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Recent developments of 30 m global land characterization datasets (e.g., land cover, vegetation continues field) represent the 
finest spatial resolution inputs for global scale studies. Here, we present results from further improvement to land cover map-
ping and impact analysis of spatial resolution on area estimation for different land cover types. We proposed a set of methods 
to aggregate two existing 30 m resolution circa 2010 global land cover maps, namely FROM-GLC (Finer Resolution Observa-
tion and Monitoring-Global Land Cover) and FROM-GLC-seg (Segmentation), with two coarser resolution global maps on 
development, i.e., Nighttime Light Impervious Surface Area (NL-ISA) and MODIS urban extent (MODIS-urban), to produce 
an improved 30 m global land cover map—FROM-GLC-agg (Aggregation). It was post-processed using additional coarse res-
olution datasets (i.e., MCD12Q1, GlobCover2009, MOD44W etc.) to reduce land cover type confusion. Around 98.9% pixels 
remain 30 m resolution after some post-processing to this dataset. Based on this map, majority aggregation and proportion ag-
gregation approaches were employed to create a multi-resolution hierarchy (i.e., 250 m, 500 m, 1 km, 5 km, 10 km, 25 km, 50 
km, 100 km) of land cover maps to meet requirements for different resolutions from different applications. Through accuracy 
assessment, we found that the best overall accuracies for the post-processed base map (at 30 m) and the three maps subse-
quently aggregated at 250 m, 500 m, 1 km resolutions are 69.50%, 76.65%, 74.65%, and 73.47%, respectively. Our analysis of 
area-estimation biases for different land cover types at different resolutions suggests that maps at coarser than 5 km resolution 
contain at least 5% area estimation error for most land cover types. Proportion layers, which contain precise information on 
land cover percentage, are suggested for use when coarser resolution land cover data are required. 
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Since the 1980s, global land cover maps were compiled at 
1° and 0.5° spatial resolutions for climate modeling and 
carbon cycling studies (Matthews, 1983; Olson et al., 1982; 
Wilson et al., 1985). Earth system modeling, however, re-

quires finer resolution, more frequent, and more precise 
thematic contents and stable land cover data (Bontemps et 
al., 2012). Therefore, data from sensor systems such as the 
Advanced Very High Resolution Radiometer (AVHRR), the 
MODerate Resolution Imaging Spectroradiometer (MODIS), 
SPOT-VEGETATION (SPOT-VET), and the MEdium 
Resolution Imaging Spectrometer (MERIS) have been used 
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for global land cover mapping using their frequent coverage 
of the earth surface (e.g., DeFries et al, 1994; Loveland et 
al., 2000; Hansen et al., 2000; Friedl et al., 2010; Barthol-
ome et al., 2005; Arino et al., 2008, Bontemps et al., 2010; 
Tateishi et al., 2011). However, the low spatial resolutions 
of these sensors (250 m/500 m/1 km for MODIS, 1 km for 
AVHRR and SPOT-VEG, 300 m for MERIS) limited the 
capability of exploring finer scale land cover types. Thanks 
to the free availability of Landsat archive, global land cover 
mapping at medium resolution became possible. Since 2013, 
global land cover mapping and characterization at 30 m 
resolution using Landsat Thematic Mapper/Enhanced The-
matic Mapper Plus (TM/ETM+) (e.g., Gong et al., 2013; Yu 
et al., 2013a; 2013b; Sexton et al., 2013; Hansen et al., 2013) 
have begun to provide more detailed land information to a 
broad application community. 

Finer Resolution Observation and Monitoring-Global 
Land Cover (FROM-GLC) (Gong et al., 2013) and FROM- 
GLC-seg (Yu et al., 2013a) are the only two existing global 
land cover maps at 30 m resolution. However, both of them 
have limitations. FROM-GLC was produced based on sin-
gle-date (nominal year 2010) Landsat TM/ETM+ images. 
Due to the trade-off between temporal frequency and spatial 
resolution in FROM-GLC, accuracies for land cover types 
relying on information of phenological dynamics such as 
agriculture and grasslands are limited. FROM-GLC-seg 
complemented Landsat TM/ETM+ with 250 m spatial reso-
lution time series MODIS Enhanced Vegetation Index 
(EVI), bioclimatic variables, digital elevation model (DEM) 
and soil-water variables using a segmentation approach. The 
overall accuracy (OA) and accuracies for most land cover 
types were improved in FROM-GLC-seg, but land cover 
types in small patches (i.e., water, ice/snow) were underes-
timated due to the inclusion of coarser-resolution input fea-
tures. Combining (aggregating) different maps to provide an 
improved land cover/land use dataset has been adopted in 
many previous studies (e.g., Sterling et al., 2008; Verburg et 
al., 2011). This approach considers each pixel from differ-
ent candidate maps based on decision rules, e.g., fuzzy 
agreement scoring (Jung et al., 2006), expert knowledge, 
and regional maps (Fritz et al., 2011; Vancutsem et al., 
2013). The potential of accuracy improvement after inte-
grating FROM-GLC and FROM-GLC-seg remains to be 
evaluated. 

