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By adopting the idea of three-dimensional Walker, Hadley and Rossby stream functions, the global 
atmospheric circulation can be considered as the sum of three stream functions from a global per-
spective. Therefore, a mathematical model of three-dimensional decomposition of global atmospheric 
circulation is proposed and the existence and uniqueness of the model are proved. Besides, the model 
includes a numerical method leading to no truncation error in the discrete three-dimensional grid 
points. Results also show that the three-dimensional stream functions exist and are unique for a given 
velocity field. The mathematical model shows the generalized form of three-dimensional stream func-
tions equal to the velocity field in representing the features of atmospheric motion. Besides, the vertical 
velocity calculated through the model can represent the main characteristics of the vertical motion. In 
sum, the three-dimensional decomposition of atmospheric circulation is convenient for the further in-
vestigation of the features of global atmospheric motions. 

three-dimensional decomposition of the global atmospheric circulation, generalized Walker, Hadley and Rossby stream functions, existence 
and uniqueness, vertical motion 

Many key progresses have been achieved in climate re-
search in recent years, for instance, the formation of the 
idea of climate system, the discovery of multiple equi-
librium climate systems, the abrupt change of climate 
and the activity of human beings being the external 
forcing of climate change[1]. Improving the accuracy of 
short-term climate prediction is a main objective of cli-
mate research. Nowadays, the current climate prediction 
methods can be classified into two broad categories, 
namely, the statistical methods and dynamical numerical 
models. Scientists can use either of them to forecast the 
future climate[2]. It is almost impossible to predict the 
climate successfully by using statistical methods be-
cause of the inherent limits[2]. However, using dynami-
cal numerical model has become the most popular and 

robust methods in climate prediction in recent years[3]. 
Nowadays, land-air-sea coupled climate models have 
been developed from simple atmospheric model and the 
fully coupled models including all the subsystem of cli-
mate are being developed[4,5]. Meanwhile, the perform-
ance of dynamical numerical models is constantly im-
proved owing to much work in improving the model 
resolution and refining the parameterization of physical 
processes[2,3,6]. However, the climate models still have 
some defects. Doubts remains in both simulations and 
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climate prediction[7] and the progress of the accuracy of 
climate prediction can not well satisfy the demand of 
operational service[2]. The main reasons may be the lack 
of awareness in developing fundamental theory and the 
defects in research method[2]. 

By recalling the successful history of numerical 
weather forecasting, we may find that it is the achieve-
ment of fundamental theory in dynamical meteorology 
that leads to the encouraging success of short-range and 
medium-range weather forecasting[8]. Nowadays, the 
fundamental theory of climate prediction is still imma-
ture, thus there will not be any reliable and accurate cli-
mate prediction before the great advance in the research 
of basic theory[8]. However, scholars have achieved 
many outstanding progresses in the research of funda-
mental theory. Gu[9] as early as in 1958 pointed out that 
evolutive data at that time could be incorporated into 
numerical models after changing numerical prediction 
from initial-value problem to evolving problem. Chou 
and Guo[10,11] proposed that an air-sea model could be 
regarded as an initial problem the same as the problem 
that an air-sea model can be thought as a historical evo-
lution of temperature and pressure fields. Cao[12] gained 
self-memory equations of atmospheric motion based on 
the perspective that atmospheric movement is an irre-
versible process. Chou[13] initially proposed the qualita-
tive theory of the dynamical equations of external forced, 
dissipative and nonlinear atmospheric system. Based on 
what Chou had found, Wang, Huang and Li et al.[14－16] 
further extended the qualitative theory to infinite Hilbert 
space, large-scale ocean dynamical equations, 
large-scale sea-air coupling systems and non-stationary 
external forced systems. Nevertheless, there is much 
work remaining to be further explored[2]. 

Lorenz pointed out that in rotating annulus experi-
ments, both Hadley circulation pattern and Rossby cir-
culation pattern would occur under certain rotating 
speed conditions[17]. Because of the asymmetry distribu-
tion of solar radiation on the earth, the uneven distribu-
tion of the land and sea and the rotation of the earth, it is 
well known that the atmospheric circulation in medium 
and high latitude areas displays mainly quasi-horizontal 
and quasi-geostrophic Rossby circulation. However, the 
atmospheric circulation in tropic regions appears mainly 
Hadley circulation and Walker circulation. Atmospheric 
circulations in different regions show distinct movement 

features. Many investigations have proved that atmos- 
pheric circulations in different regions do not exist alone 
and that they have strong interactions. It must be neces-
sary to consider the impacts of atmospheric circulations 
of remote areas while predicting[18－26]. Ye analyzed the 
relationship and features of vertical circulations on 
various vertical meridional and zonal planes[18,19]. Qian 
et al.[20] showed that the interannual change of the rota-
tion of the solid earth could cause the anomalies of the 
zonal winds of atmosphere. Fu et al.[21] detected that the 
variations of sea surface temperature in equatorial Pa-
cific regions could influence significantly the patterns 
and the intensity of both the meridional circulations over 
Pacific regions and the averaged circulations along the 
equator. Wu and Cubasch[22] found that continual anom-
aly of eastern Pacific Ocean along the equator could 
cause the strengthening of Hadley circulation. Ji and 
Cao[23] showed that when the eastern tropical sea surface 
temperature is higher than the western tropical sea sur-
face temperature, the meridional circulations in the at-
mosphere would be strengthened and zonal circulations 
would be weakened. Many results pointed out that re-
straint interactions between Rossby circulations, Walker 
circulations and Hadley circulations exist[24－26]. How-
ever, research results have not been reported yet, being 
an object to further discover the internal dynamical 
mechanism of the interaction between the circulations. 
One main reason may be that proper method is not 
available for the moment. 

We know that the quasi-geostrophic theory is the ba-
sis of successful numerical weather forecasting models 
and that vertical motion is important in tropic regions. 
However, the robust vertical motion in tropic areas is 
omitted as a negligible variable in the quasi-geostrophic 
theory. Thus, it is not proper to apply quasi-geostrophic 
theory in low latitude regions. Although the importance 
of vertical circulations is well known, the characteristics 
of vertical circulations have not been thoroughly under-
stood yet because of the lack of atmospheric sounding 
data and the suitable research model. 

We know that climate system is external forcing, dis-
sipative, nonlinear and long-term evolutive. We also 
know that geostrophic dynamics theory is an adiabatic, 
and nondissipative theory only suitable for short-range 
weather in medium or high latitudes regions. Therefore, 
Fundamental theory suitable for the study of dynamical  
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process of global atmospheric circulation should not be 
geostrophic dynamics theory. To solve this problem, we  
try to set up a new set of equations that represent 
straightly the physical features of the global atmospheric 
circulation. Thus, we can think Hadley circulations, 
Rossby circulations and Rossby circulations exist all 
over the globe in the global point of view. Based on this 
idea, we may define the generalized three-dimensional 
Walker circulation on the horizontal plane, in so doing, 
we can distinguish it from traditional two-dimensional 
Rossby circulation. Similarly, we may define the gener-
alized three-dimensional Hadley circulations and the 
generalized three-dimensional Walker circulations. The 
global atmospheric circulation can be considered as the 
sum of the Walker circulations, Hadley circulations and 
Rossby circulations. We call this idea the three-dimen- 
sional decomposition method of global atmospheric 
circulation. 

1  Three-dimensional decomposition 
model of global atmospheric circulation 

We think the atmospheric circulation can be expressed in 
the form of three-dimensional stream functions from a 
global perspective based on the current findings. To 
make the issue more clearly expressed, we discuss the 
generalized definition of the three-dimensional stream 
functions first. 

1.1  Definition of generalized three-dimensional 
Rossby, Walker and Hadley circulations 

According to the definition of two-dimensional circula-
tions, generalized form of three-dimensional Rossby 
circulations in pressure Cartesian coordinate system re-
fers to the three-dimensional velocity field which satis-
fies the following equation 

R R R R( , , ) ( , , ) ( , , ) ( , , ),x y p u x y p v x y p x y pω≡ + +V i j k  
(1) 

and the vertical condition 

R ( , , ) 0,x y pω ≡                (2) 
and also the underlying condition 

R R( , , ) ( , , ) 0.u x y p v x y p
x y

∂ ∂
+ =

∂ ∂
          (3) 

For generalized three-dimensional Rossby circulations, 
if there exists function R(x, y, p) in the pressure Carte-
sian coordinate system, which satisfies 

R

R

( , , ) ,

( , , ) ,

Ru x y p
y

Rv x y p
x

∂⎧ = −⎪ ∂⎪
⎨

∂⎪ =⎪ ∂⎩

             (4) 

then we call R(x, y, p) the three-dimensional Rossby 
stream function. If we can decide the three-dimensional 
stream function R(x, y, p) by using an already known 
velocity field R ( ,  ,  )x y pV , we can obtain R ( , , )x y pV  
from R(x, y, p) in turn. Therefore, the stream function 
R(x, y, p) can represent the features of the three-    
dimensional velocity field of Rossby circulations. 

