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Abstract  The nonlinearity of the relationship between CO2 flux and other micrometeorological 
variables flux parameters limits the applicability of carbon flux models to accurately estimate the flux 
dynamics. However, the need for carbon dioxide (CO2) estimations covering larger areas and the 
limitations of the point eddy covariance technique to address this requirement necessitates the mod-
eling of CO2 flux from other micrometeorological variables. Artificial neural networks (ANN) are used 
because of their power to fit highly nonlinear relations between input and output variables without 
explaining the nature of the phenomena. This paper applied a multilayer perception ANN technique 
with error back propagation algorithm to simulate CO2 flux on three different ecosystems (forest, 
grassland and cropland) in ChinaFLUX. Energy flux (net radiation, latent heat, sensible heat and soil 
heat flux) and temperature (air and soil) and soil moisture were used to train the ANN and predict the 
CO2 flux. Diurnal half-hourly fluxes data of observations from June to August in 2003 were divided into 
training, validating and testing. Results of the CO2 flux simulation show that the technique can suc-
cessfully predict the observed values with R2 value between 0.75 and 0.866. It is also found that the 
soil moisture could not improve the simulative accuracy without water stress. The analysis of the 
contribution of input variables in ANN shows that the ANN is not a black box model, it can tell us about 
the controlling parameters of NEE in different ecosystems and micrometeorological environment. The 
results indicate the ANN is not only a reliable, efficient technique to estimate regional or global CO2 
flux from point measurements and understand the spatiotemporal budget of the CO2 fluxes, but also 
can identify the relations between the CO2 flux and micrometeorological variables.  

Keywords: artificial neural network, CO2, ChinaFLUX, energy flux, variables contribution. 

The net ecosystem exchange (NEE) between vege- 
tation and atmosphere is important for understand-
ing carbon sinks and sources. To predict global cli-
mate change requires quantifying and observing 
NEE of different ecosystems on a long-time basis, 
researching spatial distribution of NEE and simu-
lating dynamic change of NEE.  

In recent years, the eddy covariance technique is 
not only applied to measuring ecosystem CO2 ex-
change across a spectrum of time scales, ranging 
from hours to years, but also used to measure spatial 
distribution of NEE with a footprint ranging from a 
few meters to a kilometer depending on the tower 
height. The need to understand CO2 flux at other 
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locations or a larger region requires observations as 
a large number of point or modeling approach. Re-
sources and practical limitations to monitor large 
areas justify a modeling approach to understand 
spatial distribution of carbon flux between the at-
mosphere and a plant canopy[1]. Research result 
shows that CO2 flux is correlated to the energy 
fluxes (latent heat and sensible heat) and environ-
mental variables such as temperature (air, soil and 
surface), soil moisture and others, which makes it 
easier to apply statistical learning techniques based 
on machine learning for CO2 simulation. The artifi-
cial neural networks (ANN) are among the tech-
niques based on pattern recognition capable of 
modeling non-linear processes. The application of 
ANN techniques to ecosystem carbon estimation is 
one of the new areas of data-driven modeling util-
izing the relationship among the micrometeorologi-
cal variables. Recently, researchers applied the ANN 
techniques for simulating ecosystem carbon flux[2―9]. 
Van Wijk et al.[6,9] used ANN in the top-down ap-
proach to model CO2 and water fluxes from six dif-
ferent coniferous forests in Europe. The study used 
global radiation, temperature, vapor pressure deficit 
as input variables to predict CO2 flux. The results 
indicated that independent predictions of forest 
ecosystem fluxes were equally satisfied as empirical 
models and both water and carbon fluxes can be 
modeled without detailed physiological and site 
specific information[6]. Papale et al.[7] also used 
ANN techniques to fill gap of flux tower data and 
integrate land use, NDVI data to model spatial (1 
km×1 km) and temporal (weekly) of carbon fluxes 
for European forests at continental scale[7]. Devel-
opment of inverse methods in remote sensing pro-
vides the advantage for obtaining the energy flux 
data at regional scale[10]. The nonlinear relationship 
between energy fluxes, environmental variables and 
CO2 fluxes increases the difficulty for model simu-
lating, but it provides a new method to integrate 
inverse methods of remote sensing, to model spatial 
distribution of CO2 fluxes at regional or continental 
scale. Assefa et al.[8] used energy fluxes and tem-
perature (soil, air) as input variables to model CO2 
fluxes of three different ecosystems in Ameriflux[8]. 
Although the result is perfect, the research simply 

shows that the soil moisture will improve the model 
accuracy, and no further study has been conducted 
on soil water content and on the ANN technique 
which explains the process mechanism. All these 
researches conclude that the ANN approach can be 
useful for gap filling and carbon flux spatializa-
tion[6―9,11].  

