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Uncertainty is one of the greatest challenges in the quantitative understanding of land-surface systems. This paper discusses the
sources of uncertainty in land-surface systems and the possible means to reduce and control this uncertainty. From the perspec-
tive of model simulation, the primary source of uncertainty is the high heterogeneity of parameters, state variables, and
near-surface atmospheric states. From the perspective of observation, we first utilize the concept of representativeness error to
unify the errors caused by scale representativeness. The representativeness error also originates mainly from spatial heteroge-
neity. With the aim of controlling and reducing uncertainties, here we demonstrate the significance of integrating modeling and
observations as they are complementary and propose to treat complex land-surface systems with a stochastic perspective. In
addition, through the description of two modern methods of data assimilation, we delineate how data assimilation characterizes
and controls uncertainties by maximally integrating modeling and observational information, thereby enhancing the predicta-
bility and observability of the system. We suggest that the next-generation modeling should depict the statistical distribution of
dynamic systems and that the observations should capture spatial heterogeneity and quantify the representativeness error of

observations.
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Land-surface systems are giant, open, complex systems
(Qian, 1991) that, accordingly, require a clear mathematical
framework with respect to achieving quantitative meta-
syntheses in the study of such a system.

The modeling and observation of Earth systems are two
fundamental methods that are employed to understand these
systems, and these two areas have witnessed rapid devel-
opment in the past two decades; in particular, Earth obser-
vation systems have advanced our understanding of the
systems on Earth into a new era. However, for land-surface
systems, much uncertainty remains with regard to correctly
reconstructing the history of change and predicting short-
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term and long-term changes. It is clear that this uncertainty
is one of the greatest challenges in the quantitative under-
standing of land-surface systems.

Fundamental questions include the following: where
does this uncertainty originate? Is it inherent, or can we not
eliminate such uncertainty due to an insufficient under-
standing? Since such uncertainty exists, can the land-surface
process be accurately simulated and predicted? All these
questions are related to our understanding of the inherent
characteristics of land-surface systems. As Einstein stated,
“God does not throw dice”; Bohr replied, “Einstein, do not
tell God what to do”". Indeed, the debate in classical phys-

1) In a 1926 letter to Max Born, Einstein wrote: “I, at any rate, am convinced that He [God] does not throw dice.”
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ics over the past century reminds us of the following: Shall
we treat the complicated geographical world (e.g., the
land-surface system) around us based on the ideal of cer-
tainty or from a stochastic perspective? If the geographic
world around us is random and is intrinsically uncertain,
what type of methods should we use to address and control
this uncertainty to enhance the observability and predicta-
bility of land-surface systems?

By analyzing the uncertainty in the modeling and obser-
vation of land-surface systems, this paper attempts to ra-
tionalize the methodology that plays a key role in the mod-
ern scientific study of Earth systems, namely the data as-
similation or model assimilation of data. We will also at-
tempt to demonstrate how the data assimilation method
treats and controls uncertainty by maximizing the integra-
tion of modeling and observational information and thereby
enhances the predictability and observability of the system.

1 Sources of uncertainty

1.1 The temporal and spatial heterogeneity of model
elements: a water cycle example

Let us first analyze the uncertainty caused by the temporal
and spatial heterogeneity of model elements through a typi-
cal example in terrestrial hydrology.

The movement of water in unsaturated soil is generally
expressed by Richards’ equation (Richards, 1931), and its
one-dimensional expression in the vertical direction of the
soil profile is written as follows:
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where 0 (m® m™) is the water content, w (m) is the water
potential, K (m s™') is the hydraulic conductivity, z (m, up-
ward as positive) is the soil depth, and 7 (s) is time.

Richards’ equation achieves very good results in the pre-
diction of soil moisture at microscopic scales and has been
well validated by numerous observational facts at micro-
scopic scales. Therefore, a large number of land-surface
models and hydrological models adopt this equation as the
governing equation for soil water movement. However,
there is always a large error in the simulation results of soil
moisture with macroscopic applications from the basic
model unit (usually a grid) to a catchment and then to the
global scale. Is this because the governing equation is in-
correct or because there are other reasons?