Similarly, the generalized three-dimensional Walker 
circulations refer to the three-dimensional velocity field 

W W W W( , , ) ( , , ) ( , , ) ( , , ),x y p u x y p v x y p x y pω≡ + +V i j k  
(5) 

which satisfies the meridional condition 

W ( , , ) 0,v x y p ≡                  (6) 
and the condition 

W W( , , ) ( , , )
0.

u x y p x y p
x p

ω∂ ∂
+ =

∂ ∂
        (7) 

Generalized three-dimensional Walker stream func-
tion of W(x, y, p) refers to that satisfying the following 
equation 

W

W

( , , ) ,

( , , ) .

Wu x y p
p

Wx y p
x

ω

∂⎧ =⎪ ∂⎪
⎨

∂⎪ = −⎪ ∂⎩

         (8) 

Generalized three-dimensional Hadley stream func-
tion refers to the three-dimensional velocity field which 
satisfies the following equation 

H H H H( , , ) ( , , ) ( , , ) ( , , ),x y p u x y p v x y p x y pω≡ + +V i j k  
(9) 

and the latitudinal component condition  

H ( , , ) 0,u x y p ≡                 (10) 
and in addition, satisfies the underlying condition 

H H( , , ) ( , , ) 0.v x y p x y p
y p

ω∂ ∂
+ =

∂ ∂
        (11) 

Generalized three-dimensional Hadley stream func-
tion of H(x, y, p) denotes the functions as follows: 

H

H

( , , ) ,

( , , ) .

Hv x y p
p

Hx y p
y

ω

∂⎧ = −⎪ ∂⎪
⎨ ∂⎪ =
⎪ ∂⎩

            (12) 

Similarly, we can give the definitions of generalized 
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three-dimensional stream functions in pressure spherical 
coordinates, but we shall not discuss them here.  

1.2  Three-dimensional decomposition of velocity 
field  

If V denotes the three-dimensional velocity field in 
pressure Cartesian coordinates, then velocity field V can 
be expressed as the sum of the generalized three-    
dimensional circulations as follows: 

V=VR+VW+VH.               (13) 
By using the definitions of the three-dimensional cir-

culations, the components of (13) can be denoted in the 
Cartesian coordinate system in the following: 

W R

R H

H W

( , , ) ( , , ) ,

( , , ) ( , , ) ,

( , , ) ( , , ) .

W x y p R x y pu u u
p y

R x y p H x y pv v v
x p

H x y p W x y p
y x

ω ω ω

⎧ ∂ ∂
= + = −⎪ ∂ ∂⎪

⎪ ∂ ∂
= + = −⎨

∂ ∂⎪
⎪ ∂ ∂

= + = −⎪
∂ ∂⎩

    (14) 

The three-dimensional velocity field V(x, y, p) satis-
fies equation (14) and the following condition 

( , , ) ( , , ) ( , , ) 0.u x y p v x y p x y p
x y p

ω∂ ∂ ∂
+ + =

∂ ∂ ∂
     (15) 

Therefore, eq. (14) can be thought to be the 
three-dimensional decomposition of velocity in pressure 
Cartesian coordinate system. 

We can draw the conclusion that three-dimensional 
stream functions H, W and R can be determined by using 
observational velocity field of u and v through the 
three-dimensional decomposition model while consid-
ering the generalized definitions of the three-dimen- 
sional circulations and eq. (14). We can also conclude 
that the velocity field u*, ν* ω* can be calculated 
through already known three-dimensional stream func-
tions of H, W and R.  

While the familiar form of two-dimensional stream 
functions can be determined through the total differen-
tial equation, the three-dimensional stream functions 
cannot be expressed in total differential form. An arbi-
trary function must be considered in the differential 
equation. The problem becomes much more complicated 
since the increase of one degree of freedom. The gener-
alized three-dimensional stream functions discussed in 
this study come from the movement of atmosphere and 
are essentially different from that in the total differential 
equation discussed in ref. [27]. 

2  Partial differential equations of 
three-dimensional stream functions 

If not considering water vapor condensation and evapo-
ration, neglecting the air temperature change in Carte-
sian coordinates system of pressure, we obtain  

0.∇ ⋅ ≡V                 (16) 
Then velocity V can be expressed in the form of curl 

of vector A as follows: 
,= −∇ ×V A                 (17) 

where A is the vector potential of vector velocity field V. 
If we denote vector field A as A=iAx+jAy+kAp, then eq. 
(17) in Cartesian coordinate system changes to 

( , , ) ( , , )
( , , ) ,

( , , ) ( , , )( , , ) ,

( , , )( , , )( , , ) .

y p

p x

yx

A x y p A x y p
u x y p

p y
A x y p A x y pv x y p

x p
A x y pA x y px y p

y x
ω

∂ ∂⎧
= −⎪ ∂ ∂⎪

⎪ ∂ ∂⎪ = −⎨ ∂ ∂⎪
⎪ ∂∂

= −⎪
∂ ∂⎪⎩

      (18) 

We can find that the three components , ,x y pA A A  of 

A equal to , ,H W R  by comparing eq. (14) with eq. 
(18). From eq. (17) we know that for the given velocity 
field, there will be many infinite different expressions of 
vector potential. Therefore, certain conditions are added, 
so A is determined uniquely and the three components of 
A are just the previous definitions of generalized 
three-dimensional stream functions according to the 
needs of the vector potential under certain conditions. 
Therefore, we can denote the potential of velocity field 
as .H W R= + +A i j k  

According to eq. (17), the extra condition of A is 
0.∇ ⋅ =A                  (19) 

Taking the curl of vector operation on both sides of eq. 
(17) and substituting it into eq. (19) in Cartesian coordi-
nate system, we have 

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

,

,

.

H H H ω v
y px y p

W W W u ω
p xx y p

R R R v u
x yx y p

⎧∂ ∂ ∂ ∂ ∂
+ + = −⎪ ∂ ∂∂ ∂ ∂⎪

⎪∂ ∂ ∂ ∂ ∂⎪ + + = −⎨
∂ ∂∂ ∂ ∂⎪

⎪∂ ∂ ∂ ∂ ∂⎪ + + = −
∂ ∂⎪ ∂ ∂ ∂⎩

      (20) 

The velocity field V satisfies equation (16) and the 
third component ω of V satisfies the condition ω→0(as 
p→0) in the pressure coordinate system. So in theory, ω  
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can be determined by the horizontal part of velocity field. 
The expression of ω in Cartesian coordinate pressure 
system is  

0

( , , ) ( , , )( , , ) d .
p u x y t v x y tx y p p

x y
ω

⎛ ⎞∂ ∂
= − +⎜ ⎟∂ ∂⎝ ⎠

∫    (21) 

Therefore, substituting eq. (18) into the right side of 
eq. (20), we have  

2 2 2

2 2

2 2 2

2 2

2 2 2

2 2 2

,

,

.

H H W v
x y px p

W W H u
x y py p

R R R v u
x yx y p

⎧∂ ∂ ∂ ∂
+ + = −⎪ ∂ ∂ ∂∂ ∂⎪

⎪∂ ∂ ∂ ∂⎪ + + =⎨
∂ ∂ ∂∂ ∂⎪

⎪∂ ∂ ∂ ∂ ∂⎪ + + = −
∂ ∂⎪ ∂ ∂ ∂⎩

     (22) 

If we can prove that the solution of H, W, R of eq. (22) 
exists and is unique under certain boundary conditions 
and that H, W, R also satisfy eq. (14), then we can gain 
the three-dimensional decomposition model. We already 
know that velocity field V can be equivalently expressed 
in the form of stream functions through eqs. (17) and 
(19). We also note that the velocity field of V can be 
replaced by A for the large-scale movement. This re-
placement will be of some convenience for the future 
research. 

We can regard eq. (22) as the partial differential equa-
tion that three-dimensional stream functions H, W, R are 
satisfied in pressure Cartesian coordinate system. Nev-
ertheless, the pressure spherical coordinate system will 
be the best choice for the research of large-scale motion. 
From the above discussions, we can see the 
three-dimensional decomposition equations are also 
valid in the pressure spherical coordinate system. Simi-
larly, from the eqs. (13), (16), (17) and (19), we know 
that three-dimensional stream functions in pressure 
spherical coordinates satisfy the partial differential 
equations as follows:  

2

2 2 2
2

2 2 2 2 2 2
1 1

sin sin sin
H H H W

a a p a
β

λ θθ λ θ θ

∂ ∂ ∂
+ + +

∂ ∂∂ ∂
− 

2 2
cos ,
sin

vW
pa
θθ β

λθ
∂∂

= −
∂ ∂

                   (23) 

2 2 2
2

2 2 2 2 2
1 cos 1

sin sin
W W W H

a a p a
θ β

θ λ θθ θ θ
∂ ∂ ∂ ∂

+ + +
∂ ∂ ∂∂ ∂

+ 

2 2
cos ,
sin

vH
pa
λθ β

λθ
∂∂

=
∂ ∂

                     (24) 

2 2 2
2

2 2 2 2 2 2 2
1 cos 1

sin sin
R R R R

a a a p
θ β

θθ λ θ θ
∂ ∂ ∂ ∂

+ + +
∂∂ ∂ ∂

 

( sin )1 1 .
sin sin

v v
a a

θ λ θ
θ λ θ θ

∂ ∂
= −

∂ ∂
           (25) 

In eqs. (23)―(25), a denotes the radius of the earth, 
and β satisfies 

,gβ ρ= −  
where ρ  is the average density of the atmosphere and 
g represents the gravitational acceleration of the earth. 

