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In order to effectively improve numerical prediction level by using current models and data, the strat-
egy and methodology of dynamical analogue prediction (DAP) is deeply studied in the present paper. A 
new idea to predict the prediction errors of dynamical model on the basis of historical analogue in-
formation is put forward so as to transform the dynamical prediction problem into the estimation 
problem of prediction errors. In terms of such an idea, a new prediction method of final analogue cor-
rection of errors (FACE) is developed. Furthermore, the FACE is applied to extra-seasonal prediction 
experiments on an operational atmosphere-ocean coupled general circulation model. Prediction results 
of summer mean circulation and total precipitation show that the FACE can to some extent reduce 
prediction errors, recover prediction variances, and improve prediction skills. Besides, sensitive ex-
periments also show that predictions based on the FACE are evidently influenced by the number of 
analogues, analogue-selected variables and analogy metric. 
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1  Introduction 

Numerical weather forecasting and short-term climate 
prediction are quickly developed by the following se-
rial improvements of observation data and models. But 
their capability for practical application is yet unsatis-
factory and predictive performance still needs to be 
promoted[1―3]. In the past ten years, prediction strategy 
and methodology based on numerical model have been 
increasingly developed and become an important ap-
proach for improving prediction, in which many related 
researches were carried out in domestic and overseas 
works[4]. Thus, under the current conditions of models 
and data, it will have important values to deeply develop 
and innovate in prediction strategy and methodology. 

Actually, the essential idea in prediction strategy and 
methodology research is to seek the combination of dy-
namical and statistical methods. At present, meteorolo-
gists have come to an agreement on combining the nu-
merical model with statistical experience. But most im-

portant, how to effectively combine them needs further 
study. Early in the 1950s, Gu put forward the importance 
and feasibility of introducing historical data into nu- 
merical prediction[5,6]. In fact, error correction tech- 
niques employed in short-term climate prediction are  
just based on statistical features between hindcasts and  
observations[7―9]. In order to realize the combination of  
dynamical and statistical methods in nature, Chinese  
meteorologists have proposed many innovative predic- 
tion methods, such as the methods using multi-time his- 
torical data[10,11], the analogue-dynamical methods[12―15],  
and the methods based on atmospheric self-memoriza- 
tion principle[16,17], and so on. Although these methods  
can provide new approaches for improving numerical  
prediction level, further works will be still necessary for  
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their operational applications. In current days, numerical 
models are being gradually perfected and historical data 
are being abundantly accumulated. Then, how can the 
above-mentioned prediction ideas with theoretical ad-
vantages be applied to these abundant data and advanced 
models? This is the basic motivation of related studies in 
the present paper, which has significant values and 
meanings. 

In recent works, the concept and methodology of dy-
namical analogue prediction (DAP) has been put for-
ward, and its validity has been also documented by pri-
mary experiments[18,19]. The strategy and methodology 
of the DAP will be further studied in this paper. A new 
prediction method will be developed by introducing the 
new idea to predict the prediction errors of dynamical 
model based on historical analogue information, and the 
extra-seasonal prediction experiments on an operational 
model will be conducted. 

2  Strategy of dynamical analogue pre-
diction 

Generally, numerical prediction is mathematically put 
forward in terms of the initial value problem of partial 
differential equations and can be expressed as 

 ( ) 0,L
t

ψ ψ∂
+ =

∂
 (1) 

( ) ( )0 0, ,r t rψ ψ=  

where ( ),r tψ  is the model state vector to be predicted, 

r is the vector in the spatial coordinate, t is time, and L is 
the differential operator of ψ, which is corresponding to 
real numerical model and usually nonlinear. t0 is initial 
time and ψ0 is initial value. When t > t0, ψ or their func-
tions ( )P ψ  may be obtained by numerically integrat-

ing initial values. Similarly, the exact model that real 
atmosphere satisfies can be written as 

 ( ) ( ) ,L E
t

ψ ψ ψ∂
+ =

∂
 (2) 

in which E, as the functions of ψ, stands for the errors 
between real atmospheric process and the dynamical 
process described by model, and just reflects the un-
known total errors of numerical model, namely model 
errors. Then from point of view of dynamics, historical 
observed data may be regarded as a series of special so-
lutions ψ  or their functions ( )P ψ  of eq. (2). 

In general, based on theoretical and experimental re-

searches, a great many complicated numerical models 
are continually developed in order to reduce model er-
rors ( )E ψ  by improving dynamical frameworks, 

physical processes, and so on. But anyway, there always 
objectively exists considerable errors in models. Conse-
quently, according to the idea of studying prediction 
strategy, model errors ( )E ψ  can be estimated and re-

duced by utilizing the information of historical data in 
terms of inverse problem under the condition of existing 
models. 