First, we should discuss whether Richards’ equation sat-
isfies the scale invariance. In the past two decades, despite
controversy with regard to this question, it is mostly agreed
that Richards’ equation has a mathematical form at the
macroscopic scale that is consistent with the microscopic
scale, though the hydraulic conductivity needs to be rede-
fined as an effective or equivalent parameter (Kabat et al.,
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1997; Yang et al., 2000). When we apply Richards’ equa-
tion to a model grid of a land surface model or a hydrologi-
cal model, by default, it is scale invariant. Therefore, we
assume that:

(1) Richards’ equation (structure of the model) is correct
and is applicable to various scales.

(2) The hydraulic conditions are non-homogeneous in the
grid.

(3) The possible error caused by numerical computation
is negligible because it is not related to the inherent uncer-
tainty of dynamic processes.

Thus, from the perspective of spatial heterogeneity,
temporal variation, and observability on both microscopic
and macroscopic scales, the model parameters, model state
variables, and boundary conditions were sequentially ana-
lyzed to identify the sources of model uncertainty.

(i) Parameters

The parameter in eq. (1) is the hydraulic conductivity K,
which has a strong spatial heterogeneity and can vary by
more than three orders of magnitude within a short distance
(Jarvis et al., 2002). Because K is a function of the soil
moisture content, it also changes over time with the soil
moisture content; particularly during the process of
freeze-thaw cycle, K can vary more than several orders of
magnitude within a short time. K is observable at the mi-
croscopic scale. However, due to the presence of preferen-
tial flow (such as micropore flow), the macroscopic hydrau-
lic conductivity is not equal to the average of multiple mi-
croscopic observations and instead is always larger than it.
Therefore, K is almost unobservable at model grid scale or
at other macroscopic scales. Strictly speaking, the micro-
scopic measurement of the hydraulic conductivity only pro-
vides us with a reference to estimate a macroscopic quantity,
whereas estimating the representative value on a grid or at
another macroscopic scale requires reference to other in-
formation. Therefore, we can conclude that K has a strong
spatial and temporal heterogeneity and the heterogeneity is
the primary source of uncertainty when Richards’ equation
is applied at the macroscopic scale.

(ii) State variables

In eq. (1), the soil water content @ is the state variable in
Richards’ equation, and the sources of uncertainty can also
be analyzed from the aforementioned four aspects. Alt-
hough € might vary significantly within a very small range,
the intensity of its spatial variation is weaker than K; thus, €
can be considered to have moderate spatial heterogeneity. €
also shows significant variations over time and can be ob-
served on microscopic scales; however, it remains difficult
to observe soil moisture on a grid and at other macroscopic
scales. Therefore, it is difficult to provide correct initial
fields for soil moisture in the model.

(ii1) Boundary conditions (forcing)

Without a loss of generality, Richards’ equation can be
discretized as a specific model for multi-layered water flow.
For example, the governing equations of water balance in
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the revised Simple Biosphere model (SiB2) (Sellers et al.,
1996) are as follows:
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where 6, (i=1, 2, 3) (m®> m™) is the volumetric water content
of each soil layer, D; (m) is the soil thickness of each layer,
P (ms™") is the precipitation rate, Q,, and Q,3 (m s are
the water fluxes between the ith and the (i+1)th layers in the
soil, Q5 (m s7™") is the gravitational drainage, E,and E,, (m
s™") are the evaporation flux and canopy transpiration flux,
respectively, and p, (kg m™) is the water density. Other
land surface models and hydrological models adopt a simi-
lar method to describe the process of soil water flow.