There are infinite many three-dimensional stream 
functions of H, W, R satisfying partial differential eqs. 
(22)－(24). According to the atmospheric motion, rea-
sonable boundary conditions deciding the stream func-
tions can be given. So the existence and uniqueness of 
the problem for determining solution can be proved in 
theory, and the three-dimensional model can be 
achieved. 

3  Problem for determining solutions of 
partial differential equations and the proof 
of the existence and uniqueness of solu-
tions  

We think that local problem is unrelated to its state in 
the infinite distant horizontal direction in Cartesian co-
ordinate system under normal conditions. We also think 
the global problem satisfies the periodic conditions in 
spherical coordinates system. Furthermore, we think the 
stream functions and their derivatives of first order are 
approaching to zero with respect to p at the top of the 
atmosphere. Therefore, for partial differential eqs. (22)
－(24), we can give the following boundary conditions:  

(1) The infinitely distant condition in Cartesian coor-
dinate system is 

| | 0→A  and | | 0∇ →A , as 2 2x y+ → +∞ .  (26) 
(2) The periodic condition in spherical coordinates 

system is 

0 π

(0, , ) (2π, , ),
( , , ) ( , , ) 0.

p p
p p

θ θ

θ θ
λ θ λ θ

λ λ= =

=⎧
⎪

∂ ∂⎨ = =⎪ ∂ ∂⎩

A A
A A      (27) 

(3) The condition as 0p →  is 

| | 0→A  and 0
p

∂
→

∂
A .        (28) 

If we define the set as {Φ = =A  
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| 0,H W R+ + ∇ ⋅ =i j k A  where H, W, R are continu-

ously differentiable functions of second order, then Φ 
represents the set of vector functions that are continu-
ously differentiable functions of second order and have 
the divergence equaling zero. Thus, we obtain the fol-
lowing two problems for determining solutions.  

Problem for determining solution 1: if 
H W R Φ= + + ∈A i j k , then A satisfies partial differen-

tial eq. (22) and boundary conditions (26) and (28). 
Problem for determining solution 2: if 

,H W R Φ= + + ∈A i j k  then A satisfies partial differ-
ential eqs. (23) and (24) and boundary conditions (27) 
and (28). 

So, we discuss the existence and uniqueness of the 
two problems of determining solutions. In fact, we can 
prove the two problems are equivalent to the similar 
equations of first order.  

Theorem 1: if ,H W R Φ= + + ∈A i j k  then Prob-
lem 1 and 2 equal the equations of first order described 
as follows: 

0

,

| 0.p

A B C f
p x y
ϕ ϕ ϕ ϕ

ϕ =

∂ ∂ ∂⎧ + + + =⎪ ∂ ∂ ∂⎨
⎪ →⎩

     (29) 

For Problem 1, the vector functions ϕ and f are de-
fined as follows:  

1 2 3 1 2 1 2( , , , , , , , , , ) ,TE E E F F G G H W Rϕ =  

, , ,0,0,0,0,0,0,0 ,
T

v u v uf
p p x x

⎛ ⎞∂ ∂ ∂ ∂
= − −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

   (30) 

where ( ),  ( ),  ( )ij ij ija b c= = =A B C  denote sparse con-

stant matrix of 10th order. For matrix  Α, there exist 

14 16 35 1,a a a= = =  41 53 1,a a= = −  41 53 1,a a= = −  and 
other elements of A equate to zero. For matrix B, we 
obtain 24 26 37 1,b b b= = = 24 26 37 1b b b= = =  and 

62 73 1,b b= = −  62 73 1,b b= = −  and other elements of B 
equate to zero. For matrix C, we get 

81 92 10,3 1,c c c= = = −  81 92 10,3 1,c c c= = = −  and other 

elements of C equate to zero. For Problem 2, the inde-
pendent variables satisfy , .x yλ θ= =  The vector func-

tions ϕ and f can be expressed as follows: 

1 2 3 1 2 3 1 2( , , , , , , , , , , ) ,TE E E F F F G G H W Rϕ =      (31) 

2
1 1 1, ,

sin
v v v

f
p p a
θ λ θ

β β λβ θ
⎛ ∂ ∂ ∂

= − − −⎜ ∂ ∂ ∂⎝
 

2
( sin )1 ,0,0,0,0,0,0,0,0 ,

sin

T
v

a
λ θ

θβ θ
⎞∂
⎟∂ ⎠

    (32) 

where ( ),  ( ),  ( )ij ij ija b c= = =A B C  denote sparse 

functional matrices of 11th order, and matrix A satisfies 

14 36 2 2 2
1 ,
sin

a a
a β θ

= = and 41 52 63 1,a a a= = = − and 

other elements of A equate to zero. For matrix B, there 

exist 15 24 2 2
1 ,
sin

b b
a β θ

= =  27 38 2 2
1b b

a β
= =  and 

72 83 1,b b= = −  other elements of B are 0. For matrix C, 

there exist 15 2 2 2
cos

sin
c

a
θ

β θ
= − , 19 2 2 2

1
sin

c
a β θ

= − , 

24 2 2 2
cos ,

sin
c

a
θ

β θ
=  27 38 2 2

cos
sin

c c
a

θ
β θ

= =  and c91= 

c10,2= c11,3=−1, and other elements of C are zero. De-
tailed proof of Theorem 1 is given in appendix 1. 
Therefore, proofs of the existence and uniqueness of 
Problem 1 and Problem 2 are the same as what dis-
cussed in partial differential eq. (29) of first order. For 
convenience, eq. (29) can be denoted in the form of its 
component as follows:  

2
( )

1 1 1

0

,

0,       1,2, ,

N N
jki

ij ij j i
j k jk

i p

a b f
p x

i N

ϕϕ
ϕ

ϕ
= = =

=

∂⎧∂
= + +⎪⎪ ∂ ∂⎨

⎪ = =⎪⎩

∑∑ ∑
      (33) 

where ϕi and if  represent the ith component of vector 

functions ϕ and f, respectively. We know ( )k
ija and ijb  

can be determined by functional matrices A, B and C. 
For Problem 1, we obtain 1 2,x x x y= = , 10N = . For 

Problem 2, we have 1 2,x xλ θ= = , and 11N = . Ac-
cording to Cauchy-Dunayevskaya theorem, which is an 
important theorem in the theory of partial differential 
equations, eq. (33) has a unique analytic solution.  

Theorem 2 (Cauchy-Dunayevskaya theorem):  in 
eq. (33), if the points 0 0( , ,0)x y  of ( ) ,k

ija  ijb  and 

if ( , 1,2, , , 1,2i j N k= = ) are analytic in their certain 

neighborhood in space 3R , then eq. (33) has a unique 
analytic solution ( 1,2, , )i i Nϕ =  in the neighborhood 

of 0 0( , ,0)x y  in space 3R . 
Detailed proof of Theorem 2 can be found in ref. [28]. 

From Theorem 1 and 2, we know that if the ,u v  field 
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of velocity field V is already known, the three-   
dimensional stream functions can be determined 
uniquely through Problem 1 and 2, thus the three- 
dimensional decomposition is theoretically achieved. 

4  New method of calculating the 
large-scale vertical velocity 

Vertical movement occupies a very important position 
and is the key factor to affect the weather. Usually ver-
tical velocity is not gained through meteorological ob-
servation; it is often calculated by other variables 
through diagnostic equations. The vertical velocity in 
NCEP reanalysis project is thus obtained[29,30]. Theorem 
1 and Theorem 2 are theoretical guarantees for the exis-
tence and uniqueness of the velocity field through the 
three-dimensional decomposition model. We also note 
that the three-dimensional stream functionsH, W, R, de-
termined by the velocity field V, can be inversely used 
to decide the original velocity field V, especially the 
vertical velocity. In pressure Cartesian coordinates sys-
tem, we obtain 

H W
( , , ) ( , , ) .H x y p W x y p

y x
ω ω ω ∂ ∂

= + = −
∂ ∂

    (34) 

In pressure spherical coordinates, we obtain 

H Wω ω ω= +  

= 1 ( sin ) 1 .
sin sin

H W
a a

θ
θ θ θ λ

∂ ∂
−

∂ ∂
     (35) 

Eqs. (34) and (35) can be thought to be a new method 
of calculating vertical movement of the atmosphere. 