For any initial value ψ, in order to pertinently select 
observed data suitable for estimating model errors, one 
may consider to use the model error information pro-
vided by historical analogue ψ  similar to ψ. Compared 
with the traditional statistical analogue prediction[20], the 
concept of dynamical analogue prediction (DAP) has 
been introduced in order to effectively utilize historical 
analogy information in dynamical prediction and realize 
the adequate combination of dynamical and statistical 
methods[4,19]. Hence, substituting ψ  into eq. (2) yields 

 ( ) ( ).L E
t

ψ ψ ψ∂
+ =

∂
 (3) 

Note that ψ is quite close to ψ , so ( )E ψ  can be Taylor 

expanded to the first order in terms of ψ about ψ : 

( ) ( ) ( ) ,E E D ψψ ψ ψ ψ= + −  

where D stands for the sum of the partial differentials of 
E with respect to every component of ψ . As we can see, 

when |D ψ  is bounded and || ||ψ ψ−  is small enough, 

one may estimate ( )E ψ  on the right-hand side of eq. 

(2) by using error term ( )E ψ  on the right side of eq. 

(3), and obtain the analogue-correction equation of er-
rors (ACEE) 

 ( ) ( ).L L
t t

ψ ψψ ψ∂ ∂
+ = +

∂ ∂
 (4) 

It can be clearly seen that the first term on the right hand 
of eq. (4) is known and the second term can be calcu-
lated by the numerical model. Thus, eq. (4) may be con-
sidered to append an analogue-correction term of errors 
into eq. (1) in order to be closer to eq. (2) that represents 
the exact model satisfied by real atmosphere. 

For current initial value ψ0, prediction of eq. (1) is 
denoted as 0( )P ψ  and that of eq. (2) is denoted as 

0( )P ψ  (namely observed data, unknown). Then, under 



 

 REN HongLi et al. Sci China Ser D-Earth Sci | Oct. 2007 | vol. 50 | no. 10 | 1589-1599 1591 

the condition of taking no account of observation errors, 
subtracting eq. (1) from eq. (2) after they are 
time-integrated respectively yields 

0

0
0 0 0

ˆ ( ) ( )d ( ) ( ).
t t

t
E E t P P

δ
ψ ψ ψ ψ

+
≡ = −∫  

where δt is integrated time period and 0( )P ψ  is the 

observed data corresponding to 0( ).P ψ  It can be obvi-

ously seen that 0
ˆ ( )E ψ  is the contribution of model 

error term ( )E ψ  to prediction result. If one estimates 

0
ˆ ( )E ψ  aforehand, prediction can be expressed as 

0 0
ˆ( ) ( ).P Eψ ψ+  At this time, the above prediction 

problem has been transformed into solving 0
ˆ ( ),E ψ  

which indicates the error correction for dynamical 
prediction 0( ).P ψ  

It follows from the above analyses that for improving 
the prediction of dynamical model, one may propose a 
new idea to predict the prediction errors of dynamical 
model and to transform the dynamical prediction prob-
lem into the estimation problem of prediction errors, 
which can be carried out by statistical methodology. The 
information of prediction errors is actually involved in a 
series of special solutions of the exact model that real 
atmosphere or climate system satisfies, which need to be 
extracted in virtue of existing numerical models. Thus it 
will be a key to discussing estimating methods based on 
the information of these prediction errors. 

3  Prediction of prediction errors (POPE) 
in dynamical model 

If historical observed iψ  is regarded as initial value, 

the prediction of eq. (1) can be denoted as ( )iP ψ  and 

that of eq. (3) can be denoted as ( )iP ψ  (namely 
historical observed data, here i = 1, 2 … N, where N may 
be taken as the number of all of samples in historical 
data). Therefore, one can obtain N known prediction 
errors ˆ ( ) ( ) ( ).i i iE P Pψ ψ ψ= −  Based on their arithme-

tic average, systematic errors 0
ˆ ( )E ψ  can be estimated. 

However, such the estimation of prediction errors has no 
pertinence for various initial values with time even 
though historical information is also used to improve 
model prediction in systematic error correction. 

For different ψ0, one may pertinently select historical 

analogue jψ  suitable for estimating current errors 

(here j = 1, 2 … m, where m is the number of selected 
analogues). Similar to 0

ˆ ( ),E ψ  here the information of 
prediction errors can be solved as 

( )h

h

ˆ ( ) d ( ) ( ).
t t

j j jt
E E t P P

δ
ψ ψ ψ ψ

+
≡ = −∫  

This just is prediction errors presented by analogue ,jψ  

where th is historical time, and ( )jP ψ  is historical ob-

served data corresponding to ( )jP ψ  and both of them 

are known. Thus, the new idea to predict the prediction 
errors of dynamical model on the basis of historical 
analogue information is put forward so as to transform 
the dynamical prediction problem into the estimation 
problem of prediction errors: 0

ˆ ˆ( ) ( ).jE Eψ ψ→  

Furthermore, time-integrating the differential equa-
tion (4) yields 

 
( )

( )