Users of global land cover maps also have concerns on 
the accuracy of spatial resolution, in addition to the accura-
cies of land cover types. The available land cover data rare-
ly fit perfectly the spatial resolution requirement from spe-
cific applications (Quattrochi et al., 1997; Raj et al., 2013). 
Thus, additional spatial resampling is usually required at the 
pre-processing stage. According to a survey (Bontemps et 
al., 2012) to the climate user community, the most fre-
quently used land cover maps in global climate modeling 
are kilometer level products, such as International Geo-
sphere-Biosphere Programme (IGBP) and Global Land 

Cover Characterization (GLCC) (Loveland et al., 2000), 
MODIS land cover (Friedl et al., 2010), GLC2000 (Global 
Land Cover 2000) (Bartholome et al., 2005) etc. All those 
datasets are at 1 km or 500 m resolution. However, applica-
tions from agriculture, water resources management, and 
urban planning need finer resolution land cover maps (Yu et 
al., 2013b; Zhong et al., 2012, 2014; Wang et al., 2012). 
Studies on public health, biodiversity, wildlife conservation, 
carbon science, hydrology, and landscape change at large 
spatial extents also need finer resolutions (i.e., Liang et al., 
2010; Mauser et al., 1998; Zhao et al., 2010; Gong et al., 
2012). Land cover change data with spatial resolutions 
coarser than 1 km have been found introducing significant 
biases in the estimation of terrestrial carbon sequestration, 
its interannual variability, and spatial pattern (Zhao et al., 
2010). Spatial upscaling (reducing resolution) or downscal-
ing (increasing resolution) is a strategy often used to rescale 
the data before use (i.e., Wilby et al., 1997; Hijmans et al., 
2005; Kitron et al., 2006; Ramirez-Villegas et al., 2010). 
Evaluations at local scale indicate that classification errors 
or percentage estimation biases of different land cover types 
are affected differently at different resolutions with scaling 
(i.e., Moody et al., 1995; Gupta et al. 2000; He et al., 2002; 
Gardner et al. 2008; Raj et al., 2013). However, there is no 
similar analysis for land cover map at the global scale. 

To support feasible use of global land cover maps in dif-
ferent applications, this paper addresses both map quality 
improvement and multi-resolution issues. There were two 
objectives of this study. First, we attempted to assess the 
potential of combining the strengths of the two existing 30 
m land cover maps and overcoming their common weak-
nesses over impervious areas by combining two coarser 
resolution impervious maps using a rule-based decision tree 
technique. Second, post-processing and spatial up-scaling 
were applied to generate consistent land cover maps in 9 
spatial resolution levels (i.e., 30 m, 250 m, 500 m, 1 km, 5 
km, 10 km, 25 km, 50 km, 100 km). Area estimation biases 
for global land cover maps at different resolutions were 
evaluated quantitatively for the first time. 

1  Methods for improving 30 m global land 
cover mapping  

FROM-GLC is a 30 m spatial resolution global land cover 
map using a total of 8903 Landsat TM/ETM+ scenes (cov-
ering the whole globe except Antarctica and Greenland) for 
a nominal year of 2010 (approximately 3 quarters of the 
images were from circa 2010 and 1 quarter was from circa 
2000) (Gong et al., 2013). A unique classification system 
(Table 1) focused on land cover types was used in FROM- 
GLC. Globally, 91433 training samples and 38664 test 
samples were collected through human interpretation of 
Landsat images, with reference to MODIS time series, high 
resolution images and field photos found in Google Earth  
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Table 1  Classification system for FROM-GLC (modified from Gong et al., 2013) 

Level 1 Level 2 Level 1 Level 2 
Croplands Paddy-rice Water Terrestrial water 
 Greenhouse  Sea 
 Other-crop Impervious High-albedo 
Forests Broadleaf  Low-albedo 
 Needleleaf Barelands Alkali-soils 
 Mixed  Sand 
 Orchard  Rock 
Grasslands Managed  Crop-bare 
 Nature  River-bed 
 Wetland-grass  Other-bare 
 Tundra-grass Snow/ice Snow 
Shrublands Shrublands  Ice 

 Tundra-Shrub Cloud  

 
(taken from Panoramio, http://www.panoramio.com/). Four 
supervised classifiers, i.e., Maximum Likelihood Classifier 
(MLC), J48 Decision Tree, Support vector machine (SVM), 
and Random Forest (RF) were used to produce four land 
cover maps, among which SVM has the best OA (Level 1 
OA = 63.69%, hereinafter OA referred to as Level 1 OA). 