From eqs. (34) and (35), we know the large-scale ver-
tical velocity cab be regarded as the sum of the impacts 
of Hadley stream functions and Walker stream functions. 
Therefore, one of the advantages of calculating the ver-
tical velocity through the three-dimensional decomposi-
tion model is that vertical velocity ω can be decomposed 
into two parts, namely ωH and ωW. This will provide 
convenience to the study of the interaction of global 
three-dimensional circulations. Furthermore, it is helpful 
to the research of the respective contribution that Hadley 
circulations and Walker circulations have to the vertical 
movement. 

5  Algorithm of three-dimensional de-
composition 

For global issues, using spherical coordinates system is 

the best choice. However, we find that partial differen-
tial eqs. (23)―(25) have complex forms in spherical 
coordinates system that will cause substantial difficulties 
in calculation. Therefore, we will simplify eqs. (23) ―
(25), so we can put forward a proper simplified model 
while preserving the nature of the problem unchanged. 
By simplifying the model, we try to reveal the main 
features of three-dimensional circulations. 

5.1  Simplified model in spherical coordinate system  

In the derivation of equations (23)―(25), if we neglect 
the gradient effect of spherical Earth on the operator ∇ , 
we find that in low-latitude areas, the partial differential 
equation is essentially eq. (22) in rectangular coordi-
nates system. Therefore, we call eq. (22) the simplified 
model in spherical coordinates. For this simplified 
model, the boundary conditions are eq. (28) and the pe-
riodic condition in spherical coordinates system. How-
ever, the simplified model can only be applied to 
low-latitude areas. To promote the discussion, we con-
sider theoretically areas between 60ºS and 60ºN, and we 
calculate the average of velocity field along 60ºS and 
60ºN. Therefore, we let u, v satisfy the periodic condi-
tions as follows: 

(0, , ) (2π, , ),
π 5π, , , , .
6 6

y p y p

x p x p

=⎧
⎪
⎨ ⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎩

A A

A A
          (36) 

The above handling skills led the following numerical 
method to have no truncation error in theory. To remove 
the artificial impact added to the periodic condition (36), 
we only consider the results in areas between 30ºS and 
30ºN. Therefore, we obtain an important theorem for the 
simplified model (22) in spherical coordinate. 

Theorem 3: If H W R Φ= + + ∈A i j k , the vector A 
exists and is unique, which satisfies partial differential 
equations of (22) and the boundary conditions (28) and 
(36). 

The detailed proof of Theorem 1 is given in appendix 
2. From Theorem 1, we note that we can uniquely decide 
the stream functions of H, W, R in spherical coordinates 
system by using the simplified eq. (22) and boundary 
conditions (28) and (36). We also note that the stream 
functions are just the above-generalized three-dimen- 
sional stream functions. Thus, we obtain the three-  
dimensional decomposition model. In fact, if stream 
functions of H, W, R satisfy Theorem 3, then we have  
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0.H W R
x y p

∂ ∂ ∂
+ + =

∂ ∂ ∂
            (37) 

Substituting eq. (37) into the first expression of par-
tial differential eq. (22), if we can exchange the order of 
partial derivative of stream functions of H, W, R about 
independent variable , ,x y p , we obtain 

2 2

2 .H R v
p x pp

∂ ∂ ∂
− = −

∂ ∂ ∂∂
           (38) 

We conduct definite integral operation on both sides 
of the above equation from sp  to p , and we assume 

that on the earth surface, we have 
sp p

W R
p y =

∂ ∂
−

∂ ∂
= 

( , ),su x y  so we obtain  

H R v
p x

∂ ∂
− = −

∂ ∂
, (0, )sp p∀ ∈ .    (39) 

Similarly, we can prove the equation as follows: 
W R u
p y

∂ ∂
− =

∂ ∂
, (0, )sp p∀ ∈ .     (40) 

If 
0

0
p

H W
y x =

∂ ∂
− =

∂ ∂
, 

0

0
p

H W
y x =

∂ ∂
− =

∂ ∂
, 

then we substitute equations (39) and (40) into equation 
of continuity and performing integral operation,  we 
obtain 

H W
y x

ω∂ ∂
− =

∂ ∂
, (0, )sp p∀ ∈ .      (41) 

From eqs. (39)－(41), we know the simplified model 
can reflect the main features of three-dimensional de-
composition of velocity field. 

5.2  Numerical scheme of the simplified model 

We know the simplified model (22) satisfies the periodic 
boundary condition of eq. (28), and the periodic function 
can be expanded in Fourier series. If we conduct proper 
prolongation operation on all functions of the simplified 
model with respect to the independent variable p to en-
able them to satisfy periodic conditions, we can expand 
the periodic functions into new equations in the form of 
Fourier series with respect to the arguments of , ,x y p . 
According to uniqueness of the expansion of the Fourier 
series, we will be able to obtain stream functions. 

The most important advantage of Fourier series solu-
tion is that there is no truncation error in calculating at 
the mesh point. Stream functions H, W, R can be calcu- 

lated accurately through horizontal components of ve-
locity. Before introducing the numerical methods, we 
need perform the zero dimension process about the 
equations. However, we know the problem discussed is 
a simple form of linear problems and the boundary con-
ditions are linear. We also know the dimensionless pa-
rameters are some constants. Therefore, to simplify the 
description, we still use the original equations in the 
following discussions (actually, they are already dimen-
sionless equations.). In the actual calculation, these di-
mensionless parameters can be substituted into the sim-
plified model. 

To simplify the discussion, we may let 1sp = . Based 
on the simplified model of (22) and boundary conditions 
(28) and (36), we may conduct prolongation operations 
on stream functions of H, W and R and the three com-
ponents of the given V in the forms of the following: 

(1) Carrying on continuation operations along the 
x-axis to let functions have a period of 2π; 

(2) keeping continuation operations along the y-axis 
to let functions have a period of 2π/3; 

(3) for u, v, R, conducting even function continuation 
operations along the p-axis as follows: 

( , , ), 0 1
( , , ) 0,                              0

( , , ), 1 0

x y p p
x y p p

x y p p

ϕ
ϕ

ϕ

< <⎧
⎪= =⎨
⎪ − − < <⎩

 

and for ω, H, W, performing the odd function prolonga-
tion operation in the following 

( , , ), 0 1
( , , ) 0,                              0

( , , ), 1 0.

x y p p
x y p p

x y p p

ϕ
ϕ

ϕ

< <⎧
⎪= =⎨
⎪− − − < <⎩

 

Finally, we prolong the functions in the entire domain 
of p-axis with a period of 2. 

Thus, the prolonged functions are periodic functions 
with respect to x, y, p in the entire set of real numbers. 
Then u, v, R, can be expressed in the forms of Fourier 
series as follows: 

(1)

0 0 0
( , , ) [ cos cos3 cos πmnk

m n k
x y p mx ny k pϕ ϕ

∞ ∞ ∞

= = =

= ∑ ∑∑  

(2) cos sin 3 cos πmnk mx ny k pϕ+  
(3) sin cos3 cos πmnk mx ny k pϕ+  

(4) sin sin 3 cos π ].mnk mx ny k pϕ+        (42) 

Then ,  ,  H Wω  can be denoted as follows: 



 

394 LIU HaiTao et al. Sci China Ser D-Earth Sci | Mar. 2008 | vol. 51 | no. 3 | 386-402 

(1)

0 0 1
( , , ) [ cos cos3 sin πmnk

m n k
x y p mx ny k pϕ ϕ

∞ ∞ ∞

= = =

= ∑ ∑∑  

(2) cos sin 3 sin πmnk mx ny k pϕ+  
(3) sin cos3 sin πmnk mx ny k pϕ+  
(4) sin sin 3 sin π ].mnk mx ny k pϕ+        (43) 

The above two expressions show that as 0p → , H, 
W, R and ,  ,  u v ω  satisfy the following boundary con-
ditions  

0,

0.

u v
p p
R H W
p

ω∂ ∂⎧ = = =⎪∂ ∂⎪
⎨∂⎪ = = =
⎪ ∂⎩

             (44) 

Substituting H, W, R and ,u v  into the simplified 
model (22) in the forms of eqs. (42) and (43), we can 
decide the coefficients of Fourier series of stream func-
tions of H, W, R by making use of the orthogonality of 
trigonometric functions and boundary condition (44). 
Thus, we obtain their expressions in forms of Fourier 
series and the simplified numerical model in spherical 
coordinates. For the solution of the stream functions in 
the forms of Fourier series, we derive an important con-
clusion as follows:  

Corollary: The stream functions of H, W, R deter-
mined by (42) and (43) satisfy the following three equa-
tions 

,

,

0.

W R u
p y
R H v
x p
H W R
x y p

⎧∂ ∂
− =⎪ ∂ ∂⎪

⎪∂ ∂
− =⎨

∂ ∂⎪
⎪∂ ∂ ∂

+ + =⎪
∂ ∂ ∂⎩

          (45) 

Corollary 1 shows that for a given velocity field of 
,u v , expressed in the forms of Fourier series, we can 

obtain the velocity field of *,  *u v  by using the stream 
functions of H, W, R. We also find that the velocity field 
of *,  *u v  is identical with the original velocity field of 
u, v. This result is consistent with the result of theoreti-
cal analysis of (39)－(41) (analysis of calculated results 
is omitted here). We note that by using the numerical 
method, we can not only solve the numerical solution of 
the simplified model, but also consider the characteris-
tics of the three-dimensional velocity field decomposi-
tion put forward in the beginning. The detailed deriva-

tion of the simplified model in the forms of Fourier se-
ries and the detailed proof of the Corollary is given in 
appendix 3. 