The overall objective of our study is to evaluate 
the performance of ANN modeling of CO2 flux from 
energy fluxes and temperature (air and soil), and 
provide the method of simulating the carbon fluxes 
at regional/continental scale for integrating the re-
mote sensing and flux tower data. Missions include: 
i) To assess the applicability of ANN-based CO2 
flux simulation for various ecosystems; ii) to study 
the impact of soil moisture on simulation accuracy; 
iii) to identify the interactions between micromete-
orological variables and carbon fluxes, which have 
close correlations under different contexts. 

1  Methods and data 

1.1  Artificial neural networks 

An artificial neural network (ANN) is a nonlinear, 
parallel information processing paradigm that is in-
spired by the biological nervous systems, such as the 
brain, process information. It is mainly characterized 
by high dimension, high degree of interconnection and 
adaptive interaction between elements. An ANN con-
sists of a set of highly interconnected processing ele-
ments (neuron, or units, nodes). Each unit (neuron) 
accepts a weighted set of inputs and responds with an 
output. Neural networks have been applied in a wide 
variety of areas, including speech synthesis, pattern 
recognition, diagnostic problems, medical illnesses, 
robotic control and computer vision. In addition, they 
are able to deal with incomplete information or noisy 
data and can be very effective to define the rules or 
steps that lead to the solution of a problem, especially 
when a mathematical equation is not available[2―4]. 

Based on connection type and signal transforma-
tion direction, neural network types can be classi-
fied into feed-forward network and recurrent net-
work. According to different algorithms, the feed- 
forward network includes Back-Propagation neural 
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network (BPN) and Radius Basic function neural 
network. In the study, we have used a feed-forward 
back propagation neural network (BPN).  

 

A standard BPN is composed of input layer, one 
or more hidden layer and one output layer. Each 
node is only connected by adjacent node. Nodes at 
the same layer are not connected with each other. 
Fig. 1 presents the topological architecture of BPN. 
ANN (n,m,p,q) is a network including input layer 
with n inputs, hidden layer with p neurons, output 
layer with q neurons, m hidden layers with p neu-
rons. When Xi(i=1,2,…n) is input variables, 
Yk(k=1,2,…q) is output variables, (i=1,2,…n, 

j=1,2,…p) is connect weight between input layer 
and hidden layer, 

h
ijW

h
jkW （ j=1,2,…p,k=1,2,…q） is 

connect weight between hidden layer and output 
layer , h

jZ is output values of each hidden layer. The 

equation is as follows: 
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In the study, we have used logsig(sj)  transfer func-
tion.  

When learning mode of input variables Xi (i = 1, 
2, ⋯, n) and architecture of BPN is provided, we 
may use suitable algorithm to train ANN. During 
training a network, when error (E) between the out-
puts iy)  for the network and actual outputs  is 

less than or equal to a critical value (E
iy

0), also E ≤
E0, an ANN model is developed with corresponding 

network architecture and parameters. Error equation 
is as follows: 
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When network architecture and algorithm is se-
lected, modeling dataset is generally divided into 
three groups: training dataset, used to determine the 
weights during neural network training; test dataset, 
used during network training to calculate the errors 
to prevent overtraining; and validation dataset, used 
to assess the network’s performance with ‘new’ data, 
which removes the possibility of the network over 
fitting on training and test sets. We can apply the 
trained BPN for modeling the output of new data, 
also the generalization function of ANN model. 

 
Fig. 1.  Topology architecture of BPN. 