0 0

0 0

h h

h h

d d

       d d .

t t t t

t t

t t t t

t t

t L t
t

t L t
t

δ δ

δ δ

ψ ψ

ψ ψ

+ +

+ +

∂
+

∂
∂

= +
∂

∫ ∫

∫ ∫
 

(5)
 

And then, from current initial value and historical data, 
one can respectively obtain 

( )0

0
0 0

ˆd ,
t t

t
t P

t
δ ψ ψ ψ

+ ∂
= −

∂∫  and 

h

h
d ( ) .

t t
j jt

t P
t

δ ψ ψ ψ
+ ∂

= −
∂∫  

Here, 0
ˆ( )P ψ  represents the prediction results solved 

under the condition that the error term on the right-hand 
side of eq. (5) is estimated by using analogy information, 
which will become 0( )P ψ  if the right term of eq. (4) is 

equal to 0, and which will be 0( )P ψ  if the right term is 

( )E ψ . For ψ and ,jψ  based on the prediction model 

represented by eq. (1), one can respectively obtain 

( )0

0
0 0d ( ),

t t

t
L t P

δ
ψ ψ ψ

+
= −∫  and 

( )h

h
d ( ).

t t
j jt

L t P
δ

ψ ψ ψ
+

= −∫  

Substitute them into eq. (5) and derive the ultimate pre-
diction at current time t0+δ t as follows: 
 0 0

ˆ( ) ( ) ( ) ( ).j jP P P Pψ ψ ψ ψ= + −  (6) 

This is called as the DAP equation (DAPE), which is 
significantly deferent from the statistical analogue pre-
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diction equation (SAPE) 0
ˆ( ) ( ).jP Pψ ψ=  The differ-

ence between them is the DAP increment (DAPI) 

0( ) ( ),jP Pψ ψ−  which reflects the implication of “dy-

namical analogue”. Clearly, on the right side of eq. (6), 

0
ˆ ( )E ψ  is estimated by utilizing prediction errors 
ˆ ( )jE ψ  corresponding to historical analogues[18]. Thus, 

eq. (6) shows to append an analogue-correction term of 
errors on the basis of model prediction so as to realize 
the prediction of current prediction errors. 

4  A new method of dynamical analogue 
prediction 

Evidently, the DAPE can be suitable for prediction on 
every timescale. Especially, for monthly and seasonal 
mean predictions interested in short-term climate predic-
tion, one can further develop a new method of analogue 
correction of errors suitable for mean prediction based 
on eq. (6). 

4.1  Analogue correction of errors (ACE) 

Consider to write eq. (6) at time t0+δ t, t0+2δ t … t0+kδ t, 
where k may vary with various prediction objectives. 
Time-integrating eq. (6) during the period of [t1, t2] after 
initial time t0 yields 

 2 2 2 2

1 1 1 1
0 0

ˆ( ) ( ) ( ) ( ).
t t t t

j jt t t t
P P P Pψ ψ ψ ψ= + −∫ ∫ ∫ ∫  (7) 

This is the DAPE in the time-integration sense. If pre-
diction objective is any monthly or seasonal mean in fu-
ture, then we conduct monthly or seasonal mean for eq. (7) 
during [t1, t2] and obtain 
 MM 0 MM 0 MM MM

ˆ ( ) ( ) ( ) ( ),j jP P P Pψ ψ ψ ψ= + −  (8) 

 SM 0 SM 0 SM SM
ˆ ( ) ( ) ( ) ( ).j jP P P Pψ ψ ψ ψ= + −  (9) 

They are named monthly and seasonal mean DAPEs, 
respectively. The corresponding DAPIs, defined as the 
difference between two predictions based on current 
initial value and historical analogue, are 

MM 0 MM( ) ( )jP Pψ ψ−  and SM 0 SM( ) ( )jP Pψ ψ−  respec-

tively. If let DAPI = 0, eqs. (8) and (9) will get monthly 
and seasonal mean SAPEs: MM 0 MM

ˆ ( ) ( )jP Pψ ψ=  and 

SM 0 SM
ˆ ( ) ( ).jP Pψ ψ=  Here, mean observed data corre-

sponding to historical analogical initial value are directly 
regarded as the current mean prediction. 

It can be seen that a new method of analogue correc-
tion of errors (ACE) suitable for short-term climate pre-
diction has been proposed in eqs. (8) and (9). Different 
from the universal definition of the ACE[18] in eq. (6), 
here is the final analogue correction of errors (denoted 
as FACE). Besides, it should be pointed out that in the 
derivation process with respect to the FACE, prediction 
objectives are not expressed as prediction variables ψ 
but their functions P(ψ), which indicates that the FACE 
can be directly applied to the correction of prediction 
variables (e.g., geopotential height) or their functions    
(e.g., precipitation). 