In sum, if the field of u, v is expressed in form of eq. 
(42), then the stream functions of H, W, R can be calcu-
lated through the above expansion of Fourier series. Be-
sides, the method has no numerical truncation error. The 
numerical error only exists in the Fourier series repre-
sentation of ,u v . However, through the discrete Fourier 
transform, we know discrete ,u v  can be expressed in 
the form of limited Fourier series and the series are pre-
cise at discrete grid points. This shows that the solving 
process of Fourier series of the simplified model has no 
numerical truncation error. Meanwhile the stream func-
tions in forms of truncated Fourier series are convenient 
for the study of the main characteristics of atmospheric 
circulation. Furthermore, if we substitute equations (42) 
and (43) into equation (34), we obtain a method of cal-
culating large-scale vertical motion. 

6  Analysis of results 

The above discussion shows that the three-dimensional 
decomposition model is feasible. By using the 
NCEP/NCAR reanalysis data[29,30], vertical velocities of 
ω *, ωH and ωW are calculated through three-dimensional 
decomposition model, and then we can do a preliminary 
analysis of vertical movement of the global atmosphere. 

Usually, the meridional mean of a field can reflect its 
main characteristics, therefore we first analyze the 
characteristics of the meridional mean distribution of 
vertical velocities ω * and ωH and their variance. 

Figure 1 shows the meridional average distribution of 
vertical velocity ω * bears the same basic characteristics 
as those of vertical velocity ωW derived from Walker 
circulations. Results also display that the high centers of 
the mean circulations and its variance are both located at 
500 hPa and we know that high values of variance re-
veal dramatic changes of vertical movement. These 
mean characteristics are consistent with those of NCEP 
data[31]. Another point to note is that almost all the zonal 
averages of the vertical velocity ωW are smaller than or 
equal to 10−6, and zonal averaged field is almost a zero 
constant field. The above results prove that ωW repre-
sents the main features of the Walker circulations, which 
are obtained through the three-dimensional decomposi-
tion model. 



 

 LIU HaiTao et al. Sci China Ser D-Earth Sci | Mar. 2008 | vol. 51 | no. 3 | 386-402 395 

 
Figure 1  Meridional mean distribution of ω*, ωH and W (1981－2000). 
(a) Vertical velocity ω*; (b) vertical velocity of Walker stream function 
ωW;( c) Walker stream function W. Unit of ω* and ωW: Pa/s; unit of stream 
function W: 106 m·Pa/s; meridional mean refers to the average from lati-
tude 30ºS to 30ºN. 

 

Furthermore, we will analyze the zonal distribution of 
the vertical velocity of Hadley circulations and its vari-
ance. 

Figure 2 shows that the zonal average distribution of 
vertical velocity ωH bears the same basic characteristics 
as those of vertical velocity ω*. The air rises in the 
equatorial regions and sinks in mid-latitude regions. 
Results also show that the maximum value of ωH is lo-
cated at 700 hPa while the maximum value of its vari-
ances is located at 500 hPa. These mean characteristics 
are consistent with those of NCEP data[31]. Another point 
to note is that almost all the meridional averages of the 
vertical velocity ωH are smaller than or equal to 10−5, the 
meridional averaged field of ωH is almost a zero con-
stant field. The above results show that ωH represents the 
main features of the Hadley circulations, which are ob-
tained through the three-dimensional decomposition 
model. 

From Figures 1 and 2, we clearly see the main fea-
tures of global vertical movement. The three-dimen- 

 
Figure 2  Zonal mean distribution of ω*, ωH and H (1981－2000). (a) 
Vertical velocity ω*; (b) vertical velocity of Walker stream function ωH;  
(c) stream function H. Unit of ω* and ωH: Pa/s; unit of stream function H: 
106 m·Pa/s; zonal mean refers to the average from longitude 0º to 360º. 

 
sional decomposition of circulations has led to the char-
acteristics of vertical movement and ω* can be ex-
pressed in the form of the sum of zonal vertical velocity 
ω* and meridional vertical velocity ωH, and this is help-
ful to further understanding the global atmospheric cir-
culation. 

7  Summary 

This study shows that the global atmospheric circulation 
can be expressed in the form of three-dimensional 
stream functions. The realization of the three-dimen- 
sional decomposition has a clear physical meaning. Fur-
thermore, we obtain new scheme of calculating vertical 
movement. We get conclusions as follows: 

(1) The three-dimensional decomposition model of 
global atmospheric circulation is put forward by using 
the idea of generalized three-dimensional stream func-
tions. The existence and uniqueness of the model is 
proved mathematically.  

(2) A simplified model of three-dimensional decom-
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position is put forward and it has the main features of 
the three-dimensional decomposition model. The exis-
tence and uniqueness of the simplified model are also 
proved. Furthermore, a new numerical scheme of Fou-
rier series is given to calculate the three-dimensional 
stream functions and velocity field. Through the 
three-dimensional decomposition model, it can be 
proved that the velocity field is equivalent to the stream 
functions in representing the main features of atmos-
pheric motion. 

(3) Practical calculation shows that the NCEP veloci- 
ty field of u, v, ω is identical with the velocity field of 
u*, v*, ω*. The above conclusion is consistent with that 
of theoretical analysis. A new method of calculating 
large-scale vertical motion is put forward. Results show 
that the main characteristics of vertical velocity ω* are 
very close to those of ω  and that ω* can reflect the fea-
tures of real atmospheric vertical motion. 

(4) Results show that ωH and ωW can represent the 
main dynamic characteristics of vertical movements 
near tropic regions. 

Through the three-dimensional decomposition model, 
we have resolved the problem of the unified description 
of the global circulation. The three-dimensional decom-
position model is expected to become a new method for 
climate research. From the relevant results, we see that it 
can be applied to many sorts of problems and has broad 
prospects for application and theory study. In short, al-
though we obtain some valuable results, we still have 
much work to do. 

Appendix 1: Detailed proof of Theorem 1   

For Problem 1 of determining solution, if 
H W R Φ= + + ∈A i j k , and A satisfies eq. (22), we ob-

tain 

1 2 3

1 2

1 2

,  ,  ,

,  ,

,  .

H W RE E E
p p p
H RF F
x x
W RG G
y y

∂ ∂ ∂⎧ = = =⎪ ∂ ∂ ∂⎪
∂ ∂⎪ = =⎨
∂ ∂⎪

⎪∂ ∂
= =⎪ ∂ ∂⎩

       (a1.1) 

Substituting (a1.1)into equation (22), we obtain  

1 1 1 ,E F G v
p x x p

∂ ∂ ∂ ∂
+ + = −

∂ ∂ ∂ ∂
 

2 1 1 ,E G F u
p y y p

∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
 

2 1 1 ,E G F u
p y y p

∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
 

3 2 2 .
E F G v u
p x y x y

∂ ∂ ∂ ∂ ∂
+ + = −

∂ ∂ ∂ ∂ ∂
  

From (a1.1) we obtain 
1 1F E

p x
∂ ∂

=
∂ ∂

, 32 EF
p x

∂∂
=

∂ ∂
, 1 2G E

p y
∂ ∂

=
∂ ∂

, 32 EG
p y

∂∂
=

∂ ∂
. 

From the boundary condition (28), we know that as 
0p →  

1 0| 0pE = → , 2 0| 0pE = → , 3 0| 0pE = → , 

1 00
0

( | ) 0pp
p

HF H
x x ==

=

∂ ∂
= = →

∂ ∂
, 2 0 0pF

=
→ , 

1 00
0

( | ) 0pp
p

WG W
y y ==

=

∂ ∂
= = →

∂ ∂
, 2 0 0.pG

=
→  

Thus, Problem 1 will be expressed as the following 
problem of first order 

0

,

| 0,p

A B C f
p x y
ϕ ϕ ϕ ϕ

ϕ =

∂ ∂ ∂⎧ + + + =⎪ ∂ ∂ ∂⎨
⎪ →⎩

      (a1.2) 

where ϕ  and f  are vector functions. We have 

1 2 3 1 2 1 2( , , , , , , , , , ) ,TE E E F F G G H W Rϕ =  

, , ,0,0,0,0,0,0,0 ,
T

v u v uf
p p x x

⎛ ⎞∂ ∂ ∂ ∂
= − −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 

where ( ),  ( ),  ( )ij ij ija b c= = =A B C  denote sparse 

matrices of 10th order. For matrix A, we obtain 

14 16 35 1a a a= = =  and 41 53 1a a= = − , and other ele-
ments of A equate to 0. For matrix B, we obtain  

24 26 37 1b b b= = =  and 62 73 1b b= = − , and other ele-
ments of B equate to zero. For matrix C, we obtain 

81 92 10,3 1c c c= = = −  and other elements of C equate to 
zero. 