FROM-GLC-seg is an amended version of FROM-GLC 
(Yu et al., 2013a). A segmentation approach was used in 
FROM-GLC-seg to integrate multi-resolution datasets, in-
cluding Landsat TM/ETM+ (30 m), MODIS EVI time se-
ries (250 m), bioclimatic variables (1 km), global DEM (1 
km), and soil-water variables (1 km). FROM-GLC-seg used 
the same training/test samples as FROM-GLC, and fol-
lowed the same classification system with a slight modifica-
tion. Impervious land cover type was not mapped, due to 
severe spectral mixing effects in coarser resolution images. 
In addition, clouds, which temporally existed in Landsat 
TM/ETM+ images, were removed as well. The RF classifier 
was used and achieved a better OA (OA=64.42%).  

In both FROM-GLC and FROM-GLC-seg, less emphasis 
was given to the impervious cover type as it shall be 
mapped with different methods (Wang et al., 2010; 2012; 
Gong and Howarth, 1990; 1992a; 1992b). One of the pri-
mary obstacles to urban land cover mapping using remote 
sensing is the diversity and spectral heterogeneity of urban 
reflectance (Small, 2005). Mapping impervious surface 
cover is important because it reflects land-use patterns re-
lated to socio-economic activities and environmental/  
ecological impacts (e.g., Jensen et al., 1999; Small, 2005). 
Thus several global impervious (including urban) maps 
were produced, and most of them were generated using sin-
gle type mapping approaches. 

In this paper, we improved the 30 m land cover product 
from two aspects: (1) Downscaling the best two impervious 
products—Nighttime Light Impervious Surface Area (NL- 
ISA) (Elvidge et al., 2007) and MODIS urban extent 
(MODIS-urban) (Schneider et al., 2009; 2010) to 30 m spa-
tial resolution; and (2) building a decision tree to aggregate 
those two impervious products with FROM-GLC and 
FROM-GLC-seg. 

1.1  Impervious type downscaling 

Elvidge et al. (2007) produced a 1km global impervious 
surface area (ISA) density map using the radiance calibrated 
nighttime lights (http://www.ngdc.noaa.gov/dmsp/down- 
loadV4composites.html) and the Landscan population count 
(http://www.ornl.gov/sci/landscan/) with reference to the 30 
m USGS Landsat derived ISA (from the NLCD-2001) 
(http://www.epa.gov/mrlc/nlcd-2001.html). This product 
was evaluated by comparing with USGS ISA for contermi-
nous US (7.4% less than USGS ISA.). 

In order to make the NL-ISA serve the purpose of global 
land cover mapping, an optimal threshold is needed to de-
cide a pixel as impervious or not globally. We stepped 
through percent cover of ISA from 1 to100 (% impervious 
coverage in a pixel) and calculated the OA for classifying 
impervious area samples and barelands samples (which is 
the most seriously confused type with impervious area, see 
Gong et al., 2013) extracted from global land cover sample 
sets developed in Gong et al. (2013). The best OA (99.57%) 
was reached when the percent value is 4 (4%), which was 
chosen as the threshold of impervious and non-impervious 
in this study (Figure 1). Even with such a low threshold 
value, many urban areas were still missed out. Then we 
used a global urban product MODIS-urban to reclaim im-
pervious areas missing from thresholding the NL-ISA. 

Schneider et al. (2009, 2010) produced 500 m global ur-
ban extent map (for the years 2000–2001) using MODIS 
data based on a supervised decision tree classification algo-
rithm using a global training database. To overcome confu-
sions between urban and built-up lands and other land cover  
 

 

 

Figure 1  Accuracy of classifying impervious and barelands samples 
under different NL-ISA thresholds. 
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types, a stratification based on climate, vegetation, and ur-
ban topology was developed that allowed region-specific 
processing. This product has an OA of 93% when evaluated 
using stratified random samples from 140 cities in the world. 
Compared to NL-ISA, MODIS-urban performed better 
(precisely and correctly) in urban areas especially when the 
urban size is small. Figure 2 shows the missed proportion of 
urban areas in MODIS-urban when different thresholds of 
NL-ISA are used. A threshold value of 4 missed 24.71% 
urban areas. 