1.2  Sites descriptions and data 

Three different ecosystems (forest, grassland and 
cropland) at different locations (Changbai Moun-
tains, Haibei, Yucheng) are involved in this study. 
The sites are part of ChinaFLUX, where CO2, water 
vapor, energy fluxes and other biophysical flux and 
micrometeorological data are measured on a long 
term and continuous basis[1]. Fluxes and microme-
teorological data from these sites are used to train 
the neural network and predict CO2 fluxes. The site 
description, environmental variables monitored and 
instrumentation for each site are indicated in Table 1. 
In each ecosystem, we select pre-processed half- 
hourly data from June to August in 2003 (in 
Yucheng site, the data start from 15, June), totaling 
three datasets. Based on each site, we randomly se-
lect 60% of dataset as training dataset, 20% as test 
dataset and 20% as validation dataset. 
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Table 1  Descriptions of sites 
Sites Changbai Mountains Haibei Yucheng 

Lon.(°E) 128.0958 101.3000 116.6000 
Lat.(°N) 42.4025 37.6000 36.9500 

Ecosystem broad-leaved Korean 
pine mixed forest alpine shrub cropland 

Species 
Pinus koriaen-

sis,Tilia amurensis, 
Quercus mongolica

Potentilla 
fruticosa summer maize

Climate temperate, continen-
tal monsoon climate

continental 
monsoon  
climate 

semi-humid and 
monsoon climate

MAP (mm) 695 580 520 
MAT (°C) 3.6 −1.7 13.1 

Soil type montane dark brown 
forest soil 

Mollic Gryic 
Cambisols soil 

moisture soil,
salinized 

moisture soil
Elevation (m) 738 3200 20 
Tower height 
(m) 40 2.2 2.2 

Topography flat flat flat 
Beginning data 2002 2002 2002 

 

 

1.3  Data pre-processing 

In order to improve the simulating accuracy, data 
need to be preprocessed before analysis. In this 
study, data preprocessing consists of two parts: pre-
processing of flux data and normalizing of all data. 
Preprocessing of flux data includes processing ab-
normal value and skipping the night-time flux. In 
processing abnormal value, we refer to FLUXNET 
whose critical value is indicated in Table 2[12]. Night- 
time fluxes are skipped from the dataset when wind 
speed is below 0.12 m·s−1 (Yucheng), 0.2 m·s−1 
(Changbai Mountains), 0.2 m·s−1 (Haibei)[13―15]. 

Table 2  Maximum and minimum values of key variables 
(FLUXNET, 2003) 

Variables Symbol Minimum Maximum 
CO2 flux (Umol·m−2·s−1) Fc −40 40 
Friction velocity (M·s−1) Ustar 0 6 
Latent heat flux (W·m−2) LE −100 700 
Sensible heat flux (W·m−2) H −300 700 
Soil heat flux (W·m−2) G −110 220 
Momentum flux (kg·m−1·s−2) Tau −100 100 

 
Since different input variables have typical values, 

which vary significantly, all inputs data are normal-
ized to scale between 0 and 1 for easy calculation 
and prevention of overfitting. The equation is as 
follows: 
  (4) scaled min max min( ) /(X x x x x= − −

where  is normalized value of input variable, scaledX

maxx  is maximum value of input variable, minx is 
minimum value of input variable. 

1.4  Architecture of ANN model 

Researchers have applied ANN technique to 
simulate CO2 flux[6,7,9], but energy fluxes were not 
used in the neural network design. With the devel-
opment of inverse method in remote sensing, a neu-
ral network capable of correlating energy fluxes to 
CO2 fluxes has a potential to be used for spatial 
mapping of the later using data from remote sensing, 
and ANN technique is rarely used in grassland and 
cropland ecosystems. The studies select energy 
fluxes (net radiation, latent heat, sensible heat, and 
soil heat flux), air temperature, soil temperature, and 
soil moisture as input variables, depending on 
whether to select soil moisture and build two dif-
ferent architectures of ANN model. Architecture of 
model is indicated in Table 3. The difference between 
model 1 and model 2 lies in that soil moisture is in-
cluded in model 1 but not in model 2. The architecture 
of network is 6(7)-10-1, also input layer have 7 units 
(model 1) or 6 units (model 2), hidden layer have 10 
units, output layer have 1 unit. 