For Problem 2, since H W R Φ= + + ∈A i j k  and  
A satisfy eqs. (23) and (24), we have  

1 2 3

1 2 3

1 2

,  ,  ,

,  ,  ,

,  .

H W RE E E
p p p
H W RF F F

W RG G

λ λ λ

θ θ

∂ ∂ ∂⎧ = = =⎪ ∂ ∂ ∂⎪
∂ ∂ ∂⎪ = = =⎨
∂ ∂ ∂⎪

⎪∂ ∂
= =⎪ ∂ ∂⎩

       (a1.3) 
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Since 0β ≠  in eqs. (23) and (24), dividing both 

sides of eqs. (23) and (24) by 2 ,β  and substituting 
(a1.3) into eqs. (23) and (24), we obtain 

1 1
2 2 2 2 2 2

2
22 2 2 2 2

1
sin sin

1 cos 1 ,
sin sin

E F H
p a a

vF F
pa a
θ

λβ θ β θ
θ

θ ββ θ β θ

∂ ∂
+ + +

∂ ∂

∂∂
− = −

∂ ∂

 

2 1
12 2 2 2 2

1
12 2 2 2

1 cos
sin sin

1 cos 1 ,
sin

E F F
p a a

vG G
pa a
λ

θ
θβ θ β θ
θ

θ ββ β θ

∂ ∂
+ + +

∂ ∂

∂∂
+ =

∂ ∂

 

3 3
22 2 2 2 2

2
2 2

1 cos
sin sin

( sin )1 1 1 .
sin sin

E F
G

p a a
v vG

a aa
θ λ

θ
λβ θ β θ

θ
θ θ λ θ θβ

∂ ∂
+ + +

∂ ∂

∂ ∂∂
= −

∂ ∂ ∂

 

From (a1.3), we obtain  
1 1 ,F E

p λ
∂ ∂

=
∂ ∂

 2 2 ,F E
p λ

∂ ∂
=

∂ ∂
  

3 3F E
p λ

∂ ∂
=

∂ ∂
, 1 2 ,G E

p θ
∂ ∂

=
∂ ∂

 32 .
EG

p θ
∂∂

=
∂ ∂

 

According to the boundary condition (28), we know 
that as 0p →  we have 

1 2 30 0 00, 0, 0p p pE E E
= = =

→ → → ; 

1 00
0

( | ) 0pp
p

HF H
λ λ ==

=

∂ ∂
= = →

∂ ∂
; 

2 30 00, 0p pF F
= =

→ → ; 

1 00
0

( | ) 0pp
p

WG W
θ θ ==

=

∂ ∂
= = →

∂ ∂ 2 0 0pG
=

→ . 

Thus, Problem 1 and 2 can be denoted as the follow-
ing problem of first order  

0

,

| 0,p

A B C f
p x y
ϕ ϕ ϕ ϕ

ϕ =

∂ ∂ ∂⎧ + + + =⎪ ∂ ∂ ∂⎨
⎪ →⎩

      (a1.4) 

where ϕ  and  f  are vector functions. We have  

1 2 3 1 2 3 1 2( , , , , , , , , , , )TE E E F F F G G H W Rϕ = , 

2 2

1 1( , ,

( sin )1 1
sin sin

0,0,0,0,0,0,0,0) ,T

v v
f

p p
v v

a a

θ λ

θ λ

β β
θ

λ θβ θ β θ

∂ ∂
= −

∂ ∂
∂ ∂

− −
∂ ∂

 

where ( ),  ( ),  ( )ij ij ija b c= = =A B C  denote sparse 

functional matrices of 11th order. And matrix A satisfies 

14 36 2 2 2
1 .
sin

a a
a β θ

= =  For A we obtain 41 52a a= =  

63a 1= −  and other elements of A equate to 0. For ma- 

trix B, we obtain 15 24 2 2
1 ,
sin

b b
a β θ

= =  b27=b38= 

2 2
1

a β
 and 72 83 1b b= = − , other elements of B are 0. 

For matrix C we obtain 15 2 2 2
cos

sin
c

a
θ

β θ
= − , 19c =  

2 2 2
1
sina β θ

− , 24 2 2 2
cos ,

sin
c

a
θ

β θ
=  27 38c c= =  

2 2
cos

sina
θ

β θ
 and 91 10,2 11,3 1c c c= = = −  and other ele-

ments of C are 0. 

Appendix 2: Detailed proof of Theorem 3  

We give a solution by use of the method of separation of 
variables, and then we prove the existence and unique-
ness of solutions. First, assuming that 

( , , ) ( ) ( ) ( ),

( , , ) ( ) ( ) ( ),

( , , ) ( ) ( ) ( ),

H H H

W W W

R R R

H x y p X x Y y Z p

W x y p X x Y y Z p

R x y p X x Y y Z p

⎧ = ⋅ ⋅
⎪⎪ = ⋅ ⋅⎨
⎪ = ⋅ ⋅⎪⎩

     (a2.1) 

substituting (a2.1) into the third homogeneous equation 
of (22), we obtain 

( ) ( ) 0,

( ) ( ) 0.

R R

R R

X x X x

Y y Y y

α

γ

⎧ + =⎪
⎨

+ =⎪⎩
           (a2.2) 

Furthermore, substituting the third equation of eq. 
(a2.1) into periodic condition (36), we obtain 

(0) (2π),
π 5π( ) ( ).
6 6

R R

R R

X X

Y Y

⎧ =
⎪
⎨

=⎪⎩

             (a2.3) 

Jointing eq. (a2.2) with condition (a2.3), we obtain 
the following two-eigenvalue problems  

( ) ( ) 0,

(0) (2π),

R R

R R

X x X x

X X

α⎧ + =⎪
⎨

=⎪⎩
          (a2.4) 

( ) ( ) 0,
π 2π( ) ( ).
3 3

R R

R R

Y y Y y

Y Y

γ⎧ + =
⎪
⎨

=⎪⎩

           (a2.5) 
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From eqs. (a2.4) and (a2.5), we obtain eigenvalue  
2 2,  9 ,  ( , 0,  1,  2,  )m n m nα γ= = =  

and eigenfunction 
( ) cos sinm

R R R
m mX x A mx B mx= + ,  

( ) cos3 sin 3n
R R R

n nY y A ny B ny= + . 

Therefore, we obtain the expression of stream func-
tion ( , , )R x y p  as follows: 

0 0
[ ( )cos cos3R

mn
n m

R A p mx ny
∞ ∞

= =

= ∑ ∑  

( )cos sin 3R
mnB p mx ny+ ( )sin cos3R

mnC p mx ny+  

( )sin sin 3 ].R
mnD p mx ny+                 (a2.6) 

Now we will decide ( )R
mnA p , ( )R

mnB p ( )R
mnC p  and 

( )R
mnD p  in the above expression. Substituting (a2.6) 

into the third equation of (22), by using the orthogonal-
ity of trigonometric functions, we easily obtain  

2 2( ) ( 9 ) ( )R R
mn mnA p m n A p− +

5π
2π 6

π2 0
6

3 cos cos3 d d
π

Ah mx ny x y h= ∫ ∫ , , 1,2m n =  

2 2( ) ( 9 ) ( )R R
mn mnB p m n B p− +

5π
2π 6

π2 0
6

3 cos sin 3 d d
π

Bh mx ny x y h= ∫ ∫ , , 1,2m n =  

2 2( ) ( 9 ) ( )R R
mn mnC p m n C p− +

5π
2π 6

π2 0
6

3 sin cos3 d d
π

Ch mx ny x y h= ∫ ∫ , , 1,2m n =  

2 2( ) ( 9 ) ( )R R
mn mnD p m n D p− +

5π
2π 6

π2 0
6

3 sin sin 3 d d
π

Dh mx ny x y h= ∫ ∫ , , 1,2m n =  

Besides, ( )R
mnA p , ( )R

mnB p , ( )R
mnC p  and ( )R

mnD p  
satisfy the second-order differential equation of the same 
type as follows: 

2 ( )y a y f p− = .               (a2.7) 
Before solving this equation, we must first consider 

the boundary conditions. By using the expression (a2.6), 
we obtain 

5π
2π 6

π2 0
6

3( ) cos sin 3 d d ,    , 1,2,
π

R
mnA p R mx ny x y m n= =∫ ∫  

(a2.8) 

5π
2π 6

0 π2 0
6

3( ) sin 3 d d ,    1,2,
2π

R
nA p R ny x y n= =∫ ∫  (a2.9) 

5π
2π 5

π2 0
6

3( ) sin sin 3 d d ,    , 1,2,
π

R
mnB p R mx ny x y m n= =∫ ∫  

(a2.10) 
For the above three equations, we conduct derivative 

operation of first order with respect to p, and we get 
5π

2π 6
π2 0
6

3( ) cos sin 3 d d ,    , 1,2,
π

R
mn

RA p mx ny x y m n
p

∂
= =

∂∫ ∫  

(a2.11) 
5π

2π 6
0 π2 0

6

3( ) sin 3 d d ,    1,2,
2π

R
n

RA p ny x y n
p

∂
= =

∂∫ ∫  

  (a2.12) 
5π

2π 5
π2 0
6

3( ) sin sin 3 d d ,    , 1,2,
π

R
mn

RB p mx ny x y m n
p

∂
= =

∂∫ ∫
(a2.13) 

We conduct limit operation as 0p →  on both sides 
of (a2.8), and assume that we can change the order of 
integral operation of (a2.8) with that of the limit opera-
tion of (a2.8), and substituting the boundary condition 
(28) into (a2.8), we obtain  

2π π

2 0 00 0

2lim ( ) lim cos sin d d
π

R
mnp p

A p R mx ny x y
→ →

= ∫ ∫  

        

2π π

2 0 0 0

2 (lim )cos sin d d 0
π p

R mx ny x y
→

= =∫ ∫ . 