Both NL-ISA and MODIS-urban product were included 
to improve the impervious land cover type in 30 m global 
land cover maps using a spatial downscaling approach 
(Figure 3). In this process, any impervious pixel indicated in 
NL-ISA or MODIS-urban was taken as impervious to guide 
FROM-GLC and FROM-GLC-seg. Compared with the 
Landsat TM/ETM+ images, the impervious area in the ag-
gregation map (namely FROM-GLC-agg) is more reasona-
ble than FROM-GLC. 
 

 

Figure 2  Missing urban proportion of MODIS-Urban product under 
different NL-ISA thresholds. 

 

Figure 3  Workflow of impervious cover aggregation. 

1.2  Aggregating 30 m land cover maps 

As mentioned above, both FROM-GLC and FROM-GLC- 
seg have merits: FROM-GLC-seg has better accuracies for 
vegetation types and barelands, but land cover types that 
occur in small patches (e.g., river streams, snow/ice) were 
mapped better in FROM-GLC (which is purely 30 m for 
each pixel). A new 30 m global land cover product (FROM- 
GLC-agg) was generated according to an aggregation pro-
cedure shown in Figure 4. In this process, pixels classified 
as vegetation land cover types (i.e., croplands, forests, 
shrublands, and grasslands) and barelands are all taken from 
FROM-GLC-seg. Water bodies and snow/ice types in 
FROM-GLC-seg are smoother with much less pepper and 
salt noise, but the drawback is that small streams are ne-
glected (Yu et al., 2013a). To obtain those small sized water 
bodies, water and snow/ice in FROM-GLC are added to the 
FROM-GLC-seg map. In order to reduce the misclassifica-
tion below heavy cloud (no underneath information can be 
captured), we left cloud as a land cover type (also as a qual-
ity flag). 

Following the workflow introduced above, a new global 
30 m land cover map—FROM-GLC-agg was created (Fig-
ure 5). The map accuracy was validated by 38664 globally 
distributed test samples (Gong et al., 2013; Zhao et al., in 
review). The confusion matrix (Table 2) indicates an OA of 
65.51% for FROM-GLC-agg, which is better than FROM- 
GLC (63.69%) and FROM-GLC-seg (64.42%). 

The distribution of wrongly classified sample locations 
was aggregated to WWF ecoregion unit (867 geographical 
units in total) (Olson et al., 2001), which represents biogeo-
graphically homogeneous areas (Figure 6). It shows that 
errors are distributed along transitional zones. On the con-
trary, rainforest, dry desert, and water bodies are the regions 
relatively easier to classify. 

2  Multi-resolution land cover maps 

We generated multi-resolution global land cover products 
from FROM-GLC-agg to serve the requirements of differ-
ent spatial resolution needs by different applications. How-
ever, issues in FROM-GLC-agg are still obvious with con-
fusions in land cover types (Table 1, Figure 6). Known 

 

 

Figure 4  Workflow of FROM-GLC-agg.  
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Figure 5  A new global aggregated map - FROM-GLC-agg. 

Table 2  Confusion table for the FROM-GLC-agga) 

 1 2 3 4 5 6 7 8 9 PA (%) 

Croplands (1) 2587 388 400 182 43 21 248 0 14 66.62 

Forests (2) 445 8982 792 645 163 8 202 2 122 79.06 

Grasslands (3) 970 1114 2522 711 111 13 1843 0 44 34.42 

Shrublands (4) 266 600 823 1682 51 8 988 1 16 37.93 

Water bodies (5) 13 15 19 2 1336 5 32 5 8 93.10 

Impervious (6) 89 49 35 15 4 69 11 0 4 25.00 

Barelands (7) 105 17 122 242 57 42 5688 0 5 90.60 

Snow/Ice (8) 2 16 26 2 150 0 69 430 39 58.58 

Clouds (9) 14 37 7 1 7 4 30 1 511 83.50 

UA (%) 57.60 80.07 53.14 48.31 69.51 40.59 62.43 97.95 66.97 65.51 
a) PA: Producer’s Accuracy, UA: User’s Accuracy. 

 

 

 

Figure 6  Distribution of proportion of correctly classified test samples in each ecoregion unit.  
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issues include: (1) There are about 0.65 million km2 of ter-
restrial land areas (excluding Antarctica and Greenland) not 
covered (indicated as “No data” in FROM-GLC-agg) by 
Landsat TM/ETM+ images. These areas were distributed 
mostly within the Arctic region. (2) Cloud covers were 
mapped as a land cover type (as a quality flag, covering 
about 0.97 Million km2) in FROM-GLC-agg. Therefore, the 
underneath types were not available. (3) Shadows from 
clouds and mountains were mixed with water due to similar 
low spectral reflectance. (4) Overestimation of barelands is 
common due to lack of time-series Landsat TM/ETM+ im-
ages in producing FROM-GLC-agg. Thus, temporal 
barelands tended to be misclassified. For example, steppes 
in some cold regions (e.g., Tibet Plateau) were wrongly 
classified as barelands. Also for images with heavy clouds 
mixed with water (mostly on ocean/terrestrial boundaries), 
clouds can be misclassified as barelands as well.  

