lo-
cal difference method is more suitable than the global dif-
ference method for street-level visual saliency calculations. 

Compared with image-based saliency calculation meth-
ods such as GBVS, which consider the 3D scene as an im-
age and consider features such as shape, color, orientation 

and flicker, our results indicate that complex calculations 
with too many considerations do not substantially improve 
the results. The sample color difference method produces 
the best results according to user experience. The color dif-
ference method is more effective at street level, where most 
of the buildings are rectangular in shape. Therefore, the 
proposed method can deal well with street-level visualiza-
tion situations. 

4.2  Dynamic visualization in mobile/web applications 

Another phenomenon that we observed based on user sur-
vey results is that most users have difficulty in identifying 
image differences when the computed local visual saliency 
value of a particular building is small (generalization results 
of Q1–Q3 in Table 4). This finding supports our initial hy-
pothesis that removing some buildings with small visual 
saliency values does not affect the main features of 3D city 
models at street level. This is quite an important discovery 
in regard to the applications that are being implemented 
with limited computational resources, such as mobile/web 
applications. On the one hand, these applications cannot 
address a whole city, especially in the LoDs used at street 
level. As shown in section 4.3, the number of buildings 
loaded has a strong influence on system performance. On 
the other hand, it is time consuming to calculate visual sali-
ency in real time. Therefore, the visual index structure can 
save the repeated computation and supply the required sim-
ilarity. Additionally, by selecting the buildings that are 
loaded based on their visual saliency, it is possible to satisfy 
strict limits on the number of visible buildings while achiev-
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ing maximum visual similarity to the original models. 

5  Conclusion 

In this paper, a visualization method for street level viewing 
is proposed. The visual saliency value of each building 
within certain viewpoints is computed and stored in a struc-
ture called a viewpoint index. By using the viewpoint in-
dexes, we can improve visual efficiency in real time. This 
paper provides three main contributions. First, it introduces 
the minimum area projection, the local difference and the 
global difference methods to compute visual saliency values 
for buildings in street view. Second, a user test demon-
strates that the local difference method is the preferred 
method for determining visual saliency when saliency val-
ues are used for removing buildings in street view. Third, 
we show that it is better to use two nearby indexes than to 
increase the density of indexes.   

The user survey indicates that the proposed methods can 
calculate the visual saliency for normal buildings at street 
level. However, in real cities, many landmarks may not be 
visually salient but have to be preserved for visualization. In 
future studies, we need to identify these landmarks based on 
both visual saliency (e.g., height, body shape and roof 
structure) and semantic information (e.g., owner, building 
history and purpose). 
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