Table 3  Architecture of ANN model 1 and model 2 

No. Input variables Output vari-
ables 

Model 1 
net radiation, sensible heat, latent heat, 

soil heat flux, air temperature, soil 
temperature, soil moisture 

CO2 flux 

Model 2 
net radiation, sensible heat, latent heat, 

soil heat flux, air temperature, soil 
temperature 

CO2 flux 

 

1.5  Contributions of input variables in ANN model 

As the ANN model is usually regarded as “Black- 
Box” model, researchers cannot understand the in-
ternal-process of phenomenon. But they attempt to 
understand the relationship between input variables 
and output variables through different methods, to 
help researchers optimize the network architecture 
or study the contribution of input variables, over-
coming the disadvantage of ANN model. Gevrey et 
al.[16] have used eight different methods (connect 
weight, sensitivity analysis, etc.) to study the con-
tribution of input variables. Based on Gevrey et al’s 

),
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study, Julian et al.[17] provided more appropriate 
comparison by using simulation data and Monte 
Carlo method. Results showed that a connection 
weight approach using raw input-hidden and hid-
den-output connection weights in the neural network 
provided the best methodology for accurately quan-
tifying variable importance. In the study, we have 
used connect weights method to quantify variable 
importance. Detailed steps are as follows: 

1) Calculating the weight index  of hidden 

layer neuron j. Consider the neural network with 
three-layer architecture, the equation is as follows: 

ijQ
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where  is the weight between input layer and 

hidden layer, 
ijW

jkW  is the weight between hidden  

layer and output layer, i=1,2…n, n is number of in-
put variables, j=1,2….p, p is number of hidden layer, 
k=1,2…q, q is number of output layer. In the study, 
k=1. 

2) Calculating the relative important index (RI %) 
of input variables. 
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1.6  Model assessment 

The evaluation of the error of training, test and 
validation dataset made by the neural network is 
done through the calculation of different error 
typologies, we have used

 

 
Pearson correlation coefficient (r): 
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root mean squared error (RMSE):  
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mean absolute error (MAE): 
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p
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where is the number of examples, p y) is the pre-
dicted values and is the real values; mean is mean 
value. 

y

2  Results and discussion 

2.1  Analysis of input data 

Average diurnal variation of energy fluxes, CO2 
flux, and temperature for the three ecosystems dur-
ing June―August in 2003 is shown in Fig. 2.  In 
all the three ecosystems, a close correlation between 
CO2 flux and net radiation, latent heat, sensible heat, 
soil heat flux, air temperature, soil temperature is 
shown. In growing season of the three ecosystems, 
CO2 flux value is negative and the dominant source 
of carbon flux is the nighttime vegetation respira-
tion, therefore, these ecosystems represent “carbon 
sinks”. During the peak photosynthesis window of 
the day, plants utilize carbon dioxide, leading to a 
declining carbon concentration. The energy flux 
data from the flux towers include the net radiation, 
latent heat and sensible heat. Attributed to vegeta-
tion cover, latent heat is more than sensible heat. 
Usually, energy flux includes net radiation, sensible 
heat, latent heat and soil heat flux, and the parti-
tioning of net radiation to sensible heat, latent heat 
and soil heat flux is highly dependent on albedo and 
Bowen ratio, so vegetative cover plays a very im-
portant role in this process. This makes correlation 
of energy and carbon fluxes inside ANN very prac-
tical.  

2.2  Simulation result for cropland, grassland and 
forest ecosystems 

Error (MAE and RMSE) and Pearson correlation 
coefficient (r) of training, test, validation between 
real value and predicted value by ANN model in the 
three different ecosystems are indicated in Table 4, 
Figs. 3―5. 

During training, test and validation, results of 
model 1 or model 2 indicate that the CO2 flux mod-
eled from the energy fluxes and temperature dem-
onstrate a good agreement with the observed values. 
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Fig. 2.  Average diurnal variation of temperature, energy fluxes, CO2 flux at the three different ecosystems (June—August, 2003). (a) Forest ecosys-
tem, Changbai Mountains; (b) grassland ecosystem, Haibei; (c) cropland ecosystem, Yucheng. 
 