Mitigating such misclassifications in FROM-GLC-agg, 
we used land cover information from coarser resolution data 
sources (Figure 7). Additional datasets were integrated to 
improve FROM-GLC-agg based on a quality criterion, i.e., 
any high quality (accuracy) data would supersede the low 
quality data (pixels). Drawbacks mentioned above were 
handled as follows: (1) No data pixels and cloud pixels were 
replaced primarily by MODIS land cover product (Friedl et 
al., 2010) with a small proportion by GlobCover2009 (Bon-
temps et al., 2010). Both products were crosswalked to 
FROM-GLC using a supplementary Table S1(http: link. 
springer.com). (2) Confusions between water bodies and 
shadows were processed using MODIS land cover, Glob-
Cover2009, global water mask (Carroll et al., 2004). (3) 
Bareland overestimation was reduced by using a MODIS- 

based land cover map using spatial temporal consistency 
check (Land Cover map with Spatial Temporal Consistency 
check, LC-STC) (Wang et al., 2014). (4) Land cover type 
confusions in ocean areas were filtered using a shoreline 
database GSHHG (Global Self- consistent, Hierarchical, 
High-resolution Geography Database) (Wessel et al., 1996). 
Note that the spatial resolution of those replaced pixels is no 
longer 30 m (equal to or coarser than 250 m in fact). How-
ever, only around 1.09% of land area pixels have been re-
placed by coarser resolution data. The remaining 98.9% 
pixels are still at 30 meter resolution. Thus, we still call this 
post-processed map a 30 m “base map”, which is the begin-
ning of multi-resolution processing. This process resulted in 
the multi-resolution land cover maps–FROM-GLC-hierarchy. 

FROM-GLC-hierarchy was produced using category up-
scaling approach (category spatial aggregation), in which 
class type is assigned to a pixel at coarse resolution based 
on the class types at finer resolution. Many upscaling ap-
proaches have been developed, including the majority 
rule-based upscaling (Turner et al. 1989a, 1989b; Moody et 
al., 1994, 1995; He et al., 2002; Raj et al., 2013), random 
rule-based upscaling (He et al., 2002), and point-centered 
distance-weighted moving window upscaling (Gardner et al., 
2008) etc. Previous studies on data bias effects across scales 
were based on small study areas (local scale) or simulated 
data (Woodcock et al. 1987; Turner et al. 1989a; Moody et 
al., 1995; He et al., 2002; Raj et al., 2013). Area statistics of 
land cover are bound to be biased after aggregation. General 
consensus includes (He et al., 2002): the rates of 
over/under-estimation are linked to spatial pattern of dif-
ferent land cover types. For example, dominant types get 
overestimated and land cover types with smaller patches are  

 
 

 

Figure 7  Workflow of FROM-GLC-Hierarchy. 
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underestimated. 
For the first time, scale-related land cover area bias was 

quantitatively analyzed globally. In this study, we used a 
majority aggregation as an example to examine the upscal-
ing impact of area estimation biases at different levels on 
different land cover types using global land cover maps. 
Majority rule-based aggregation selects the most frequently 
occurring type from the pixels under consideration (Figure 
8(a)). When there is more than one major type, the domi-
nant type is selected randomly. A way (proportion aggrega-
tion) for keeping the proportion of different land cover 
types at different resolution was also used in this study to 
provide unbiased coarse resolution products. In this way, for 
each pixel, the proportions of all land cover types were rec-
orded by creating multiple layers, each of which represents  

 
 

 

Figure 8  Illustration of majority aggregation (a) and proportion aggrega-
tion (b). 

a different land cover type (each pixel in different resolution 
layers indicates the percentage of certain land cover types in 
the base map) (Figure 8(b)). Eight coarser resolution (i.e., 
250 m, 500 m, 1 km, 5 km, 10 km, 25 km, 50 km, and 100 
km) land cover products were generated by using these two 
aggregation approaches. 

Figure 9 and Figure 10 show the result after post-pro- 
cessing and majority aggregation respectively for a location 
(1200 km × 1200 km, including Northern China Plain) with 
the boundary of a MODIS Tile H27V05. “No Data” (pixels 
in black color in Figure 9(a)) and cloud type (pixels in white 
color in Figure 9(a)) were replaced by new land cover types 
(Figure 9(b)). Overestimated water bodies (located in 
southwest in Figure 9(a)) and barelands (located in north-
east in Figure 9(a)) were corrected (Figure 9(b)).  