The third source of uncertainty, namely the uncertainty
of atmospheric forcing in a land-surface model, which de-
termines the boundary conditions of Richards’ equation, is
further discussed below. In the above equations, the upper
boundary condition is related to precipitation, evaporation,
runoff, and snowmelt, and the lower boundary condition is
related to the gravitational drainage (Zeng and Decker,
2009). The boundary conditions, e.g., evaporation, are also
related to the state of the near-surface atmosphere, including
wind, temperature, pressure, humidity, and radiation. The
various states of near-surface atmosphere that determine the
upper boundary condition of Richards’ equation are collec-
tively referred to as atmospheric forcing, which usually has
a weak to moderate spatial heterogeneity, though the tem-
poral variation is strong. In general, the representative space
of atmospheric forcing is larger than those of parameters
and state variables and thus is considered to be observable
at macroscopic scales. However, the uncertainty related to
the spatial representativeness of atmospheric forcing will
inevitably be transferred to the simulation results when
Richards’ equation is employed.

According to the analysis of the examples above, even if
the model itself is perfect and the physical structure of the
model does not rely on the scale, that is, the same laws of
physics can be applied to both microscopic and macroscopic
scales, the uncertainty of model parameters, initial condi-
tions of the model state, and boundary conditions will still
be reflected in the simulation results of models through
complicated error propagation. The uncertainty of these
three elements is also closely related to their strong spatial
and temporal heterogeneity, particularly the spatial hetero-
geneity.

Therefore, the following corollaries regarding the uncer-
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tainty of models can be made:

(1) The kinetic mechanism at microscopic scale of many
land surface processes is known, whereas the parameters,
state variables, and boundary conditions that affect these
processes have high heterogeneity in space and time. In this
situation, upscaling a dynamic process at the microscopic
scale to the macroscopic scale (such as a grid or a catch-
ment) will result in significant uncertainty. This uncertainty
is not caused by an unknown process but rather originates
from the spatial and temporal heterogeneity of the parame-
ters, state variables, and boundary conditions and the asso-
ciated scale effect.

(2) The model uncertainty is inherent and typically can
be estimated, controlled, and reduced. However, because
heterogeneity always exists, it cannot be eliminated com-
pletely.

(3) The accurate estimation of parameters, state variables,
and boundary conditions at macroscopic scales can only be
defined on a statistical basis. If a parameter or variable is a
‘true value’, it is defined as the unbiased estimate, namely,
the mathematical expectation of its representativeness error
at the macroscopic scale is zero, and its uncertainty (defined
by the second order statistical moment, such as variance)
can be controlled within an expected range. This is our
mathematical definition of model uncertainty.

In addition, we can deduce the following corollaries.

The parameters in the land surface model must be cali-
brated. These parameters are usually not observable at
macroscopic scales, though well-designed observation has
great significance. Such observations can provide the prob-
ability distribution of the parameters and the constraint con-
ditions on the upper and lower boundaries of the parameters.
These distribution characteristics and constraint conditions
are important a priori information for parameter estimation.

1.2 Representativeness error of in situ observations

The error of in situ observations can be decomposed into
instrument and representativeness errors. In general, after
the instrument is stringently calibrated, the systematic error
of the measurement will be eliminated and the measurement
error tends to be a random error so that its uncertainty can
be quantitatively characterized with such statistical quanti-
ties as variance.

Therefore, we presume that the instrument has been cali-
brated in the discussion of the uncertainty of in situ obser-
vations. Additionally, based on the definition of ‘true value’
in the previous section, we assume that

(1) The measurement error of a certain instrument is a
random error and its uncertainty (e.g., in terms of variance)
is known.

(2) As the mathematical expectation of random error is 0,
we can presume that the instrument measurement is the
‘true value’ of the object to be measured at the observation
time and within its representative space.
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The representativeness error is then analyzed as follows.
The representative space of in situ observations has the fol-
lowing features: (1) It varies for the different variables or
parameters to be observed (hereafter referred to as ‘param-
eter’)”. For example, the representative space of the
time-domain reflectometer (TDR) that measures soil mois-
ture is generally on the scale of a centimeter to tens of cen-
timeters, the representative space of a solar radiation obser-
vation instrument is approximately ten times its erection
height (on the order of decameter), and the representative
space of an eddy covariance system is generally on the scale
of hundreds of meters. (2) It varies for different methods of
observation; for example, for the observations of soil mois-
ture, there is a significant difference among the representa-
tive spaces of sampling and drying, TDR measurement, and
the method of cosmic ray measurement. (3) It varies with
time, and the representative space of observations is a func-
tion of itself and the variables and parameters that impact it;
as all these parameters change with time, the representative
space of observations is also a function of time.