4.2  Estimation of prediction errors 

As we know, in the process of estimating current predic-
tion errors by using historical analogy information, there 
usually exist a good many analogues in history. If one 
only utilizes an analogue for error estimation in terms of 
the DAPE, then a great deal of useful information will 
be lost, which could influence predictive effect. Hence, 
it will be very important to study the methodology of 
estimating prediction errors based on multi-analogue 
information, which will be discussed theoretically and 
practically in the following. 
(i) Hyperplane approximation method (HAM).  After 
obtaining m prediction errors ˆ ( )jE ψ  from historical 

analogues, how can current prediction errors 0
ˆ ( )E ψ  be 

estimated? Set ,nRψ ∈  the error estimation problem 
may be mathematically expressed as 

 ( )0 1 2
ˆ ˆ ˆ ˆ( ( ), ( ), , ( )),mE C E E Eψ ψ ψ ψ=  (10) 

where ψ0 is current initial value, jψ  is analogical ini-

tial value ( j = 1, 2 … m, where m is the number of se-
lected analogues), C stands for the algorithms estimating 
current errors based on errors from historical analogues, 
the special form of which can be decided in terms of 
given situation. It can be seen from Figure 1 that one 
may look on the function ˆ ( )E ψ  satisfied by 0

ˆ ( )E ψ  

and ˆ ( )jE ψ  with respect to ψ as a curve plane S. Simi-

lar to the curve-plane fitting method in objective analy-
sis of meteorological data, one can determine coeffi-
cients in the analyzed expression of the curve plane S by 
using observed station data and calculate the value of 
any spot on the curve plane. Indeed, for n-dimensional 
problem here, it will be very difficult to a priori assume 
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an expression of S. 

 
Figure 1  Schematic illustration of functional curve-plane and its tangent 

plane approximation satisfied by ˆ ( )E ψ  in n-dimensional space. 

 
Here, a tangent linear approximation of S can be used 

where there is a tangent plane passing through 0
ˆ ( )E ψ  

(also see Figure 1). Then, take the component form 

1 2( , , , , , ),i nψ ϕ ϕ ϕ ϕ=  and let 0 ,j jψ ψ ψ ′= +  and 

suppose that the selected analogue ψj is enough close to 
ψ0. So on this plane, Taylor-expand ˆ ( )jE ψ  with re-

spect to ψ0 and only retain the first order approximation 
to have 

 

( ) ( ) ( )

( )

0 0

0

0 1 2
1 2

ˆ ˆˆ ˆ( )

ˆ
 ,

j

n
n

E EE E j j

E j

ψ ψ

ψ

ψ ψ ϕ ϕ
ϕ ϕ

ϕ
ϕ

∂ ∂′ ′= + +
∂ ∂

∂ ′+ +
∂

 
(11)

 

where ( ) ( ) (0).i i ij jϕ ϕ ϕ′ = −  Let ˆ ˆ ( )j jE E ψ= = 0
ˆ (E ψ +  

),jψ ′  0 0
ˆ ˆ ( ),E E ψ=  

0
ˆ / | ,i id E ψϕ= ∂ ∂  ( ).ji i jϕ ϕ′ ′=  At 

this time, eq. (11) can be rewritten as a matrix form: 
 ,Au v=  (12) 
in which 

11 12 1 10

21 22 2 21

1 2

ˆˆ 1                 
ˆ 1                 ,  ,  

                               
ˆ  1               

n

n

nm m mn m

EE
EdA u v

d E

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

⎛ ⎞⎛ ⎞′ ′ ′ ⎛ ⎞
⎜⎜ ⎟ ⎜ ⎟

′ ′ ′ ⎜⎜ ⎟ ⎜ ⎟= = = ⎜⎜ ⎟ ⎜ ⎟
⎜⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜⎜ ⎟′ ′ ′ ⎝ ⎠⎝ ⎠ ⎝ ⎠

.
⎟
⎟
⎟
⎟
⎟

For some j, if 1 2 0,j j jnϕ ϕ ϕ′ ′ ′= = = =  then easily get 

0
ˆ ˆ( ) ( )jE Eψ ψ=  from eq. (12). When m = n + 1 and |A| 

≠0, then eq. (12) has a unique solution 1 .u A v−=  In 

fact, 0
ˆ ˆ, ,n

jE E R∈  so only obtain a component of 0Ê  

ahead. Further, its n components ( , 1,2 )ku k n=  can 
also be obtained after solving all the components 
( , 1,2 )kv k n=  of ˆ

jE  in eq. (12) again and again for 

n times. Ultimately, 0
ˆ ( )E ψ  is obtained. 