Results after majority aggregation to 250 m–100 km are 
shown in Figure 10. For this region, croplands, forests, and 
water bodies are the dominant land cover types. Those types 
are overestimated when resolutions go coarser, but imper-
vious area disappeared after the resolution goes beyond 50 
km. 

Accuracies of those maps were evaluated by the same set 
of 38664 test samples. The post-processing for a base map 
improved the OA to 67.63%, which is 2.12% better than 
FROM-GLC-agg (65.51%). In addition, a subset (16105) of 
the test sample (which indicates spatially homogenous pix-
els at 1km resolution, called “big sample”) (Gong et al., 
2013) was selected to evaluate coarser resolution maps after 
the majority aggregation. OAs for global land cover maps at 
250m, 500m, and 1km are 74.10%, 71.86%, and 70.77%, 
respectively. Considering the seasonal uncertainty for a 
proportion of test samples (which means the land cover type 
of those samples may change in growing season and outside 
of growing season), we selected samples without such un-
certainty for another accuracy evaluation. In total, 30616  

 

 

Figure 9  Before (a) and after (b) post-processing (image spatial resolution is 30 m). 
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Figure 10  Example of land cover maps after majority aggregation. 

sample points were selected; and 13221 of them are big 
sample units. The OA for the base map is 69.50%, which is 
evaluated by 30616 samples. OAs for maps at 250 m, 500 m, 
and 1 km spatial resolution are 76.65%, 74.65%, and 
73.47%, respectively, which were evaluated by 13221 big 
sample units. OAs for maps at coarser resolution (>5 km) 
were not calculated due to the lack of test samples at corre-
sponding scales. Further accuracy analyses for those maps 
are found in section 3.3.  

3  Discussions 

3.1  Comparisons of FROM-GLC, FROM-GLC-seg, 
and FROM-GLC-agg  

From OA, we can see the FROM-GLC-agg (65.51%) is 
better than FROM-GLC (63.69%) and FROM-GLC-seg 
(64.42%) directly (Table 3). For a detailed comparison, the 
classification accuracy was assessed using sample-based 
confusion matrix and statistical significance test. Many 
metrics were calculated for this accuracy comparison (Table 
3), including: OA, Kappa coefficient (K), Variance of K 
(Kvar), Confidence Interval at 95% for K (CI), Producer’s 
Accuracy (PA), and User’s Accuracy (UA). A significance 
test (Z-score) is done to compare each pair of Kappa. If a 
Z-score is greater than 1.96, then the difference is signifi-
cant at the 0.95 probability level.  

Z-scores among those three products are Z(FROM-GLC- 
agg, FROM-GLC-seg)=3.7382, Z(FROM-GLC-agg, FROM- 
GLC)=6.8198, and Z(FROM-GLC-seg, FROM-GLC)= 
3.0817, indicating that FROM-GLC-agg is significantly 

better than FROM-GLC-seg and FROM-GLC, and FROM- 
GLC-seg is significantly better than FROM-GLC.  

In terms of UA and PA for individual land cover types, 
FROM-GLC-agg achieved the best in UA for four land 
cover types (croplands, impervious, barelands, and snow/ice; 
the cloud cover type is excluded), and the second best UA 
for two types (forests and grasslands); it also achieved the 
best in PA for two land cover types (water bodies and im-
pervious), and the second best in PA for five land cover 
types (croplands, forests, grasslands, shrublands, and 
barelands). According to the total sum of best and second 
best land cover types for all UA, PA, the rank order is 
FROM-GLC-agg (6 best/second best UA, 7 best/second 
best PA), FROM-GLC (5 best/second best UA, 5 best/ sec-
ond best PA), FROM-GLC-seg (3 best/second best UA, 5 
best/second best PA). 