Perform the same operation for (a2.9)―(a2.13), we 
get  

00 0 0

00 0

lim ( ) lim ( ) lim ( )

lim ( ) lim ( ) 0.

R R R
n mn mnp p p

R R
n mnp p

A p B p A p

A p B p
→ → →

→ →

= =

= = =
 

Thus, we can add the boundary condition to sec-
ond-order differential equation (a2.7) as follows: 

(0) (0) 0.y y= =               (a2.14) 
So we obtain general solution of the non-homogene- 

ous eq. (a2.7) which satisfies condition (a2.14) as fol-
lows:  

0 0

e e( ) e ( )d e ( )d .
2 2

ap app pat aty p f t t f t t
a a

−
−= −∫ ∫   (a2.15) 

Thus, for ( )R
mnA p , ( )R

mnB p ,  ( )R
mnC p and ( )R

mnD p , 
by use of (a2.15), we obtain 
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2 2
2 2

9
9

02 2

e( ) e ( )d
2 9

p m n pR t m n A
mnA p h t t

m n

+
− += −

+
∫  

2 2
2 2

9
9

02 2

e e ( )d ,
2 9

p m n p t m n Ah t t
m n

− +
+

+
∫  

2 2
2 2

9
9

02 2

e( ) e ( )d
2 9

p m n pR t m n B
mnB p h t t

m n

+
− += −

+
∫

2 2
2 2

9
9

02 2

e e ( )d ,
2 9

p m n p t m n Bh t t
m n

− +
+

+
∫  

2 2
2 2

2 2
2 2

9
9

02 2

9
9

02 2

e( ) e ( )d
2 9

e e ( )d ,
2 9

p m n pR t m n C
mn

p m n p t m n C

C p h t t
m n

h t t
m n

+
− +

− +
+

= −
+

+

∫

∫
 

2 2
2 2

2 2
2 2

9
9

02 2

9
9

02 2

e( ) e ( )d
2 9

e e ( )d .
2 9

p m n pR t m n D
mn

p m n p t m n D

D p h t t
m n

h t t
m n

+
− +

− +
+

= −
+

+

∫

∫
 

Substituting the above four equations into (25), we 
obtain expression of stream function ( , , )R x y p . After-
ward, we manage to obtain expressions of stream func-
tion ( , , )H x y p and ( , , )W x y p . Similarly, we substitute 
(a2.1) into the homogeneity of the first and the second 
equations of (22). By use of periodic condition (36), we 
solve problems of four eigenvalues, so we get the ex-
pressions of H  and W  as follows 

0 0
[ ( )cos cos3 ( )cos sin 3H H

mn mn
n m

H A p mx ny B p mx ny
∞ ∞

= =

= +∑ ∑  

( )sin cos3 ( )sin sin 3 ],H H
mn mnC p mx ny D p mx ny+ +  (a2.16) 

0 0
[ ( )cos cos3 ( )cos sin 3W W

mn mn
n m

W A p mx ny B p mx ny
∞ ∞

= =

= +∑ ∑
( )sin cos3 ( )sin sin 3 ].W W

mn mnC p mx ny D p mx ny+ + (a2.17) 

Now we determine ( )H
mnA p , ( )H

mnB p , ( )H
mnC p , 

( )H
mnD p , ( )W

mnA p , ( )W
mnB p , ( )W

mnC p and ( )W
mnD p in the 

above equations. Similarly, substituting (a2.16) and 
(a2.17) into the first and the second equations of (22), 
and by using the orthogonality of trigonometric func-
tions, we can easily obtain  

2( ) ( ) 3 ( )H H W
mn mn mnA p m A p mnD p− +

5π
2π 6

π2 0
6

3 cos cos3 d d
π

Al mx ny x y l= ∫ ∫ , 

2( ) ( ) 3 ( )H H W
mn mn mnB p m B p mnC p− −

5π
2π 6

π2 0
6

3 cos sin 3 d d
π

Bl mx ny x y l= ∫ ∫ , 

2( ) ( ) 3 ( )H H W
mn mn mnC p m C p mnB p− −

5π
2π 6

π2 0
6

3 sin cos3 d d
π

Cl mx ny x y l= ∫ ∫ , 

2( ) ( ) 3 ( )H H W
mn mn mnD p m D p mnA p− +

5π
2π 6

π2 0
6

3 sin sin 3 d d
π

Dl mx ny x y l= ∫ ∫ , 

2( ) 9 ( ) 3 ( )W W H
mn mn mnA p n A p mnD p− +

5π
2π 6

π2 0
6

3 cos cos3 d d
π

Ag mx ny x y g= ∫ ∫ , 

2( ) 9 ( ) 3 ( )W W H
mn mn mnB p n B p mnC p− −

5π
2π 6

π2 0
6

3 cos sin 3 d d
π

Bg mx ny x y g= ∫ ∫ , 

2( ) 9 ( ) 3 ( )W W H
mn mn mnC p n C p mnB p− −

5π
2π 6

π2 0
6

3 sin cos3 d d
π

Cg mx ny x y g= ∫ ∫ , 

2( ) 9 ( ) 3 ( )W W H
mn mn mnD p n D p mnA p− +

5π
2π 6

π2 0
6

3 sin sin 3 d d .
π

Dg mx ny x y g= ∫ ∫  

If A=iH+jW+kR Φ∈ , then we obtain  

0.H W R
x y p

∂ ∂ ∂
+ + =

∂ ∂ ∂
           (a2.18) 

Afterwards, substituting eqs. (a2.16) and (a2.17) 
which are expressions of H  and W into (a2.18), by 
using the orthogonality of trigonometric functions we 
can easily obtain 

( ) 3 ( ) ( ) 0H W R
mn mn mnmA p nD p C p− + + = , 

( ) 3 ( ) ( ) 0H W R
mn mn mnmB p nC p D p− − + = , 

( ) 3 ( ) ( ) 0H W R
mn mn mnmC p nB p A p+ + = ,  

( ) 3 ( ) ( ) 0H W R
mn mn mnmD p nA p B p− + = . 

Substituting the derivatives of first order of the above 

obtained ( )R
mnA p , ( )R

mnB p , ( )R
mnC p  and ( )R

mnD p  
into the above equations, so we obtain 

( ) ( ) ,H R A
mn mnA p mC p l= +   ( ) ( ) ,H R B

mn mnB p mD p l= +  
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( ) ( ) ,H R C
mn mnC p mA p l= − +  ( ) ( ) ,H R D

mn mnD p mB p l= − +  

( ) 3 ( ) ,W R A
mn mnA p nB p g= +  ( ) 3 ( ) ,W R B

mn mnB p nA p g= − +  

( ) 3 ( ) ,H R C
mn mnC p nD p g= + ( ) 3 ( ) .H R D

mn mnD p nC p g= − +  

Similarly, by using the boundary conditions (28) as 
0p →  we easily get 

0 0
( ) [ [ ( ) ( )]d ]d ,

p tH R A
mn mnA p mC s l s s t= +∫ ∫   

0 0
( ) [ [ ( ) ( )]d ]d ,

p tH R B
mn mnB p mD s l s s t= +∫ ∫  

0 0
( ) [ [ ( ) ( )]d ]d ,

p tH R C
mn mnC p mA s l s s t= − +∫ ∫  

0 0
( ) [ [ ( ) ( )]d ]d ,

p tH R D
mn mnD p mB s l s s t= − +∫ ∫  

0 0
( ) [ [3 ( ) ( )]d ]d ,

p tW R A
mn mnA p nB s g s s t= +∫ ∫  

0 0
( ) [ [ 3 ( ) ( )]d ]d ,

p tW R B
mn mnB p nA s g s s t= − +∫ ∫  

0 0
( ) [ [3 ( ) ( )]d ]d ,

p tW R C
mn mnC p nD s g s s t= +∫ ∫  

0 0
( ) [ [ 3 ( ) ( )]d ]d .

p tW R D
mn mnD p nC s g s s t= − +∫ ∫  

Finally, substituting the above eight equations into 
(a2.16)―(a2.17), which are expressions of H  and W , 
we obtain expressions of the stream functions of  

( , , )H x y p  and ( , , )W x y p .  
Now we obtain the analytical expressions of stream 

functions, thus by use of the analytical expressions of 
stream functions, we prove the existence and uniqueness 
of solutions. In fact, if we assume there exist 

,  ,  H W R′ ′ ′ , which are another group of solutions of 
Theorem 3, from the linear simplified model, we know 
there exist functions as follows 

* ,H H H ′= −  * ,W W W ′= −  *R R R′= − . These 
functions satisfy the homogeneous form of Theorem 3. 
Stream functions ,  ,  H W R′ ′ ′  satisfy the condition 
when the right side of equation (22) equates to zero. 
Thus, from the above expressions of , ,H W R  we ob-
tain * * * 0H W R= = ≡ . This equation proves that Theo-
rem 3 has a unique solution. 