Accordingly, based on eq. (12), error estimation 
problem has been transformed into retrieval problem of 
linear algebraic equation group. Thus a so-called hyper-
plane approximation method (HAM) has been proposed 
for estimating current prediction errors based on errors 
from historical analogues. However, the HAM could be 
only suitable for low-dimensional theoretical studies. In 
practical applications, it is necessary to design simpli-
fied schemes in terms of given situations. 
(ii) Simple linear estimation method (SLEM) in the 
least-square sense.  If ,m n  that is to say, the num-
ber of suited historical analogues that can be selected is 
far smaller than the dimension of prediction variable, 
then it will be almost impossible to solve the retrieval 
problem of linear algebraic equation group presented by 
eq. (12). In practice, it can be seen that the process of 
solving 0

ˆ ( )E ψ  from ˆ ( )jE ψ  is quite analogous to the 

process that station data are interpolated into grid-point 
data in objective data analysis. The differences between 
them are that the interpolation is conducted on 
2-dimensional plane but error estimation problem is 
done on n-dimensional plane. Therefore, the interpola-
tion problem of multi-dimensional function on hyper-
plane comes into being and C in eq. (10) may be taken 
as the simple linear estimation method (SLEM) in the 
least-square sense. Here, consider a simple optimization 
problem. In order to minimize the total distance between 

0Ê  and all of ˆ ,jE  an objective function can be de-

fined as 

2

1

1ˆ ˆ ˆ( ) ( ) .
2

m

j j
j

J E b E E
=

= −∑  

When J comes to minimum, it is not difficult to obtain 
the optimal *

0
ˆ ˆE E=  according to the necessary condi-

tion as follows: 

*

1

ˆ ˆ( ) 0.ˆ
m

j j
j

J b E E
E =

∂
= − =

∂
∑  

At this time, eq. (10) becomes 
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 ( )0
1 1 1

ˆ ˆ ˆ( ) ( ),
m m m

j j j j j
j j j

E b E b a Eψ ψ ψ
= = =

= =∑ ∑ ∑  (13) 

where 
1

m

j j j
j

a b b
=

= ∑  stands for the jth normalized 

weighted coefficient and bj is undetermined coefficient. 
The SLEM may be regarded as the considerable simpli-
fied version of the HAM. In other words, let di = 0 in eq. 
(12) and ˆ ( )jE ψ  are weightedly averaged. 

5  Extra-seasonal prediction experiment 
based on the FACE 

In the process of the FACE, historical analogues are first 
selected based on current initial value, and then error 
information in history is extracted by employing current 
model. Further, one can estimate current prediction er-
rors and correct original model prediction. In order to 
examine the performance of the FACE in practical pre-
diction, monthly and seasonal prediction experiments 
have been already conducted. Here, only give the ex-
tra-seasonal prediction results of summer circulation and 
precipitation based on the FACE. 

5.1  Atmospheric rhythm phenomena and analogue 
selection 

First of all, the selection of historical analogue plays a  
key role in the DAP, and the pertinent scheme for se- 
lecting analogue needs to be introduced for prediction  
problems on different scales. For the extra-seasonal pre- 
diction of summer circulation and precipitation, the  
general initial values, viz. the corresponding variable  
fields in early winter, are utilized for analogue selection,  
the rationality of which is that there exist the atmos- 
pheric rhythm phenomena with a timescale of 3―6  
months in the long-range weather process. Wang’s in- 
vestigation[21] of the evolution of analogical circulation  
anomalies has shown that if the circulation anomalies in  
Januaries of any two years are analogical to each other,  
they will be also analogical in Junes or Augusts of the  
same two years. Moreover, the dynamical mechanism  
associated with such analogy or rhythm phenomena may  
be discussed by employing an air-ocean coupled model  
in the analogue-deviation form[22]. Theoretical analyses  
and numerical simulations have showed that the genera- 
tion of such analogy or rhythm phenomena is because  
under the forcing of seasonal variation of monthly mean  
circulation, the asymmetrical oscillations of ana-

logue-deviation perturbation are induced by the nonlin-
ear interactions of air-ocean coupled system. 

The above-mentioned atmospheric rhythm phenom-
ena indicate that when two monthly deviation fields in 
different years are analogical in some initial month, 
such analogy will generally get weak with time later 
and get strong again after about quite a few months. As 
the rhythm behavior of circulation evolution, it has 
been documented that there widely exists the analogy 
rhythm with a timescale of about half a year in the 
long-range evolution of weather anomalies[21]. Here, 
the scheme for analogue selection by using variable 
fields in early winter just reflects such analogy rhythm. 
Actually, in current flooding-season prediction of 
China, it is one of the most familiar methods to predict 
summer anomalies by utilizing anomalous signals in 
early winter fields. 

5.2  Model, data and scheme 

In the following experiments, a 23-year hindcast dataset 
during 1983 ― 2005 produced by the operational 
NCC/IAP T63 atmosphere-ocean coupled general circu-
lation model (CGCM) of CMA/National Climate Center 
(NCC). Here, annual June―August ensemble-mean data 
predicted at the end of February are used. Moreover, the 
initial values of atmospheric model are generated at 00Z 
UTC on the last 8 days of February from the 
NCEP/NCAR reanalysis dataset (NNRA). The initial 
values of oceanic model are from the global ocean data 
assimilation system of NCC. These initial values are 
perturbed and combined into 48 ensemble members of 
dynamical seasonal prediction. The CGCM have been 
detailedly introduced in existing literatures[23,24]. 