Table 4  Statistical indices showing the ANN model performancea)

Changbai Mountains Haibei Yucheng 
 Site name 

Training Testing Validation Training Testing Validation Training Testing Validation

 Number 1246 416 416 1138 380 380 1280 428 428 

Model 1 0.863 0.807 0.845 0.808 0.825 0.757 0.867 0.871 0.863 

Model 2 
R2

0.860 0.807 0.839 0.802 0.821 0.770 0.857 0.856 0.866 

Model 1 0.0078 0.01193 0.0092 0.0125 0.0116 0.0124 0.0086 0.00954 0.0097 

Model 2 
RMSE 

0.0080 0.011253 0.0099 0.0129 0.0117 0.0125 0.0092 0.0103 0.0098 

Model 1 2.61 3.04 2.75 1.39 1.38 1.59 3.04 3.14 3.58 

Model 2 
MAE 

2.65 3.03 2.89 1.59 1.47 1.63 3.58 3.39 3.60 

a) The unit of RMSE and MAE were μmol·m−2. 

 
As to simulation results, the cropland ecosystem is 
the best one, with R2 of 0.86, RMS of 0.0086 
μmol/m2 and MAE of 3.04 μmol/m2. The forest 
ecosystem is found to be second, with R2 of 0.84, 
RMS of 0.012 μmol/m2 and MAE of 1.59 μmol/m2. 
In Haibei, a grassland ecosystem, the results are the 
worst, with the R2, RMS and MAE rated as above 
0.77, 0.0092 and 2.75 μmol/m2 respectively. Slim as 
it is, the difference of simulation result of three 
ecosystems is perhaps correlated to the number of 
sample data, which are counted to be 2136, 2078 
and 1898 in Yucheng, Changbai and Haibei sites. 
The reason for Haibei site is that precipitation that 
occurred in night time reduces the number of sample 
data in the area. 

2.3  The contribution of soil moisture to CO2 flux in 
different ecosystems 

Soil moisture and soil temperature play a very 
important role in the amount of soil respiration. 
Valentini[18] indicated that the inclusion of soil 
moisture could improve the predictions. In the study, 
inclusion of soil moisture (model 1) has improved 
the prediction, though not significantly. Fig. 6 
shows that from June to August in 2003, in three 
different ecosystems, most of soil water content 
were above 0.22 m3/m3, except that in some days in 
Changbai Mountain. Compared with previous years, 
Changbai Mountain experienced a drought year, but 
there was no water stress phenomenon. Therefore, in 
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Fig. 3.  Measure vs. ANN NEE values for training, testing and validation dataset at Haibei site (grassland ecosystem). Upper: Measure vs. ANN NEE 
values for 7 input variables (model 1 inclusion of soil moisture). (a) Training dataset; (b) testing dataset; (c) independent validation dataset. Lower: 
Measure vs. ANN NEE values for 6 input variables (model 2 not inclusion of soil moisture). (a) Training dataset; (b) testing dataset; (c) independent 
validation dataset.  
 

 
 
Fig. 4.  Measure vs. ANN NEE values for training, testing and validation dataset at Yucheng site (cropland ecosystem). Upper: Measure vs. ANN 
NEE values for 7 input variables (model 1 inclusion of soil oisture). (a) Training dataset; (b) testing dataset; (c) independent validation dataset. Lower: 
Measure vs. ANN NEE values for 6 input variables (model 2 not inclusion of soil moisture). (a) Training dataset; (b) testing dataset; (c) independent 
validation dataset.  
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Fig. 5.  Measure vs. ANN NEE values for training, testing and validation dataset at Changbai Mountain site (forest ecosystem). Upper: Measure vs. 
ANN NEE values for 7 input variables (model 1 inclusion of soil moisture). (a) Training dataset; (b) testing dataset; (c) independent validation dataset. 
Lower: Measure vs. ANN NEE values for 6 input variables (model 2 not inclusion of soil moisture). (a) Training dataset; (b) testing dataset; (c) inde-
pendent validation dataset. 
 

 
 

Fig. 6.  Dynamics of soil moister in the three ecosystems from June to August in 2003. 
 

 
the three ecosystems, from June to August, soil 
moisture has not contributed significantly to NEE, 
nor can ANN model inclusion of soil moister greatly 
improve the prediction accuracy. 