As observed, due to the heterogeneity of the land surface,
the representative space of any type of observation is not
matched to the simulation unit of the model (such as grid,
hydrological response unit, and catchment). This means that
it is a complicated question to extrapolate observational
results to a specific model unit or, conversely, to convert the
state variable on the model unit to the observed value in a
specific representative space with a given error estimate.

We define the relationship that maps the model state on a
specific model unit to the observed values in the representa-
tive space of an observation as the observation operator, and
the measurement of its uncertainty as the representativeness
error. Obviously, the representativeness error is closely re-
lated to the spatial heterogeneity, and it needs to be defined
on a statistical basis. Therefore, if the spatial heterogeneity
cannot be effectively captured and its statistical characteris-
tics (probability density distribution function in space and
time) be correctly characterized, the spatial unit transfor-
mation between the model state and in sifu observations will
not be effectively achieved.

Accordingly, the following corollaries regarding the un-
certainty of in situ observations can be made:

(1) The in situ observation can only (when the instrument
error is very small and the instrument has been calibrated)
obtain the ‘true value’ of the object to be measured at the
observation time and within its represented space, and there
is a significant representativeness error when the observa-
tion is transformed to another spatial unit.

(2) The representativeness error of in situ observations is
closely related to the spatial heterogeneity.

(3) The characterization of representativeness error
should capture the features of the spatial and temporal vari-
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ations of the object to be measured at a macro-scale, and
these features are the main basis for the estimation of rep-
resentativeness error.

1.3 Representativeness error of remote sensing obser-
vations

Remote sensing has achieved great success and yet is still
fraught with many uncertainties (NRC, 2008). Retrieving
land surface parameters from remote sensing involves two
methods: inversion and model estimation. An example of
the former includes retrieving the leaf area index from can-
opy reflectance, and an example of the latter is to use pa-
rameters retrieved from remote sensing, such as land sur-
face temperature, albedo, soil moisture, and leaf area index,
as the model input to estimate evapotranspiration.

Both methods rely on raw remote sensing observations,
such as albedo and radiative temperature. Compared to in-
versed quantities and estimators, the raw observation is
generally more reliable and only subject to relatively small
instrument error, without systematic error after rigorous
calibration. In addition, the raw remote sensing observation
obtains an ensemble of information regarding radiation in
its representative space (pixel or footprint), and it intrinsi-
cally contains the heterogeneity of the radiation characteris-
tics in its representative space. Therefore, it can be defined
that the raw remote sensing observation does not have rep-
resentativeness error.

However, to understand the various processes in land-
surface systems, the raw remote sensing observations need
to be transformed to parameters of land surface; furthermore,
it is necessary to transform the observations to the spatial
unit matched to the dynamic model. The representativeness
error caused by the latter transformation is similar to the
representativeness error of in situ observations, as discussed
in the section 1.2. Here, the focus is on the representative-
ness error caused by the former transformation.

The model that maps land-surface parameters to the raw
remote sensing observations is typically referred to as the
forward radiative transfer model (i.e., observation operator),
and its inverse model is termed as the inversion model. The
error of inversion models is very complicated and involves
whether the model is invertible and the effective use of a
priori information. To simplify the discussion, the uncer-
tainty of remote sensing is explored only from the perspec-
tive of forward models, and the error of the forward radia-
tive transfer model is defined as the representativeness error
of remote sensing observations.