Now we discuss the existence of solutions. According 
to the above discussion, we have found a group of solu-
tions in the form of a series sequence of  Theorem 3 by 
using the method of separation of variables. Clearly, if 
these solutions are convergence within the definition 
domain ,then they will satisfy conditions of Theorem 3. 
Therefore, proof of existence of the solutions is equal to 

the proof of convergence of eqs. (a2.6), (a2.16) and 
(a2.17)which are expressed in the form of a series se-
quence. Moreover, the proof of the convergence of 
(a2.6), (a2.16) and (a2.17) is clear. Because they actually 
are the Fourier series of stream functions of H, W, R, as 
we know that continuous functions in form of the Fou-
rier series are always convergent, we can prove the theo-
rem. 

Appendix 3: Derivation of the Fourier se-
ries solution of the simplified model and 
the detailed proof of Corollary 

Firstly we denote coefficient of the expansion (42) of 
u, v, R as follows: 

( ) ( ) ( ),    ,    ,    ( 1,2,3,4)i i i
i i imnk mnk mnku u v v R R i= = = = . 

Denote coefficient of expansion (43) of H, W as fol-
lows:  

( ) ( ),      ,    ( 1,2,3,4)i i
i imnk mnkH H W W i= = = . 

We can let 
, 3 , π.a m b n c k= = =  

To ensure the uniqueness of the solution, we request 
Fourier series of (42) and (43) not to contain the con-
stant term. So , ,m n k  in (42) and (43) equate to zero 

asynchronously. We let the sign  denote
mnk
∑  the sum 

with respect to , ,m n k  which  asynchronously equate 
to zero. If we calculate coefficients Fourier series, then 
we can obtain the expressions of , ,H W R  in form of 
Fourier series. Substituting v , H and W in the form of 
eqs. (42) and (43) into the simplified model (22), and by 
use of the uniqueness of Fourier expansion and the or-
thogonality of the trigonometry functions, we obtain the 
equations as follows: 

2 2
1 4 1

2 2
2 3 2

2 2
3 2 3

2 2
4 1 4

( ) ,    

( ) ,

( ) ,    

( ) ,

a c H abW cv

a c H abW cv

a c H abW cv

a c H abW cv

− + + =

− + − =

− + − =

− + + =

 

2 2
1 4 1

2 2
2 3 2

( ) ,    

( ) ,

b c W abH cu

b c W abH cu

− + + = −

− + − = −
 

2 2
3 2 3

2 2
4 1 4

( ) ,    

( ) ,

b c W abH cu

b c W abH cu

− + − = −

− + + = −
 

2 2 2
1 3 2( ) ,     a b c R av bu− + + = −  
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2 2 2
2 4 1

2 2 2
1 1 4

2 2 2
1 2 3

( ) ,

( ) ,   

( ) .

a b c R av bu

a b c R av bu

a b c R av bu

− + + = +

− + + = − −

− + + = − +

 

From the above simultaneous equations, we obtain 
solutions:  

(a) when 0c ≠  (i.e. 0k ≠ ) 

2 2
1 1 4

2 2
2 2 3

2 2
3 3 2

2 2
4 4 1

1 [ ( ) ],    

1 [ ( ) ],

1 [ ( ) ],     

1 [ ( ) ],

H v b c u ab

H v b c u ab

H v b c u ab

H v b c u ab

⎧ = − + +⎪ Δ⎪
⎪ = − + −⎪ Δ
⎨
⎪ = − + −
⎪ Δ
⎪
⎪ = − + +
⎩ Δ

   (a3.1) 

2 2
1 1 4

2 2
2 2 3

2 2
3 3 2

2 2
4 4 1

1 [ ( ) ],   

1 [ ( ) ],

1 [ ( ) ],    

1 [ ( ) ],

W u a c v ab

W u a c v ab

W u a c v ab

W u a c v ab

⎧ = + −⎪ Δ⎪
⎪ = + +⎪ Δ
⎨
⎪ = + +
⎪ Δ
⎪
⎪ = + −
⎩ Δ

     (a3.2) 

2

1 2 3

2

2 1 4

2

3 4 1

2

4 3 2

( ),       

( ),

( ),        

( ),

cR bu av

cR bu av

cR bu av

cR bu av

⎧
= −⎪ Δ⎪

⎪
= − −⎪⎪ Δ

⎨
⎪ = +⎪ Δ
⎪
⎪ = − +⎪⎩ Δ

          (a3.3) 

where 2 2 2 2( )c a b cΔ = + + , and because m, n, k asyn-

chronously equate to 0, we obtain 2 2 2 0.a b c+ + ≠  
(b) when 0c =  (i.e. 0k = ) 

1 2 3 4

1 2 3 4

0,
0,

H H H H
W W W W

= = = =⎧
⎨ = = = =⎩

          (a3.4) 

for  ( 1,2,3,4)iR i = , and when 0a =  (m=0) and 0b ≠  
( 0n ≠ ), we obtain 

1 2 2 1

3 4 4 3

1 2 3 4

1 1,   ,   

1 1,   ,

0,

R u R u
b b

R u R u
b b

v v v v

⎧ = = −⎪
⎪
⎨ = = −⎪
⎪

= = = =⎩

          (a3.5) 

when 0a ≠  ( 0m ≠ ) and 0b =  ( 0n = ), we get 

1 3 2 4

3 1 4 2

1 2 3 4

1 1,   ,  

1 1,   ,

0,

R v R v
a a

R v R v
a a

u u u u

⎧ = − = −⎪
⎪
⎨ = =⎪
⎪

= = = =⎩

         (a3.6) 

when 0a ≠  ( 0m ≠ ) and 0b ≠  ( 0n ≠ ), we obtain 

1 3 2

2 4 1

3 1 4

4 2 3

1 1 ,      

1 1 ,

1 1 ,     

1 1 .

R v u
a b

R v u
a b

R v u
a b

R v u
a b

⎧ = − =⎪
⎪
⎪ = − = −⎪
⎨
⎪ = =
⎪
⎪
⎪ = = −
⎩

            (a3.7) 

Thus, we obtain the coefficients ,  ,  i i iH W R  (i= 1, 2, 3, 

4). Finally, we obtain analytic expression of stream 
functions in form of Fourier series by substituting (a3.1) 
and (a3.7) into (42) and (43), respectively. Now we 
prove Corollary 1. Substituting the expressions of W,  R 
and u  into the first part of (44), we obtain 

1 2[( )cos cos3 cos π
mnk

cW bR mx ny k p− +∑  

2 1( )cos sin 3 cos πcW bR mx ny k p+ +  

3 4( )sin cos3 cos πcW bR mx ny k p− +  

4 3( )sin sin 3 cos π ]cW bR mx ny k p+  

1[ cos cos3 cos π
mnk

u mx ny k p= ∑  

2 cos sin 3 cos πu mx ny k p+ +  

3 sin cos3 cos πu mx ny k p 4 sin sin 3 cos π ]u mx ny k p+ . 

Therefore, the first part of (44) is valid only when the 
following four equations are valid: 

1 2 1 2 1 2

3 4 3 4 3 4

,      ,
,      .

cW bR u cW bR u
cW bR u cW bR u

− = + =⎧
⎨ − = + =⎩

     (a3.8) 

When 0c ≠  ( 0k ≠ ), substituting (a3.5) and (a3.6) 
into (a3.8), we obtain  

2
2 2

1 2 1 4 1 4 1[ ( ) ] [ ] ,c ccW bR u a c v ab b bu av u− = + − − − − =
Δ Δ

2
2 2

2 1 2 3 2 3 2[ ( ) ] [ ] ,c ccW bR u a c v ab b bu av u+ = + + + − =
Δ Δ
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2
2 2

3 4 3 2 3 2 3[ ( ) ] ( ) ,c ccW bR u a c v ab b bu av u− = + + − − + =
Δ Δ

2
2 2

4 3 4 1 4 1 4[ ( ) ] ( ) ,c ccW bR u a c v ab b bu av u+ = + − + + =
Δ Δ

 

where 0c = ( 0k = ). From (a3.4) and (a3.7), we know  

(a3.8) is valid. Similarly, we can prove that the second 
and third equations of (45) are valid. 

We thank Profs. Wu Guoxiong, Li Jianping and Feng Guolin for their 
guidance, and also thank the anonymous experts for their valuable advice. 
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