Experiment scheme of the FACE for predicting sum-
mer circulation and precipitation is designed as: (1) 
Choose summer mean 500 hPa geopotential height 
(GH500) and total precipitation from the 23-year hind-
cast dataset; (2) choose 23-winter seasonal mean GH500, 
sea level pressure (SLP), 1000―500 hPa thickness 
(THICK) from the NNRA, and extended reconstructed 
sea surface temperature (ERSST) from NOAA/NCDC 
during 1982/83―2004/05 to select historical analogues; 
(3) choose summer mean GH500 from the NNRA and 
total precipitation of CMAP provided by the 
NOAA/OAR/ESRL/PSD for verifying prediction; (4) 
the FACE is based on eq. (9) and the SLEM on eq. (13) 
is employed to estimate prediction errors, where for bj, 
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the anomaly correlation coefficient (ACC) and the root 
mean square error (RMSE) are taken as distances to 
measure analogy, and the number of selected analogues 
is undetermined; (5) cross-validation is used for predic-
tion experiments, in which any year is selected as objec-
tive year every time and the known information in re-
sidual years is utilized to predict summer circulation and 
precipitation in objective year; and (6) verification 
scores consist of time correction coefficient (TCC) and 
pattern correction coefficient (PCC) or ACC with the 
spatial sense. 

5.3  Prediction results of summer mean circulation 

As a comparison, Figure 2 first gives the CGCM predic-
tions of summer GH500 based on systematic prediction 
error correction (SPEC). 

 

Figure 2  The distribution of TCCs between predictions and verifications 
of summer mean GH500 based on the SPEC, where numbers 0.35, 0.41, 
0.52 and 0.64 stand for 10%, 5%, 1% and 0.1% significance levels based 
on Student’s t-test, respectively. 
 

It can be seen from Figure 2 that TCCs between pre-
diction and verification of summer circulation are rela-
tively small as a whole. The color shade shows areas 
that exceed a 10% significance level based on Student’s 
t-test. Obviously, TCCs in only a few areas are signifi-
cant, which indicates that the predictive effects of sum-
mer circulation based on the SPEC are unsatisfactory. 
Furthermore, as the available hindcast dataset only has a 
very short length of 23 years, the most number of se-
lected analogues based on early winter fields is 22 for 
every predicted objective year. Here, only the first 4 best 
analogues are used for the FACE experiments in order to 
guarantee considerable analogy. Figure 3 presents the 
FACE predictions of summer mean GH500 by selecting 
analogues based on early winter GH500. 

 
Figure 3  The same as Figure 2, but for the FACE by taking ACC as 
analogy metric and using the first 4 best analogues. 

 
Compared with Figure 2, the whole low-latitude areas 

are almost covered by the high positive correlation be-
yond a 5% significance level in Figure 3. Especially, 
there exist several extremal centers of high correlation at 
the 0.1% significance level over the Asian, African and 
South American monsoon areas, which may provide 
some valuable references for seasonal prediction in these 
monsoon areas. Clearly, the unique significant positive 
correlation over the Northern Hemispheric middle-       
latitude zones lies in the East Asian monsoon area with 
high climate variability and low predictability, where a 
high-correlation center exists over the areas from west-
ern Northeast China to northern North China and more 
significant positive correlation area is located south of 
the Yangtze River. 

It is well known that dynamical prediction is inevita-
bly characterized by damped wave amplitudes and 
gradually tend to model climate mean with integrated 
time. Although the SPEC can help to eliminate the cli-
matic drift, the variances of interannual variability of 
dynamical prediction still need be amplified again. Fig-
ure 4 further gives the comparisons between predicted 
and verified standard deviations of interannual variabil-
ity of summer mean GH500. 

In contrast to the standard deviations of verifications 
in Figure 4(a), those corresponding to the SPEC are so 
small that there only are few contours in Figure 4(b). 
Comparatively speaking, the FACE exhibits better cor-
rected effects for standard deviations, where those main 
high-variability centers are well replicated, particularly 
over the southern and northern Pacific as well as middle- 
and high-latitude areas, even though only about 50% of 
standard deviations of verifications is recovered in 
quantity based on the FACE. Actually, the error correc-
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tion of variances associated with amplitude damping can 
be implemented by multiplying “inflation factor” on the 
damped prediction for recovering their amplitudes[25], 
but which could cause singular values when the standard 
deviations of predicted interannual variability are close 
to 0. Surprisingly, the FACE, without special procedure 
for such inflation, can effectively restore amplitudes for 
damped prediction, which is evidently linked with er-
ror-estimation process in the FACE. This is because the 
prediction errors presented by historical analogues con-
tain the information of significant differences between 
predicted and verified standard deviations. By the er-
ror-estimation process, such information is passed into 
new estimated errors and further into prediction results. 