Ideally, the forward radiative transfer model should be a
macroscopic model. However, although there is an ongoing
attempt to develop macroscopic models at the pixel scale
(Li et al., 1999), most models only consider the heterogene-

2) There is a clear distinction between the definition of variable and parameter in the dynamic model; in contrast, there is no need to deliberately distin-
guish between variable and parameter for observation systems; for the purpose of convenience, the term ‘parameter’ is used collectively herein.
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ity in the vertical direction, with some of them considering
the heterogeneity at relatively microscopic scales, such as
the modeling of surface roughness in the microwave radia-
tive transfer model. As for heterogeneity at macroscopic
scales, most radiative transfer models generally assume
scale invariance for the physical structure. In summary, the
following approaches are utilized in the radiative transfer
modeling at the pixel scale:

(1) A homogeneous pixel is assumed, meaning that the
structure and parameters of the forward model are scale
invariant.

(2) The model structure is scale invariant but effective or
equivalent parameters are used as the input for the forward
model.

(3) Monte Carlo simulation or real scene modeling is
used. We define this method as the parameter ensemble
approach; namely, an ensemble of parameters is used to
replace the statistical population.

(4) The macroscopic model is developed or redeveloped
(Li et al., 1999, 2000).

Because surface heterogeneity always exists, obviously,
it is not possible for the first approach to build a real micro-
scopic model. For all other approaches, strictly speaking,
the characteristics of the spatial distribution of parameters
need to be known at the pixel scale. However, at the pixel
scale, because of the nonlinear characteristics of the param-
eters, nonlinear characteristics of the radiative transfer
model, and the interaction of parameters, the heterogeneity
of various parameters in the pixel obviously cannot be line-
arly superposed. Therefore, to both obtain the equivalent
parameter and establish the radiative transfer model at the
macroscopic scale, one of the main factors to be considered
is the spatial heterogeneity of the parameters. In summary,
although the ways of macroscopic modeling are different,
the error caused by the scale representativeness of parame-
ters in the forward radiative transfer model can be attributed
to representativeness error. By defining the representative-
ness error as above, we unify the uncertainty of in sifu ob-
servations and remote sensing observations with respect to
the concept of error.

Therefore, by making the following presumptions:

(1) The instrument error of remote sensing sensors is a
random error, and its quantity (such as variance) is known.

(2) The mathematical error of radiative transfer models
to be solved can be ignored and is not related to the inherent
uncertainty caused by the heterogeneity on the pixel scale.

The following corollaries regarding the uncertainty of
remote sensing observations can be made:

(1) Original remote sensing observations have inherent
heterogeneity and do not have representativeness error.

(2) The representativeness error of the remote sensing
forward model is mainly from the spatial heterogeneity of
the parameters within the pixel scale.
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(3) Even the forward model takes into account heteroge-
neity; however, from the perspective of inversion, it will
cause the number of parameters to be inverted far more than
that of the observations, forming an ill-posed inversion.
Therefore, it is necessary to develop new inversion strate-
gies and introduce new information; otherwise the model
will not be able to derive the equivalent value of the param-
eters at the pixel scale from the raw observations with in-
trinsic heterogeneity.

2 How to reduce and control uncertainty
2.1 Complementation of model and observations

Both the models and observations of land-surface systems
have significant uncertainty, though it is unclear whether
the superposition of uncertainty will lead to greater uncer-
tainty. Furthermore, if the answer is negative, it is unclear
how the uncertainty can be reduced and controlled.

In section 1, the respective uncertainty of the model and
observations was analyzed, demonstrating complementarity:
the model provides a unified dynamic framework for the
continuous evolution of land-surface systems in time and
space, though it contains uncertainty caused by the intrinsic
heterogeneity; the observation, after a strict calibration,
provides the true value for the observation time and the
representative space. However, there is a relatively signifi-
cant representativeness error for the transformation of an
observation into other spatial units and the mapping be-
tween the model state and observations.

Can we possibly use the complementary relationship
between models and observations to reduce and control this
uncertainty? The development of cybernetics has actually
provided a sophisticated mathematical tool for this purpose.
As commented by Xuesen Qian, “...cybernetics is a theory
of relationship” (Qian, 1957), thus the relationship between
models and observations needs to be studied.