3.2  Mosaic boundary discontinuity 

Different from previous global land cover maps derived 
from low spatial resolution but high collection frequency, 
for medium resolution Landsat TM/ETM+ images, it is still 
difficult to collect data for the entire globe in a consistent 
season of a year. At the sample selection stage (Landsat 
TM/ETM+ interpretation) of FROM-GLC, they followed a 
“what you see is what you get” principle to prevent subjec-
tive inference of image information from apparent land 
cover (Gong et al., 2013). Thus, seasonal variation of imag-
es affects the samples and it was finally captured by land 
cover maps. The follow-up version, FROM-GLC-seg, re-
duced this mosaic boundary discontinuity appearance by  
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Table 3  Accuracy comparison between FROM-GLC, FROM-GLC-seg and FROM-GLC-agg 

 FROM-GLC FROM-GLC-seg FROM-GLC-agg 

OA 63.69% 64.42% 65.51% 

K 0.5429 0.5562 0.5722 

Kvar 9.2804×10−6 9.2137×10−6 9.1341×10−6 

CI [0.5370, 0.5489] [0.5502, 0.5621] [0.5663, 0.5781] 

 UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) 

Croplands 43.24 37.59 55.21 67.63 57.60 66.62 

Forests 80.16 77.10 79.13 80.09 80.07 79.06 

Grasslands 53.66 34.18 52.43 34.57 53.14 34.42 

Shrublands 49.11 34.73 48.89 38.45 48.31 37.93 

Water Bodies 82.88 88.41 72.02 87.72 69.51 93.10 

Impervious 34.88 10.53 - - 40.59 25.00 

Barelands 56.38 93.45 60.64 91.23 62.43 90.60 

Snow & Ice 96.54 85.94 80.87 63.35 97.95 58.58 

Clouds 65.82 83.63 - - 66.97 83.50 

 
 

using multi-temporal MODIS EVI datasets, but in many 
cases it is still visible. In FROM-GLC-agg, boundaries of 
map mosaics are still apparently noticeable in Figure 5. 

The mosaic appearance reflects the seasonal difference in 
neighboring Landsat images calculated from MODIS EVI 
time series in year 2010 (Figure 11). Images used for North 
America, Europe, Southern Africa, Central Amazon, and 
Russia are relatively more consistent. Although several vis-
ual improvement methods could be used to reduce the mo-
saic appearance by using information for two well co-reg- 
istered overlapped areas (e.g., Yu et al., 2012), it is a visual 
enhancement method and quite time consuming. A better 
way is to replace Landsat TM/ETM+ scenes collected in 
improper seasons with more careful data selection based on 
phenology and scene quality (Franks et al., 2009; Li et al., 
2014). One way to improve the visual appearance and ac-

curacies of 30 m global land cover map is to use mul-
ti-temporal Landsat TM/ETM+ images. For example, the 
Landsat image time-series were useful for identifying idle, 
single-, and multi-cropped fields (Zhong et al., 2012).  

To evaluate the potential capability of multi-temporal 
TM/ETM+, we analyzed the coverage rate (including cloud 
coverage less than 20% only) on each scene from 1972 
since the launch of Landsat-1 (Figure 12). Averagely for 
each Landsat scene, the whole land area on Earth has been 
revisited more than 4 times in a year, and the revisit number 
after 2000 has increased to more than 6 times. A recent 
analysis of global availability of Landsat TM/ETM+ images 
also indicates the same capacity (Kovlskyy et al., 2013). It 
also indicates that the Landsat TM/ETM+ images are an 
important source for global scale research at fine resolution. 
Therefore, mining information from such a huge dataset  

 

 

Figure 11  Seasonality difference indicated by the differences between image acquisition dates with top greenness. 
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Figure 12  Landsat 1–7 coverage frequency for the same path and row in different years. 

efficiently is crucial. Growing demands for high perfor-
mance computing has emerged in global land cover map-
ping (Gong et al., 2013; Hansen et al., 2013). 

3.3  Area bias analysis at different resolutions 

The biases of different land cover types at different resolu-
tions are shown in scatter plots in Figure 13. Each dot in 
these scatter plots is a MODIS tile (1200 km×1200 km), the 
x-axis is the area proportion for a certain land cover type in 
the base map, while the y-axis is the area proportion at dif-
ferent resolutions after majority aggregation. We can see 
from these plots that most land cover areas are overesti-
mated (dots distributed above 1:1 line) at coarser resolu-

tions except for impervious and snow/ice (dots distributed 
below 1:1 line). Especially for impervious, distortion in 
area estimation is considerably large.  

Area biases change along the resolution. Take the 
cropland for example (Table 4), a bias of 1% was produced 
at 250 m, but it increased to 8% after the resolution dropped 
to coarser than 25 km. The coefficient of determination R2 
value in linear fitting was decreased from 1 to 0.95. In terms 
of root mean square error (RMSE) and normalized RMSE 
(NRMSE), bigger errors were introduced at coarser resolu-
tion levels. 