5.4  Prediction results of summer total precipitation 

In the following, the FACE is applied to prediction ex-
periments of summer total precipitation. Note that rain-
fall generally happens on a small spatial scale with 
strong locality. Here, 4 regions are chosen to calculate 
PCCs between prediction and verification, and Table 1 
gives 23-year mean results. We can see that in the 4 re-

gions, the SPEC exhibits positive but small skill scores, 
whereas PCCs based on the FACE with the first 4 best 
selected analogues by using early winter GH500 all ex-
ceed 0.1, which displays that prediction scores are sig-
nificantly heightened. 

Figure 5 presents the interannual variability of PCCs 
in the 4 regions. It can be seen that the skill-score curves 
of the SPEC nearly surround 0 lines and oscillate, 
whereas those of the FACE mostly lies above 0 lines. 
Especially, there are 17-year PCCs more than 0 in China 
region, which reflects the robust performance of the 
FACE. However, the latest 3-year PCCs are all less than 
0, which implies the complexity of summer precipitation 
prediction. Moreover, for either the SPEC or the FACE, 
there is a good coherence between global and tropical 
curves, which indicates that the prevailing contributions 
to global summer precipitation pattern are from tropics. 

5.5  Sensitive experiments 

(i) Impact of the number of analogues on the FACE.  Ba- 
sed on the hindcast dataset of the CGCM, the impact of 
the number of selected analogues on the FACE is first 

 

 
Figure 4  Standard deviations of the predicted and verified interannual variability of summer mean GH500 (Unit: gpm), where (a)―(d) are corresponding 
to the VERI, SPEC, FACE and VERI-FACE, respectively. 
 
Table 1  The 23-year mean PCCs between predictions and verifications of summer precipitation in different regions 

Globe Tropics East Asia China 
Spatial regions 

0°―360°E, 60°S―70°N 0°―360°E, 30°S―30°N 100°E―140°E, 10°N―40°N 72°E―136°E, 21°N―54°N 
SPEC 0.009 0.010 0.003 0.052 
FACE 0.101 0.168 0.127 0.110 

ACC and early winter GH500 are used to select the first 4 best analogues in the FACE. 
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Figure 5  PCCs between predictions and verifications of summer precipitation in the 4 regions based on the FACE by taking ACC as analogy metric and 
using the first 4 best analogues. (a)―(d) are corresponding to the globe, tropics, East Asia and China, respectively. 
 
examined. It may be seen from Figure 6 that the number 
of analogues clearly influences the predictive effects of 
summer circulation and precipitation. Along with in-
creasing the number of analogues, PCCs come to 
maxima when 3 analogues are introduced, and to min-
ima when 5 analogues. After that, PCCs corresponding 
to GH500 gradually become large till to reach a stable 
maximum, whereas those to precipitation come to an 
appreciably decreased stable value after a few oscilla-
tions. It is also shown from Figure 6(b) that the optimal 
number of analogues could exist. Thus, the predictive 
effects based on 4 analogues as above are not the best, 
which still may be improved by modifying the number 
of analogues used in the FACE. 
(ii) Impact of analogue-selected variables on the FACE. 

To determine variables for selecting analogues is a 
quite important problem, which depends on that whether 
the analogue-selected variables can effectively reflect 
physical analogy between objective fields. Table 2 lists 
experiment results of the FACE based on different vari-
ables. In the 23-year mean sense, regarding early winter 
GH500 as analogue-selected variable has more advan-
tages, and the corresponding ACC scores are all the up-
permost. Comparatively, prediction skill scores based on 
early winter ERSST are appreciably decreased and those 

on thickness field are far better for circulation prediction 
than precipitation prediction, whereas those correspond-
ing to SLP are somewhat low. Thus, early winter GH500 
can be regarded as analogue-selected variable for pre-
dicting summer circulation and precipitation, which is 
close correlated with the atmospheric rhythm phenom-
ena and roots in the mechanism that under the forcing of 
seasonal variation of monthly mean circulation, the 
asymmetrical oscillations of analogue-deviation pertur-
bation are induced by the nonlinear interactions of 
air-ocean coupled system[22]. In fact, the prediction ex-
periments of the FACE just are based on the hindcast 
data generated by an atmosphere-ocean coupled model. 
(iii) Impact of analogy metric on the FACE.  Analogy 
metric may be generally expressed as the distance 
measured by ACC or RMSE between variable fields. 
Then, are they suitable for seasonal prediction? As ACC 
has been used to select analogues in previous experi-
ments, Table 3 further gives prediction scores by taking 
RMSE as analogy metric. It can be seen that the verified 
statistics based on the FACE are evidently different by 
taking between ACC and RMSE as analogy metrics re-
spectively. Here, for precipitation, the skill score corre-
sponding to the former is about 0.1 whereas that corre-
sponding to the latter is negative. For GH500, the skill 
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Figure 6  The global PCCs as the function of the number of analogues in summer GH500 (a) and precipitation (b) predictions based on the FACE by 
taking ACC as analogy metric and regarding early winter GH500 as analogue-selected variable. 