The integration of observation and model simulation can
be analyzed as an analogy to a classic application of a cy-
bernetic missile. The reason that the missile can accurately
hit its target is that, in addition to its own dynamic features
(analogous to a model), more importantly, it continuously
captures information that is fed back to the trajectory of the
missile and constantly adjusts the trajectory based on the
observational information. Thus, the missile will eventually
accurately hit its target only if the observations are correct.
What should be noted is that it is vital to evaluate the un-
certainty of the observations, which is the problem of error
estimation. It can be imagined that, if the system cannot
make an effective judge on the false information, it will
cause the missile to deviate completely from its target.

The relationship between dynamic models and observa-
tions is analogous to the aforementioned example, and the
fusion between them is called data assimilation, which is
considered to be a strategy for the Earth system sciences
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(NRC, 1999). The data assimilation method differs from the
traditionally standalone model simulation by the following:
in the data assimilation, the model will constantly monitor
the relevant observational information and establish the
relationship between the model state and direct or indirect
observations (i.e., the observation operators mentioned in
sections 1.2 and 1.3); the observation information, after
quality control, is then integrated into the model trajectory
via a feedback mechanism and is used as the basis for ad-
justing the model trajectory. The essence of data assimila-
tion is: The true value of observation at the observation time
and within its representative space is used to calibrate the
model, and the model expands this information to a time
and space that are more continuous and complete.

A definition for data assimilation can be given as follows
(Talagrand, 1997; Li et al., 2007): data assimilation is the
method that, within the framework of dynamic models, in-
tegrates direct and indirect observations at different scales
and from different sources and continuously optimizes the
model trajectory based on weighted errors of both dynamic
models and various observations to reduce the error of the
whole system.

2.2 Data assimilation algorithm

What type of mathematical methods does data assimilation
use to fuse observation and model information? In general,
the modern data assimilation adopts two types of methods:
the optimization method and the sequence filtering derived
from modern cybernetics.

The optimization method is employed to link the model,
observations, and their respective errors through an objec-
tive function. It applies various types of optimization meth-
ods to minimize this objective function to obtain an opti-
mized model trajectory.

With the state space representation, Richards’ equation in
section 1.1 or other dynamic models can be generalized as a
nonlinear model, M, which is called the model operator. X,
represents the initial conditions of the model state and is a
column vector comprised of various state variables, with the
subscript 0 meaning the initial state. X,” is the background
field, which is the a priori knowledge of the model state; B
is the covariance matrix of the model error. The observation
operator is expressed as H;, where the subscript i is time,
meaning H may change with time; R; is defined as the co-
variance matrix of observation error, which is the sum of
instrument error and representativeness error. The observa-
tion at time i is expressed as Y;°, which could be the same
physical quantities as X (direct observation) or other quanti-
ties with different physical meaning from X (indirect ob-
servation).

From the least-squared estimate, maximum likelihood
estimate, or based on Bayes’ Theorem, we can deduce that
the optimal fusion of the model and observations is ex-
pressed as follows:
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where J is the objective function. The optimized model tra-
jectory can be obtained by minimizing the function above. J
is the integration of three types of information, including the
dynamic model M, observation information (H and Y°), and
the errors of the model and observations (B and R).

Another type of data assimilation methods is the filtering
method, which includes various Kalman filtering and parti-
cle filtering methods. Bayesian filtering, as a more general
form of these methods (Li and Bai, 2010), integrates the
information of model and observations based on consider-
ing the errors through two procedures of prediction and up-
date, and thus reduces the uncertainty of the entire system.

Here, the forecast procedure is expressed as

p(X(tk) | Y’ (tlzk—l))
= fp[X(tk ) =M (Xt DIp(X (¢, )Y, )X, ),
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The update procedure is expressed as
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where p is the probability density function and #; or the
subscript £ means the time k. The meaning of the other
symbols is the same as in eq. (5).