2.4  The contributions of input variables to NEE  

The contribution of input variables to NEE on 
model 1 and model 2 is shown in Fig. 7. Results 
show that contribution of input variables to NEE 
varies greatly in different ecosystems. At Haibei and 
Changbai Mountain sites, energy fluxes play a more 
important role than temperature. It perhaps means 

that from June to August, Haibei (grassland ecosys-
tem) and Changbai Mountain (forest ecosystem) are 
carbon sinks. As ecosystem photosynthesis exceeds 
the respiration and temperature is an important con-
tributor in the respiration, the temperature variable 
is subordinate to other variables. At Haibei site, 
contribution of latent heat variable is more than 
sensible heat in energy flux. In Changbai Mountain, 
however, the situation is opposite. It is correlation 
between NEE and micrometeorological environment 
in these sites. The case when Bowen ratio, a ratio of 
sensible heat versus latent heat, is smaller than 1  
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Fig. 7.  Contribution of input variables. (a) Haibei; (b) Changabai Mountais; (c) Yucheng (from 15, June to 31, August); (d) Yucheng (from 20, July 
to 31, August). 
  
shows a wet climate, while Bowen ratio is larger 
than 1 means a dry climate. This phenomenon is 
consistent with environmental condition of Haibei 
and Changbai Mountain sites. At Yucheng site, soil 
temperature plays a more important role than other 
input variables. It probably means that from 15, 
June, when summer maize is just sown without 
other vegetation, the NEE is dominated by the res-
piration (nighttime and daytime) and there is no 
water stress, therefore, the contribution of soil tem-
perature is larger than other variables during the 
whole growing season of the maize from June to 
August. Based on this, we simulate the NEE using 
data from 20, July to 30, August by ANN model. 
The result is shown in Fig. 7(d). Contribution of 
latent heat is more than temperature and heat tem-
perature. It is consistent with the fact that moisture 
is abundant at Yucheng site in 2003. So we can un-

derstand the NEE change patterns and corres- 
ponding information by means of weight analysis of 
ANN model. 

2.5  Advantage and disadvantage of ANN model 

The advantage of ANN model is that it can simu-
late interaction between input variables and CO2 
flux, train and model input multi-variable sample 
and its model result is satisfactory without using the 
complicated mathematical equation. ANN model is 
especially used to simulate the output/input vari-
ables interaction that has not yet been fully under-
stood.  

ANN model is generally regarded as an empiristic 
model without the ability to extrapolate due to its 
dependence on the inter-structure of training dataset, 
instead of the understanding of ecosystem process. 
In the study, we use cross-validation and independ-
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ent validation to prove that ANN model has some 
power of extrapolability. ANN model needs more 
parameters than process model. Only with sufficient 
samples will the ANN have a power to extrapolate, 
otherwise it may lead to overfitting. So we need to 
be careful when using ANN model to extrapolate.   

3  Conclusion 

The applicability of ANN to carbon flux simula-
tion from other micrometeorological variables was 
studied for the three different ecosystems (cropland, 
grassland and forest). The average diurnal fluxes 
(CO2 versus energy) and (CO2 versus temperature, 
air and soil) variations from three ecosystems show 
that a close correlation exists among carbon flux 
and energy fluxes, and carbon and temperature (air 
and soil). Half-hourly data from June to August in 
2003 in the three ecosystems were divided into 
training, testing and validating, including or ex-
cluding soil moisture. Results show that the carbon 
simulation applied for the three different ecosystems 
corresponds well with observed flux values, with R2 

all above 0.8.  
Though soil moisture and soil temperature have 

an important role in soil respiration, when there is 
no water stress, inclusion of soil moisture cannot 
improve the prediction in the three different eco-
systems. The analysis of the contribution of input 
variables in ANN shows that the ANN is not a black 
box model, it can tell us about the controlling pa-
rameters of NEE in different ecosystems and 
micrometeorological environment. The results indi-
cate that the ANN is not only a reliable and efficient 
technique to estimate regional or global CO2 flux 
from point measurements and understand the spati-
otemporal budget of the CO2 fluxes, but also can 
identify the interactions  between the CO2 flux and 
micrometeorological variables.  
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