A quantitative bias indicates the amount of over- or un-
der-estimation in area for different land cover types at dif-
ferent resolution levels (Table 5). For clarity, biases less  

 

 
Figure 13  Scatter plots of area proportion of eight land cover types and maps at different resolutions. (a) Croplands; (b) forests; (c) grasslands; (d) shrub-
lands; (e) water bodies; (f) impervious; (g) barelands; (h) snow/ice in base map (30 m). 
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Table 4  Liner fitting parameters of cropland at different spatial resolution 

Resolution Slope Offset R2 RMSE NRMSE 

250 m 1.01 −3.43×10−4 1.00 1.15×10−3 2.00×10−3 

500 m 1.01 −9.44×10−4 9.99×10−1 2.99×10−3 5.20×10−3 

1 km 1.03 −1.76×10−3 9.97×10−1 6.03×10−3 1.05×10−2 

5 km 1.06 −3.51×10−3 9.88×10−1 1.26×10−2 2.19×10−2 

10 km 1.07 −4.25×10−3 9.84×10−1 1.50×10−2 2.61×10−2 

25 km 1.08 −5.48×10−3 9.77×10−1 1.82×10−2 3.17×10−2 

50 km 1.10 −6.87×10−3 9.68×10−1 2.18×10−2 3.79×10−2 

100 km 1.08 −8.29×10−3 9.49×10−1 2.60×10−2 4.52×10−2 

Table 5  Area bias caused by majority aggregation for different land cover types at different spatial resolutions a) 

Resolution 1 2 3 4 5 6 7 8 

250 m 0.53% 0.66% 0.39% 0.57% 0.02% 11.99% 0.10% 0.12% 
500 m 1.32% 1.66% 0.62% 1.72% 0.04% 14.10% 0.36% 0.33% 

1 km 2.97% 2.54% 1.93% 3.25% 0.03% 15.07% 0.86% 0.45% 

5 km 6.09% 5.22% 3.65% 6.20% 0.41% 27.79% 2.12% 0.30% 
10 km 7.21% 6.45% 3.64% 7.63% 0.58% 41.88% 2.85% 0.61% 
25 km 8.42% 8.18% 2.96% 9.78% 0.81% 65.61% 4.15% 1.90% 

50 km 9.86% 9.87% 2.44% 11.69% 1.00% 81.31% 5.39% 2.80% 

100 km 8.24% 11.40% 3.78% 15.68% 1.17% 96.85% 7.26% 4.49% 

a) 1, Croplands; 2, forests; 3, grasslands; 4, shrublands; 5, water bodies; 6, impervious; 7, barelands; 8, snow/ice. 
 

 
than ±1% are underlined, italics for ±1%–3%, bold for 
±3%–10%, and others for >±10%. This information can 
serve as a reference for users to choose land cover datasets 
at different spatial resolutions. From this table, we may 
draw a general conclusion: for coarser than 5 km, the ma-
jority aggregation introduces greater than 5% bias in area 
estimation for most land cover types. It is better to use a 
proportion layer that keeps the original percentage for dif-
ferent land cover types. This analysis also raises a general 
awareness of land cover area under- or over-estimation 
when using coarser resolution land cover datasets. These 
biases can be propagated in application models that use land 
cover as input. 

4  Conclusions 

We developed an approach to aggregate FROM-GLC, 
FROM-GLC-seg to produce a better global land cover map— 
FROM-GLC-agg. This map has an overall accuracy of 
65.51%, which is significantly better than FROM-GLC 
(63.69%) and FROM-GLC-seg (64.42%). With some addi-
tional post-processing to the FROM-GLC-agg, an improved 
version was used as the 30 m base map to construct the hi-
erarchical dataset (FROM-GLC-Hierarchy, including 9 spa-
tial resolution levels, i.e., 30 m, 250 m, 500 m, 1 km, 5 km, 
10 km, 25 km, 50 km, and 100 km). The best OAs for the 
30m base map and the aggregated 250m, 500m, and 1km 
resolution in the FROM-GLC-Hierarchy are 69.50%, 
76.65%, 74.65%, and 73.47%, respectively. The framework 
used in constructing the global land cover hierarchy is open 

to any type of high quality global/regional land cover data 
products (e.g., USA’s National Land Cover Database 
(NLCD), China’s NLCD, European Corine land cover 
(CLC)) and single land cover layers (e.g., water mask, veg-
etation continues fields), wetland map (Zhu et al., 2014) at 
fine spatial resolutions. According to the area bias experi-
ments with various aggregation levels for different land 
cover types, land cover products with resolutions coarser 
than 5 km may lead to large (>5%) over-/under-estimation 
in area. Therefore, Land cover proportion layers in this hi-
erarchy should be used in applications that require coarser 
resolution land cover information. The FROM-GLC, FROM- 
GLC-seg, FROM-GLC-agg, and FROM-GLC-Hierarchy 
products are all freely available online at http://data.ess. 
tsinghua.edu.cn. 
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