 
Table 2  23-year mean global scores of summer GH500 and precipitation predictions based on the FACE by taking different analogue-selected variables 

Prediction objectives Summer GH500 Summer precipitation 
Prediction scores RMSE (gpm) ACC RMSE (gpm) ACC 

Select analogues by early winter GH500 18.18 0.108 49.91 0.101 
Select analogues by early winter ERSST 17.87 0.099 52.03 0.062 
Select analogues by early winter THICK 17.87 0.107 51.66 0.050 
Select analogues by early winter SLP 17.89 0.067 51.39 0.067 

ACC is used to select the first 4 best analogues. 
 

score corresponding to the former is superior to that to 
the latter but the RMSE scores are close to each other. In 
a word, the predictions by taking ACC as analogy metric 
show better effects, which could be related with that the 
signals from anomalous climatic pattern indicate better 
physical analogy than those from anomalous amplitude. 
 
Table 3  23-year mean global scores of summer GH500 and precipitation 
predictions based on the FACE by regarding ACC as analogy metric 

Prediction objectives Summer GH500 Summer precipitation

Prediction scores ACC RMSE 
(gpm) 

 
ACC RMSE 

(gpm) 
Select analogues by ACC 0.108 18.18    0.101 49.91 
Select analogues by RMSE 0.005 17.92  −0.034 53.30 

Early winter GH500 is used to select the first 4 best analogues. 
 
Generally speaking, the predictability of seasonal 

prediction is primarily originated from the outer forcing 
of tropical oceans. So it is not difficult to understand that 
the FACE exhibits more significant improvements for 
predictions over low-latitude areas than extratropical ar-
eas. By using early winter fields for analogue selection, 
the FACE predictions can reflect atmospheric rhythm 
phenomena generated from the air-ocean interaction 
which is the most active over low-latitude areas. Under 
such physical background, the extra-seasonal predict-

ability implied by early analogy is rooted in low-latitude 
air-ocean interaction. Moreover, for the middle- and 
high-latitude prediction based on the FACE, it is the key 
of improving prediction how to find the analogy indices 
that can physically stand for predictability information, 
which will be further studied in the future work. 

6  Summary and discussion 

Under the conditions of current models and data, it is 
quite important for improving numerical prediction to 
deep investigate the prediction strategy and methodol-
ogy by combining dynamical and statistical methods. In 
the present paper, based on previous studies of dynami-
cal analogue prediction strategy, a new idea to predict 
the prediction errors of dynamical model by extracting 
historical analogue information is put forward in order  
to transform the dynamical prediction problem into the 
estimation problem of prediction errors. In terms of such 
an idea, a new prediction method of final analogue 
correction of errors (FACE) is further developed. The 
FACE can effectively use analogy information in his-
torical data and is suitable for predicting each compo-
nent of climate system models besides atmospheric 
model. In order to effectively utilize analogical error 
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information for improving model prediction, the new 
prediction method need not rebuild new model but de-
pend on developments of numerical models and data. 

Furthermore, the FACE is applied to extra-seasonal 
prediction experiments on operational atmosphere-ocean 
coupled general circulation model of CMA/NCC by 
utilizing early winter variable fields for analogue selec-
tion. Prediction results of summer mean circulation and 
total precipitation show that the FACE can effectively 
improve the prediction skills of circulation over 
low-latitude areas and regional precipitation patterns, 
which exhibits more evident improvement than simplex 
systematic error correction. The FACE has the consid-
erable capability of recovering variances of interannual 
variability of model predictions. Moreover, sensitive 
experiments also show that many factors including the 
number of analogues, analogue-selected variables, and 
analogy metric have significant effects on predictions 
based on the FACE. In conclusion, the FACE can to  

some extent reduce prediction errors, recover prediction 
variances, and improve prediction skills. 

At present, there still exist many inherent shortages in 
short-term climate prediction by employing numerical 
model. Thus it is a feasible approach for improving pre-
diction levels to develop the prediction strategy of com-
bining dynamical and statistical methods and extracting 
information from historical analogical data[26]. Indeed, the 
predictive effects over middle-latitude areas based on the 
FACE are still unsatisfactory and are under improvement 
from the selection of analogue. In further works, we will 
aim at more effective analogue-selected schemes that are 
suitable for extra-seasonal predictions of circulation and 
precipitation, and design more representative analogy 
indices and methods of selecting analogue. 

The authors would like to thank Profs. Zhang Peiqun, Li Weijing, Feng 
Guolin, Huang Jianping, and two anonymous referees for their valuable 
suggestions. 
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