Bayesian filtering integrates three types of information:
(1) information on the dynamic evolution of systems, i.e.,
the model operator M,; (2) observational information, which
includes all the observations before time k, Y°(#;), and the
observation operator H;; and (3) error information, which
includes the model error p[X(z,)—M,(X(¢, ,))] and the

observational error p[Y°(t,)—H,(X(t,))]. As an estimate

of uncertainty, the error plays a significant role in the fusion
of the model and observational information, whereas the
purpose of data assimilation is to reduce and control the
uncertainty to achieve the optimal estimation of the entire
system. As for giant, complex systems, it is very difficult to
derive the probability distribution function in an analytical
form; thus, eqs. (6) and (7) are usually solved with the
Monte Carlo method or the ensemble method. The meaning
of this approach is that every member of the ensemble is a
deterministic dynamical system and the entire ensemble is a
system of dynamical systems; if the members are sampled
reasonably, these ensemble members can reflect the statis-
tical characteristics of the statistical population and quanti-
tatively characterize its uncertainty.



86 LiX  Sci China Earth Sci

In addition, with consideration of the definition of ob-
servation operators, it should be highlighted that, within the
framework of data assimilation, the inversion does not need
to be performed independently and the radiative transfer
model (along with other observation operators) only re-
quires a forward calculation. This largely simplifies the
question and eliminates the possible uncertainty caused by
inversion. The data assimilation combines the forward evo-
Iution and the inversion of model state. The dynamic model
is used as a priori information in inversion and the optimal
estimation of the model state is achieved through forward
iteration or recursive evolution. This is also the reason why
the representativeness error of forward models was only
considered in this paper.

3 Conclusions

Uncertainty is inherent to land-surface systems, and it orig-
inates in the high spatial heterogeneity of these systems.
The estimation, reduction, and control of uncertainty rely on
breakthroughs in the methodology and also depend on the
development of new models and observational experiments
that are carefully designed.

Due to ubiquitous uncertainty, the basis to estimate and
control uncertainty cannot be found with deterministic ideas;
instead, complex land-surface systems should be addressed
from the perspective of a stochastic process, with the ob-
jects to be modeled or measured being treated as random
variables. Specifically, the idea of combining dynamics and
statistics is a feasible approach for modeling at macroscopic
scales. This system, as commented by Weiner, is “not a
single dynamic system but a statistical distribution of dy-
namic systems” (Wiener, 1948). As for observations, the
reasonable characterization of representativeness error is a
grand challenge. We should attempt to understand the un-
certainty closely related to scale and design true multi-scale
observations to capture spatial heterogeneity and character-
ize the representativeness error of observations.

The data assimilation approach is a generalized method-
ology to reduce and control uncertainty, and it represents a
paradigm shift.

This paper does not address the following:

(1) The influence of nonlinearity is not discussed because
its influence is self-evident. As shown by the equations of
data assimilation, nonlinearity is a fundamental characteris-
tic of models and observation operators, and linearity is
merely a simplification of the dynamic system and meas-
urement model.

(2) This paper does not truly discuss the scale depend-
ence of the land surface process itself, as this question is
rather complicated. If the process itself depends on the scale
(such as fractal, chaos, and self-organization) (Beven, 2006;
Sposito, 2008; Wheatcraft and Tyler, 1988; Young and
Crawford, 2004), we must conceptualize the main charac-
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teristic scales in the models and attempt to capture these
scales through observational experiments. It is desirable to
systematically investigate this question in future research.

(3) One premise for controlling and reducing uncertainty
is the a priori knowledge of uncertainty, which is true for
both models and observational systems (Sun and Yeh, 2007,
Neuman et al., 2010). Although this is not discussed in the
present paper, it is one of the largest problems in the study
of uncertainty.

In summary, the modeling and observation of land-
surface systems are full of uncertainty, whereas the super-
position of uncertainty does not necessarily indicate greater
uncertainty. “We have the means to make a very reliable
system with components that are not very reliable” (Qian,
1957). We would cite a quote from Norbert Weiner, the
founder of cybernetics, to conclude this paper, “Information
is information not matter or energy”. The information itself
is the measure of uncertainty. It can be concluded that, only
when we fully use information and integrate multi-source
information and apply advanced methods to address the
intertwined problems of complexity, nonlinearity, uncer-
tainty, and scale transformation, can we enhance the under-
standing of land-surface systems as giant, open, complex
systems and ultimately improve the observability and pre-
dictability of land-surface systems.
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